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Numerical and Experimental 
Simulations of Pseudoplastic 
Transient Pipe Flows 
The purpose of this work is to develop and to compare different methods for the determi­
nation of startup flows of a pseudoplastic fluid in pipes under a varying pressure gradi­
ent. Three methods are proposed: 

1 A method involving a finite-difference calculation. 
2 A method using an approximation of the acceleration term in the equation govern­

ing the phenomenon. 
3 An experimental method based on measurements of local velocities by means of 

Laser-Doppler anemometry. 

The most interesting point of this work is the good agreement observed between the three 
methods in the non-Newtonian case. 

I n t r o d u c t i o n 
In case of startup flow of an incompressible fluid of Newtonian 

behavior in a rigid cylindrical tube, the solution of the momentum 
equation can be obtained analytically. The first research worker who 
studied this phenomenon seems to be Gromecka who solved the 
problem when the fluid is suddenly exposed to a constant pressure 
gradient [1]. Later, Szymanski extended the solution to a varying 
pressure gradient [2]. Other workers tried to obtain this solution by 
use of Laplace transform technique [3, 4]. Let us notice that only one 
publication points out an experimental determination of local ve­
locities [4]. These works can be found in Fig. 1. 

As it can be seen in Fig. 1, the Newtonian case is the most studied 
one because the linearity of governing equations allows obtaining an 
analytical solution. 

When one considers non-Newtonian fluids, one can see that there 
are very few publications including only two in the pseudoplastic case. 
Edwards, Nellist, and Wilkinson study pulsed flows and startup flows 
under a constant pressure gradient [5] as did also Sestak and Charles 
[6] who study the same problem of startup flow using a technique 
developed by Targ and Slyoskin [7] to solve some problems of New­
tonian transport phenomena. 

Contributed by the Applied Mechanics Division for publication in the 
JOURNAL OF APPLIED MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N. Y. 
10017, and will be accepted until June 1,1981. Readers who need more time to 
prepare a Discussion should request an extension from the Editorial Depart­
ment. Manuscript received by ASME Applied Mechanics Division, February, 
1980; final revision, April, 1980. 

Moreover, it is interesting to note that the pressure gradient is 
generally taken constant by most authors except by Atabek who 
studied the startup of a Bingham plastic [8] and by Etter who con­
sidered an Oldroyd's fluid [9] (Fig. 2) for nonconstant pressure gra­
dients. 

We propose to study by three different methods the startup flow 
in pipes of an Ostwaldian fluid submitted to a varying pressure gra­
dient. 

E q u a t i o n s G o v e r n i n g t h e P h e n o m e n o n 
In case the rheological behavior of the fluid is described by the 

power law of Ostwald-de Waele we have 

K-
. i>u 

&r 
(1) 

where 

r r 2 = shear stress 
K = consistency 
u = longitudinal velocity 
r = radial position 
n = behavior index 

and the Navier-Stokes equation reduces to 

du dp 1 d , 

dt d z r £>r 

where p is the density and t is the time with the initial condition 

u(r, 0) = 0, V (3) 

Journal of Applied Mechanics MARCH 1981, VOL. 48 / 1 
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Fig. 2 Functional forms of the longitudinal pressure gradient used in different 
works on startup flows in pipes 

and the boundary conditions 

u(R, t) = 0, Vt (no-slip condition at the wall) (4) 

R is the tube radius 

du / 
— / = 0 , V t (symmetry of the flow about the center line) 
dr I r=o 

(5) 

In addition, the pressure gradient must be prescribed as a function 
of time, i.e., 

~ = -pAf{t) 
dz 

(6) 

where pA is the amplitude of the pressure gradient. 
Substituting for r r e into equation (2) from equation (1) and intro­

ducing the dimensionless variables 

r cot 
£ = - • t*= — : it* = 

u 
R 2ir u 

where a> is the pulsation and 

n RUn+1 , ^ 1 / n 

" ~ l + 3n(2Ky ,„ w 
leads to the following system of equations: 

dt* £d£ 

du* re-l 

(7a) 

u*(f, 0)=0, V£ (7fc) 

u*(l, t*) = 0, Vt* (7c) 

— - / = 0 , V t * 

We notice that there are two new dimensionless parameters 

/ l + 3n\n 
iV = 

/32 
r r i - n P i + i pwUl-nR 

2wK 

(Id) 

(8) 

(9) 

The momentum equation (7a) is nonlinear and an analytical so­
lution is impossible, hence we propose the first method of solution. 

F i r s t M e t h o d of S o l u t i o n 
This method involves a finite-difference calculation. The grid used 

in the solution is shown diagrammatically in Fig. 3. 
The radius of the tube is varied from the value J = 0 at the tube axis 

to the value f = 1, at the wall of the tube. It is divided into intervals 
A£ = 0.05. 

The second variable t* is varied from the initial value J = 1 to J = 
L corresponding to steady-state conditions. The step At* equals 
10-3 . 

Let us write down the partial derivatives of velocity in finite-dif­
ference form. We have 

du* _ 1 

dt* At* 

du* 1 

Thus we can write equation (7a) in finite-difference form 

• (u*rj - u^j-i) + o(At*) (10) 

(11) 
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Fig. 3 Grid used in the finite-difference method 

At* f 1 
U*I,J = u V - i + T r W * ) + 

-\k--^\(M*I,J~u*i-lij)\u*[,j-u*i-U\n-'i- (12) 

To equation (12), we must add 

w*/,i = 0, V-f (initial condition) (13) 

U*K,J=0, V J (no-slip at the wall) (14) 

However, it is noted that the viscous term in equation (7a) includes 
the fraction l/£ and hence it will be undefined when £ = 0, i.e., on the 
tube axis, so it is necessary to establish another expression for this 
value. 

From l'Hopital's rule, we have 

(15) lim 
*~o£d£ 

' du* 

a* 
du* 

a* 

n - l 

"s 
du* 

la? 
du* 

a? 

n - l 

Proceeding as previously, one obtains 

d Idu* 

<>£ I d f 
da*!"-1] 

ad 1 
2 it,,*.. n - 1 

A?" 

- (U*I,J ~ M*/ - l , j ) |u* / , J ~ U> ' J -1 , JI (16) 

However, it is advisable to use there as boundary condition the , 
symmetry of flow, i.e., 

"*/- l , J = U*I+I,J (17) 

Thus we obtain the simplified equation at the tube axis 

At* 
u*i,j = u * / , j - i + • Nf(f*) 

1 
+ • • , (u*r+i:J - u*/,j) |u*/+ i ,^ - U*I,J\ n _ 1 (18) 

Fig. 4 Diagram of the experimental setup for the study of startup flows; 
transparent pipe with upstream and downstream tanks; Laser-Doppler ane­
mometer and the electronic devices used 

The calculation is started at J = 2 choosing a distribution of near 
zero velocities calculated using the expression of velocity for a steady 
non-Newtonian flow, i.e., 

(1 - S1/"+l)(10-6) (19) 
n+1 \2 

Second Method of Solution 
According to this method, the acceleration term in equation (2) is 

replaced by its mean value taken along the tube radius; see [7]. 

du 1 r^du , 

dt R Jo dt 
(20) 

Substituting equation (20) into the momentum equation and as­
suming that dp/dz = — pAf(t), we have 

di d$ Kun (21) 

u(t t) 
n 11 

n+l\2 tt l+l/n . Dx(0 

where v = ulu and ? = r/R. 
Solving this equation with boundary conditions (4) and (5) gives 

nvu/». 
\2A) 

where 

X(t) = [<p(t) - Af(t)]\<p(t) ~ Af(t)\V"~i 

Now, it is necessary to determine the unknown function x ( ' ) . To 
do this, it is enough to differentiate v(£, t) with respect to time and 
to integrate the obtained result with respect to £, i.e., 

dX(t) 

(22) 

(23) 

dt n+l\2A) dt 
(24) 

But, from equation (20), we have 

I o dt u 

(25) 

(26) 

1 n IN\Undy(t) r1 

u n+1 \2AI dt Jo 

Finally, we obtain 

dx(t) 2n+l /2A\iA>l , „ , , . , ., , ,. „ 

dt n \Nj u 

The solutions of the system formed by this equation and equation 
(22) are found numerically using the Runge-Kutta method. 

Third Method of Solution 
The third used method is an experimental one. 
Experimental Model. The main aim of the experimental model 

is to apply either a steady, or sinusoidal, or pulsed pressure gradient 
at the choosen instant to the fluid at rest (Fig. 4). 

This installation is composed of four parts: a rigid tube, a steady 
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.JU(S-I) 

Fig. 5 Examples of rheograms for pseudoplastlc behavior obtained with 
solutions of Na CMC In water; effect of the concentration; comparison with 
a Newtonian solution of Pluracol 

flow system, a pulsed flow generator, and a starting device which al­
lows accurate timing of the pressure gradient in periods of successive 
phases. 

The rigid tube is made of plexiglas, it is 3 m long, internal diameter 
is 35 mm, and thickness 2.5 mm. It is set horizontally and due to its 
transparency it allows visualization of the flow and measure the local 
velocities with a Laser-Doppler anemometer. (L.D.A.) 

Constant flow rates are obtained by a variable speed pump placed 
in the return circuit. 

The pulsed flow generator transforms the rotational movement of 
a variable speed motor into a sinusoidal translational movement which 
is transmitted to a piston moving in a cylinder. 

The starting device allows the pump and the pulsed flow generator 
to start simultaneously. The L.D.A. allows the velocity measurement 
at a single point of a section of the duct. So, it was necessary to start 
the flow always at the same value of the pressure gradient in order to 
be able to investigate the whole cross section of the tube. The problem 
has been solved using a movable switch allowing the piston to be 
stopped always in the same position. 

The fluids studied are of two types 

1 Aqueous solutions of Pluracol V 10 giving Newtonian flows. 
. 2 Aqueous solutions of high organic polymers, sodium carboxy-

methyl-cellulose (Na CMC) the behavior of which is non-Newtonian. 
Different values of the behavior index n and fluid consistency K can 
be easily obtained by varying the concentration of water. The rheo­
grams (shear stress/shear rate curves) have been obtained using a 
Shirley-Ferranti cone-plate rheometer (Fig. 5). 

The velocity profiles have been determined by a frequency tracker 
type Laser-Doppler anemometer Mark 1. For oscillatory or pulsed 
flows, the use of a Doppler frequency shift system consisting of a 
BRAGG's acustic-optic modulator allowed accurate measurements 
of the phase angle and the direction of the velocity. 

The experimental pressure gradient is obtained from the output 
of two pressure transducers. The analytical form of the observed 
pressure gradient is determined by a graphical method and is used 
in the momentum equation (Fig. 8). 

Results 
First of all, we compare the results obtained by each method with 

the analytical one obtained in the Newtonian case corresponding to 
a behavior index n = 1 (see the Appendix). 

The use of the finite-difference method shows that a relative error 
of about 0.1 percent has been committed (Fig. 6). So it seems that this 
method is the best one but it is also the most difficult one to use and 
the time of calculation is long. 

The second method, using the approximation of the acceleration 
term in the momentum equation, does not give such good results in 

t ( s ) \ 

1 

2 

3 

4 

5 

6 

7 

0 
FD A 

0.75529 

1.28556 

1,59352 

1.76868 

1,80810 
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I.95660 

11.75(i-lS 

1 ,28699 

1,5951)0 

1,77014 

1.86955 

1,92597 

1,95799 

0.3 
FD A 

0,72563 

t , 19522 

1,46409 

1,61779 

1 ,70469 

1,7541)3 

1 .78204 
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1,19647 

1,46599 

1,61909 

1 ,70598 

1,75529 
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0.6 
FD A 

0.59078 

0,89113 

1.05907 

1,15426 
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1.23B97 

1 .25637 

0 ,59 1 Ii3 

0,89188 
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1.15508 

1.20911 

1.2397? 

1.25717 

0,9 
FD A 

0.21325 

0.28670 

0,32705 

0.341187 

0,36282 

0.37DI8 

0,37435 

0.21348 

0.2H688 

0.32722 

0,35005 

0,36300 

0-T?035 

0.37453 

relative error < 10, 

Fig. 6 Comparison between velocities obtained in transient newtonian flows 
by a finite-difference method (FD) on one hand and an analytical Method 1, 
on the other 

to(s) 

Fig. 7 Comparison of relative error of the determination of velocity In the 
case of the analytical method (VA) and the method based on an approximation 
of the acceleration term (Vre) for different radial position £ in the pipe; variation 
of the relative error with flow rate 

the Newtonian case as the first one (Fig. 7). One can observe that the 
relative error committed in the value of the local velocities is great at 
the beginning, but it becomes less than 10 percent shortly after this 
beginning. It is interesting to note that the relative error of mean 
velocities, therefore of the flow rates is small. 

The agreement between analytical and experimental methods is 
good. Fig. 8 shows a comparison of results obtained at pulsed pressure 
gradient. The continuous lines represent the results obtained by the 
analytical method and the points the experimental ones. 

Non-Newtonian Case 
We have compared the various, methods proposed for the non-

Newtonian case by utilizing Newtonian flow. We present in Fig. 9 the 
curves of relative errors between the first and the second method for 
different values of pseudoplasticity. 

For, when Kisa constant, one can see that the error decreases with 
the behavior index n. That is to say that the approximation used in 
the acceleration term in the momentum equation is increasingly ac­
curate as the pseudoplastic character becomes more pronounced. 

This is because the velocity profiles become flatter when the be­
havior index n decreases. So, at every radial position £ the true value 
of the acceleration term du/dt is nearer to its mean value. 
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Fig. 8 Evaluation of flow velocities experimentally and numerically obtained 
In case of startup of Newtonian pulsed flows 

The next figure shows the evolution for a pulsed pressure gradient 
during the startup flow (Fig. 10). The continuous lines represent the 
results obtained by the finite-difference method and the points cor­
respond to the experimental results. 

Conc lus ion 
A literature survey allowed us to notice the special character of this 

problem. There were not many works available in the Newtonian case 
and very few in non-Newtonian inelastic case. We tried to solve the 
problem by several methods 

1 An analytical method in the case of Newtonian flows (see the 
Appendix). 

2 A finite-difference method solve directly the equations gov­
erning the phenomenon. 

3 A method using an approximated acceleration term which al­
lows an analytical solution to be used before the numerical calcula­
tion. 

4 An experimental method using Laser-Doppler anemometry. 

A comparison of the different methods allows us to notice the very 
good precision of the finite-difference method. The method using an 
approximated acceleration term, although it is less accurate, also gives 
satisfying results. On the other hand, this second method is very in­
teresting because it requires much less calculation time than the fi­
nite-difference method. Moreover, this method gives very good results 
when one is only interested in flow rates. 

Let us point out at last the good agreement between the results 
obtained by the four different methods of calculation. 
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APPENDIX 

N e w t o n i a n C a s e — A n a l y t i c a l S o l u t i o n (4) 
re = 1 for Newtonian fluids and the consistency K converges to the 

dynamic viscosity rj. The momentum equation (7a) becomes linear 
and can be written 

d2ti* 1 du* „ „ du* „ , 

-sF+rsF-*6"^--^ (27) 

where u* - ufu, u = Ar2/8v where v is the kinematic viscosity 
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Re* 
uR2 

2-KV 

with the same initial and boundary conditions as in the non-Newto­
nian case. 

Solving equation (1) by means of the Laplace's transform leads us 
to the equation 

1 
U « , s) = 

Re*s 
Mi VRe* s£) 
J 0 ( i \ /Re* s) 

F(s) 

where 

U(£,s)= C e- s (*u*(f, t*)dt* 
Jo 

F ( s ) = ("° e-°ff(t*)dt* 

(28) 

(29) 

(30) 

s = the symbolic parameter. 
Applying successively both theorems of convolution and residues 

to expression (28), we can find the transform inverse of !_/(£, s) 

Man£) 
"*(£, t*) = 

16 

Re* n=ianJi(an) 

X f f(t* - t^e-UR'^t'dt' (31) 
J o 

where an are the positive zeros of the function Jo, such as Jo(an) 
= 0, Jo, J i = Bessel's functions of first kind of 0 and 1 order. 

6 / VOL. 48, MARCH 1981 Transactions of the ASME 

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



K. M. Kalumuck 
P. W. Huber 
Assoc. Mem. AS ME 

Department of Mechanical Engineering, 
Massachusetts Institute of Technology, 

Cambridge, Mass. 02139 

A Perturbation Analysis of Fluid-
Structure Interactions in a Model 
Test System1 

A perturbation analysis of fluid-structure interactions in a model test system of con­
trolled flexibility excited by a complex hydrodynamic transient is presented. The analysis 
demonstrates the important features of the perturbation method and its implementation. 
Comparison of predictions with experiment provides a test of the analytical procedure 
and its underlying assumptions. The results illustrate the important effect of transient 
liquid mass redistribution on the flexible system response. 

I n t r o d u c t i o n 
Reference [1] outlines a perturbation method for analyzing the 

response of fluid-filled flexible structures undergoing complex hy­
drodynamic transients and develops the criteria for the applicability 
of this method. In this paper we compare predictions based on per­
turbation method calculations with experimental results obtained 
in a simple test system. This paper has three purposes: to demonstrate 
the implementation of a perturbation method fluid-structure inter­
action (FSI) calculation in a simple system, to explore the basic 
physics of FSI in a system undergoing a complex hydrodynamic 
transient, and to provide one set of tests for verifying the numerous 
underlying assumptions of the perturbation method. The develop­
ment of a general algorithm for modeling FSI phenomena was not one 
of our goals. 

S u m m a r y of E x p e r i m e n t s 
Fig. 1 shows a schematic of the cylindrical single downcomer test 

system partially filled with water in which our FSI experiments were 
conducted. Detailed descriptions of the test system, experimental 
procedure, and results have been documented elsewhere [2], Only 
those experiments and results analyzed in this paper are summarized 
here. The test system's sidewalls and top are made of thick steel and 
are effectively rigid. The base consists of an interchangeable alumi­
num plate clamped at its periphery. Changing the base plate thickness 
introduces different degrees of structural flexibility into the system. 
The rigid structure system characteristics are obtained by use of a 

1 Work sponsored by the U. S. Nuclear Regulatory Commission, Office of 
Nuclear Regulatory Research under Contract No. 04-77-011. 

Contributed by the Applied Mechanics Division for publication in the 
J O U R N A L O F A P P L I E D M E C H A N I C S . 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N. Y. 
10017, and will be accepted until June 1,1981. Readers who need more time to 
prepare a Discussion should request an extension from the Editorial Depart­
ment. Manuscript received by ASME Applied Mechanics Division, January, 
1980; final revision, June, 1980. 

1.9-cm-thick base plate. Sidewall taps enable pressure measurements 
to be taken at several stations in the liquid pool. 

A hydrodynamic transient initiated by the opening of a fast acting 
valve is generated by injection of air from a large constant pressure 
reservoir or "drywell." The pressure beneath the plate is maintained 
constant at the initial pool surface pressure throughout the transient. 
The air injection forces the water out of the downcomer and forms a 
bubble that rapidly grows and redistributes the water in the pool 
causing the pool to "swell." Fig. 2 shows the pool swell history traced 
from high-speed film records in a geometrically similar rigid plexiglass 
system subject to a properly scaled but otherwise identical hydro-
dynamic transient initiated at t = 0. A dimensionless time t* = 
ty/g/2a , where a is the pool radius, has been defined in accordance 
with the hydrodynamic scaling laws for this system [3]. 

Typical pressure histories measured along the sidwall 5 cm above 
the base plate are presented in Fig. 3 where the measured pressures 
have been nondimensionalized by the constant reservoir (drywell) 
pressure, PD- The top oscillogram shows the rigid system pressure 
history containing a very rapid rise in pressure at the time the 
downcomer is cleared of water followed by a much more gradual 
change. The other three oscillograms show the measured pressure 
histories for plate thicknesses of 0.2, 0.16, and 0.1 cm [2]. 

P e r t u r b a t i o n M e t h o d Analys i s 
Governing Equations. Fig. 4 shows schematically the governing 

equations and boundary conditions used in implementing a pertur­
bation method analysis for our test system. These follow directly from 
those outlined in [1], The shaded liquid region, in which we ignore the 
presence of the downcomer, is bounded by four surfaces S i , . . . , S4. 
The governing liquid region equations are 

P = P,t + PP 

V 2 P P = 0 

(1) 

where P is t h e p res su re in t h e flexible sys tem, PR is t h e p ressure in 

a n ident ica l r igid sys t em undergoing a n ident ica l h y d r o d y n a m i c 
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Fig. 1 Schematic of test system 
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Fig. 3 Experimental pressure histories on pool sidewall 5 cm above the base 
plate (zla = 0.7) 

transient and Pp is the perturbation pressure. The free-surface 
boundary condition is 

= 0 on Si, S 2 (2) 

where Si is the pool surface (approximated as horizontal throughout 
the transient) and S% is the bubble surface. The solid wall boundary 
conditions are 

dPD 

dr 

dPp 

' 0 on S 3 

dtz 

(3) 

(4) 

where S3 is the rigid sidewall, S4 is the initial plate-fluid interface, 
2 is measured vertically upward from S4, r is measured radially out­
ward from the center of S4, w is the downward plate displacement 
from S4, and p is the liquid density. A further approximation is made 
here in neglecting the small plate deformation due to the initial hy­
drostatic loading. Hence, S4 is taken as being perfectly flat. The dis­
placement w shown in Fig. 4 is exaggerated for clarity. 

The governing equation and boundary conditions for the clamped 
circular base plate are 

Fig. 2 Pool swell history traced from high speed films; hatch marks indicate 
growth of interface instability 

DV4-w = 

w = 0 and 

PR + Pp on S 4 

<>w/i>r = 0 at r = a 

(5) 

(6) 
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Fig. 5 Typical fluid domain computation mesh (here for /" = 0.314) 

Fig. 4 Equations and boundary conditions for perturbation calculation 

dw/dr = 0 and 
d 

dr 
0 at 0. (7) 

Here D is the plate flexural rigidity and PR is the hydrodynamically 
induced pressure in the rigid system. Experiments have shown PR to 
be uniform over the base plate [4]—varying only with time. In equa­
tion (5), the plate inertia has been neglected—an assumption easily 
justified for our system by the much larger water inertia felt by the 
plate through Pp. The test system and imposed hydrodynamic tran­
sient are axisymmetric. This leads to boundary condition (7). Equa­
tion (5) enables the plate to be viewed as moving through a series of 
quasi-static states. 

For solution of (5)-(7), a Green's function approach is adopted. The 
Green's function for this problem is found to be [5] 

For b < r: 

w(r, b) • 

For b > r. 

w(r, 6) = 

1 

' 8irD 

1 

8irD 

( a 2 - - r 2 ) ( a 2 + &2) 

2o2 

(a2 - fe2)(a2 + r2) 

+ (b2 + r2)\n-

2a2 + (62 + r 2 ) l n -

(8a) 

(86) 

Here b is the radial position of an arbitrary annular load. The plate 
displacement is then given by 

w(r,t)= C" 2irb[PR(t)+Pp(r = b,z=:0,t)]w(r,b)db. (9) 
Jo 

The plate displacement is also related to the plate acceleration 

| —w(r,t)dtdt. (10) 
o Jo d t 2 

The complete set of equations to be solved then consists of the 
liquid (1) and structure (9) equations, boundary conditions (2)-(4), 
and identity (10). Coupling between the fluid and structure equations 

occurs through both boundary condition (4) and the loading in 
equation (9). 

Computational Model. The technique adopted to solve the set 
of governing equations and their boundary conditions is a numerical 
time stepping one. A fully implicit second-order accurate five-point 
finite-difference scheme utilizing central differencing in an axisym­
metric geometry as presented in [6] is used in the fluid domain. The 
radial derivatives are expanded prior to discretization. Appropriate 
forms of second-order accurate boundary conditions are used. A de­
tailed description of the scheme employed can be found in [7]. The 
finite-difference equations are solved in a two-dimensional time 
varying mesh. A typical mesh employed is shown in Fig. 5. Two dif­
ferent axial mesh spacings are used such that the mesh point density 
is greater in the lower region of the pool than in the upper region. This 
provides a sufficient number of points between the bubble and the 
base plate to resolve the pressure gradient at the plate with reasonable 
accuracy. The number of mesh points varied with time from about 
500 to 600. The location of each mesh point is fixed in time, but points 
are removed as the bubble grows and added as the pool rises. Mesh 
points are denoted by a pair of indices (i, j), i = 1,. . . , I;j = 1 , . . . , 
J. The radial (r) and axial (2) mesh spacings are denoted by 5r and 
Sz such that r = (i — l)-8r and z = (j — l)-<5z. The derivative boundary 
conditions (3) and (4) are approximated by the introduction of a fic­
titious set of mesh points. The perturbation pressure P\j at the point 
(i, j) and time step k (the subscript " p " being dropped for brevity) 
is set to zero for points that are along the pool or bubble surface or 
within the bubble. The equations corresponding to these points are 
removed prior to solution. The remaining set of fluid domain simul­
taneous equations can be expressed as 

kD
k = A*P (ID 

Here, A* is a square, nonsymmetric matrix containing the coefficients 
of the unknown Pf j arranged along five diagonals and is of order (/)•(</ 
— 1) — NB where Ns is the number of mesh points lying on the surface 
of or within the bubble, p i is a column vector whose elements are the 
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unknown Ptj. F* is a column vector which contains the inhomogenous 
terms of the mesh point equations. The equations comprising (11) are 
arranged in the order (1, 1), . . . , (I, 1), . . . , (1, j), . . . , (i, ;'), . . . , 
( / , ; ) , . . . , ( l , J - l ) , . . . , ( / , < / - l ) . 

The Green's function solution (9) to the plate equation is numeri­
cally integrated. In general, by selecting the radial locations of the 
plate nodes to correspond to those of the fluid mesh, one can express 
the downard displacement w\ at node i and time step k as 

W-
k = Y.Ci,l(Pil+P»R), i = l , . . . , 7 (12) 

where PR is the value of PR along the base plate at time step k. The 
expressions for C;,; depend upon the Green's function expression w 
(8) and the integration scheme. Investigation of the behavior of the 
product bw shows that it varies more rapidly with radius than does 
the load, P*i + PR. Thus a Simpson's rule integration is performed 
over a much smaller interval than the mesh spacing (typically Sr/8). 
Values of the perturbation pressure between mesh points are obtained 
by interpolation using a piecewise quadratic curve fit to the values 
of P*i. The interpolation weights are also accounted for in the values 
oiCii 

The displacement at node i is obtained from the acceleration history 
at that node from (10) using a double trapezoidal integration. For zero 
initial displacement, velocity, and acceleration, this can be expressed 
at time t = kbt (where 5t is the time step size) as 

„,* = „>*-! + 1 gt2 (*!!£]* ; = ! , . . . , / , (13a) 
4 \dt2li, 

where 

k-i ld2w\l 

(13b) 

Calculation of the flexible system response involves the simulta­
neous solution of four sets of linear algebraic equations: the fluid fi­
nite-difference equations (11), the plate displacement equations (12), 
relation (13), and a discretized form of equation (4) which can be ex­
pressed as i 

bPp\k 

&z 
= P 

i,l 

d2U) 
(14) 

These equations are reduced to a single system of equations by com­
bining (12) and (13) and substituting the result by use of (14) into F* 
of (11). The resulting expression for F* is a function of Pp. Rear­
rangement of this set of equations leads to a new set of equations to 
be solved for the unknown perturbation pressures 

A * * P * = F**. 

The elements of F* * are given as 

F'm
k = sp7rJpkR-i:cm,i-wk

n 
5t2 

( = i 
1 / 

0, m > / . 

(15) 

(16) 

The elements of A*k are given by A i ' n = A„,n + Cm,„ when both m 
< I and n < I and by A ^ „ = A^,„ whenever m ^ / or n > I. 

The matrix A** is banded with a bandwidth of 2/ + 1. The presence 
of nonzero elements arising from the Cmii expressions precludes a 
solution by a block tridiagonal algorithm. A standard banded matrix 
solution routine was used to solve equation (15) for PP at each time 
step.2 We did not attempt to develop a more efficient solution algo­
rithm that would take advantage of the many zero elements within 
the band of A**. After P* is found from (15), wf and (d2w/dt2)f are 
found from equations (12)-(14). 

It is interesting to note a possible interpretation of the effect of 
equations (12)-(14) on the fluid equations (11). Using these equations, 
the pressure gradient normal to the plate can be expressed as 

2 LEQT1B from the International Mathematical and Statistical Libraries, 
Inc.—"IMSL." 

Experimentally obssrvad Mod*! input 

configuration 
I 
2 
3 

tim»(t ) 
0.189 
0.314 
0.461 

Fig. 6 Experimentally observed liquid configurations and corresponding 
model inputs at three sample times 

dP, 
')k = P jr2 (£ CUPU + Pfc • £ c u - * H • (17) 
li.l 0t2\l=i 1=1 I 

The term u>*_1 is known from the history of the plate motion and does 
not depend on any quantities at time step k. At any time step, then, 
all unknown quantities are expressed in terms of the perturbation 
pressure field. The structure can be viewed as imposing a special type 
of boundary condition or constraint on the fluid: the normal pertur­
bation pressure gradient at any point of the plate-fluid interface is 
a function of the pressure at every point of the interface (17). This is 
simply the result of the boundary integral nature of the problem. 

Due to the fully implicit nature of the solution algorithm, the time 
step size is not limited by a stability criterion. It is limited, however, 
by a resolution requirement. That is, St must be small enough to ad­
equately resolve the expected frequencies of oscillation. With this in 
mind, 8t was selected such that a minimum of about eight time steps 
occurred within the experimentally observed oscillation period. 

The liquid configuration as a function of time is an input to the 
model. The bubble is approximated as an ellipsoid with three pa­
rameters fit by trending from the observed bubble history (Fig. 2). 
The boundary is further approximated by taking it to lie along the 
mesh lines which are closest to the computed boundary. The change 
in the location of the pool surface is computed from continuity once 
the change in bubble volume is known and is also approximated to • 
lie along a mesh line. A comparison of approximated bubble shapes 
and pool heights with those observed is shown in Fig. 6 for three se­
lected times. 

Also input to the model is the experimentally determined rigid 
system base plate pressure history (PR(£) in equation (9)) and the rigid 
system pressure history at all other locations at which the flexible 
system response is desired. With this information, the complete 
perturbation pressure field is calculated at each time step. The pre­
dicted flexible system pressure is then the sum of the computed 
perturbation pressure and the rigid system pressure at the location 
of interest. 

P e r t u r b a t i o n M e t h o d P r e d i c t i o n s and Compar i son 
W i t h E x p e r i m e n t 

The predicted flexible system perturbation pressure amplitudes 
vary significantly throughout the pool. Fig. 7 shows the predicted 0.2 
cm flexible base plate system pressure history nondimensionalized 
by PD at two sidewall locations and two base plate locations. The 0.1 
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O - O P = PR+ Pp 
p = p 

Fig. 7 Model pressure history predictions for the 0.2 cm base plate; calcu­
lated values are shown connected by straight lines 

cm base plate case exhibits similar behavior. The peak value of the 
flexible system pressure varies by about a factor of 2.5 between sta­
tions (a) and (d) of Fig. 7. The perturbation pressures are largest at 
the base plate and decrease to zero at all liquid-gas interfaces. In Fig. 
7(d) the line or zero absolute system pressure is at (Pp + PR)/PD = 
—0.33. The predicted flexible system pressures dip below this value 
several times in the central region of the plate. This suggests the 
possibility of some cavitation occurring in the experimental tests 
which has not been investigated experimentally nor accounted for in 
our model. The maximum predicted flexible system pressure at the 
plate center represents an overshoot of about 50 percent when com­
pared to the rigid system plate pressure. 

Fig. 7 also shows that the predicted perturbation pressure ampli­
tudes decay after their first peak at rates which vary throughout the 
pool. That a decay should be predicted at all is at first surprising since 
the model does not account for structural damping or fluid viscosity. 
The decay is, in fact, the result of the liquid redistribution driven by 
the bubble growth. Otherwise identical calculations conducted 
without a growing bubble exhibited no perturbation decay. 

Figs. 8 and 9 show the predicted perturbation pressure distributions 
at two selected times. They illustrate the change with time of this 
distribution and thus the relative importance of the perturbations 
in various regions of the pool. The figures also include the predicted 
flexible system response and measured rigid system pressures along 
the sidewall at z/a = 0.7 and z/a = 1.7. The predicted flexible system 
pressures at the instants of time at which the Pp isobars are calculated 
are indicated by arrows on the pressure histories. In the region of the 
pool at elevations less than that of the bubble, the perturbation 
pressures are large (of the same order as the rigid system pressures) 
and decrease with elevation roughly linearly. At elevations at or above 
that of the bottom of the bubble they are much smaller. Thus it ap­
pears that there are two regions of influence within the pool: one be­
neath the bubble and relatively near the plate in which FSI effects 

Lines of constant Pp/Prj 

t * = 0 .249 

Fig. 8 Predicted perturbation pressure field at t* = 0.249 

are important and a second near and above the bubble in which the 
influence of the plate oscillation is much less. As the bubble grows, 
its region of influence grows and the large amplitude perturbation 
isobars (\PP/PD | & 0.1, say) move closer to the plate. Such behavior 
leads to the predicted decay in perturbation amplitudes. (In com­
paring the magnitudes of Pp/Pn in Figs. 8 and 9, it must be remem­
bered that these figures represent different times in the oscillation 
cycle.) 

Model pressure history predictions on the pool sidewall at z/a = 
0.7 are compared with experiment for the cases of a 0.1 cm and a 0.2 
cm thick base plate in Figs. 10 and 11. A brief comparison of the 
predicted frequency content, peak pressures, and decay rates with 
those experimentally observed is presented in Table 1. Values of the 
per cycle decay rates, d, are calculated from the formula 

PP,n = PP,o(l ' dT (18) 

where n is the number of cycles considered, PP]o is the amplitude of 
the perturbation pressure at the beginning of the first cycle consid­
ered, and PPin is the amplitude n cycles later. The agreement is gen­
erally good. The initiation of a large amplitude decaying oscillation 
at the "spike" in the rigid system pressure history is clear in both 
calculations and experiment. For both plate thicknesses, an increase 
in perturbation frequency with time is predicted and observed ex­
perimentally. For both plates, the predicted frequencies are somewhat 
lower than observed experimentally (25-30 percent low for the 0.1 cm 
plate and 15-20 percent low for the 0.2 cm plate). For the 0.1 cm plate 
the model predicts a slight (2 percent) undershoot in comparing the 
peak value of the flexible system pressure history to that of the rigid 
system while an overshoot of about 21 percent is observed experi­
mentally. The model predicts an overshoot of about 6 percent for the 
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Lines of constont Pp^^n 
t * = 0.459 

Fig. 9 Predicted perturbation pressure field at i" = 0.459 

0.5-

P-P(O) 

^=± 

(a) Model prediction 

Ar 

(a) Model prediction 

P-P(O) 
0.5-

^ 

1 
0.25 

t * 

(b) Experiment 

0.5 

Fig. 11 Comparison of sidewall perturbation calculation with experiment: 
0.2 cm base plate, z/a = 0.7 

Table 1 Comparison of predicted flexible system side-
wall pressure histories with experiment at z/a = 0.7 

(PR) max 

Frequency (Hz) 
Average 

Low (single cycle) 

High (single cycle) 

Decay rate'3 ' 
Peak to peak 

Trough to trough 

0.1 cm base plate 
Predic- Experi-

tion ment 

0.98 1.21 

95<l> 135«> 

90 125 

110 145 

0.35 0.37 

0.15 0.39 

0.2 cm base plate 
Predic- Experi-

tion ment 

1.06 1.06 

250<2> 295<2> 

220 275 

265 320 

0.18 0.23 

0.18 0.23 

0.25 0.5 

(1J Averaged over the first 7 cycles (beginning with the first peak in flexible 
system pressure occurring after (Pn)max). 

(2) Averaged over the first 12 cycles. 
(3> Computed from equation (18). The first 4 cycles are used for h — 0.1 cm; 

the first 10 cycles are used for h — 0.2 cm. 

(b) Experiment 

Fig. 10 Comparison of sidewall perturbation calculation with experiment: 
0.1 cm base plate, z/a = 0.7 

0.2 cm plate which agrees well with experiment. The predicted model 
decay rates are somewhat low but comparable to those observed. 

Model predictions at z/a = 1.7 are compared with experiment for 
the 0.2 cm plate case in Fig. 12. Both the measured and predicted 
flexible system pressure histories differ little from the rigid system 
history. They exhibit minor perturbations shortly after the rigid 
system history peak and essentially no perturbations at later 
times. 

Discussion 
Our calculations and comparisons with experiment illustrate the 

essential features of a perturbation method FSI analysis and dem­
onstrate both the simplicity and promise of this method. Relatively 
few refinements have been implemented in our calculations primarily 
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0.5 

P-P(O) 

P -P(0) 

0.25 
t* 

0.5 

(a) Model prediction 

(b) Experiment 

for our test system 

Characteristic and physical quantities: 

Lw 0.08 cm'1 ' 
0.01 cm<2> 

LR 14 cm 
L\ 14 cm 
Lo 14 cm 

Criterion'4 ' 

(1) TJTR « 1 

( 2 ) I S ^ « « 1 
TR L\ 

(3) TJTW < 1 
(4) LJLX « 1 
(5) Lw/L0 « 1 
mLJLg « 1 
( 7 ) ( L 0 / C , T , „ ) 2 « 1 
(8) (Lx/c,r,„)2 « 1 
(9) (L„/c„r,„)2 « 1 

(10) PILI/]ITW » 1 
(11) peLs/PiLo « 1 

i * 
TR 
Te 
Tw 

14 cm 
0.04 s 
0.007 s 
0.01 s'1* 
0.0035 s<2» 

Pi 
Pe 
P 

Cl 
c« 

Value for test 
0.1 cm plate 

0.25 

0.25 

0.7 
0.006 
0.006 
0.006 
0.00009 
0.00009 
0.002 
2,000,000 
0.00008 

1000'kg/m3 

0.08 kg/m3 <3> 
0.001 kg/ms 
1500 m/s 
330 m/s 

system 
0.2 cm plate 

0.09 

0.09 

2 
0.0007 
0.0007 
0.0007 
0.0007 
0.0007 
0.015 
5,600,000 
0.00008 

Fig. 12 Comparison of sidewall perturbation calculation with experiment: 
0.2 cm base plate, zla = 1.7 

(1) For a 0.1 cm base plate. 
(2) For a 0.2 cm base plate. 
<3> Based on an initial gas (air) pressure of approximately 6 kPa. 
W Taken from [1], 

because the agreement between prediction and experiment is near 
the level of experimental repeatability [2, 4]. The comparisons pre­
sented here are not intended to be an exhaustive verification of the 
perturbation method, but rather to provide one systematic test of the 
procedure and its underlying assumptions. Our predictions illustrate 
the important effect that liquid mass redistribution has on both the 
frequency content and the amplitude of the flexible system's pressure 
fluctuations. The analysis and results can be contrasted to those of 
a lumped parameter model [2] which requires prior specification an 
"effective" pool depth (or "added liquid mass") and is unable to 
predict any detailed PSI response features. 

The criteria for the applicability of the perturbation method are 
evaluated for our test system in Table 2 where pi and pg are the liquid 
and gas densities, and ci and cg are the speeds of sound in the liquid 
and gas, and p is the liquid viscosity. Characteristic length and time 
scales used are defined as [1]: 

LR = hydrodynamic length over which velocity 
gradients occur 

L\ = smallest wall oscillation wavelength 
Lg = gas region dimension 
L0 = pool (fluid domain) dimension 
Lw = wall displacement during oscillation (estimated 

from the rigid system pressures) 
TR = hydrodynamic time (estimated from the rigid 

system bulk fluid motion) 
T,„ = longest period for wall oscillation 
re = minimum excitation time constant 

The length scales LR, L\, L0, and Lg are all taken to be the plate 
diameter. Both TR and r e are estimated from the rigid base plate 
pressure history. Table 2 shows that all criteria are easily satisfied 
except for (1) and (2) for the 0.1 cm base plate system. Thus the per­
turbation method assumptions should introduce negligible error with 
the possible exception of some nonlinear coupling effects [1] between 
the perturbed and unperturbed motions not being accounted for in 
the analysis of the 0.1 cm plate system. 

In developing a model for our test system we have made several 
additional assumptions not central to the perturbation method. 
Omission of the downcomer should introduce negligible error. It is 
partly enclosed by the air bubble and is in a region of very small | Pp |. 
The approximation of the pool surface as flat and horizontal (ne­
glecting the growth of irregular pool surface instabilities; see Pig. 2) 

should be of minor importance for similar reasons. The initial static 
plate deflection due to the weight of the water is an order of magnitude 
less than those during pool swell and is easily neglected. 

The better agreement between prediction and experiment for the 
0.2 cm plate than for the 0.1 cm plate may be largely due to plate 
tension effects which have been neglected in the model plate equation. 
Neglecting tension relative to bending stress for a circular clamped 
plate of thickness h deforming under a uniform load q will introduce 
an error that can be estimated from [8]: 

qa* «ma 

64Dh~ h 
(19) 

where a>max is the maximum plate displacement and v is Poisson's 
ratio. The first term on the right-hand side of (19) is due to bending 
and the second is due to tension. If we take q to be the maximum value 
of PR on the plate, the estimated errors in tt>max are 21 percent and 0.2 
percent for plate thickness of 0.1 cm and 0.2 cm, respectively. Since 
tension stiffens the plate, its inclusion in the model would increase 
the predicted frequencies—enhancing agreement with experiment 
for the thinner plate. Modification of the predicted peak pressure 
overshoot should also occur. 

The input data—bubble shape and size, PR on the plate, and PR 
at various sidewall locations—were obtained from several different 
experimental runs, and model predictions are compared to data from 
yet other runs. To compensate for experimental variability, the time 
coordinates of the data were shifted a small amount so that they would 
be equivalent in each set of data. Typically this shift was less than 2 
percent of the total time period under consideration (t * < 0.01)—well 
within the bounds of experimental variability [4]. 

To save computation time, the liquid configuration was changed 
at each time step only during the initial period of bubble growth. At 
later times (t* 5; 0.25), the liquid configuration was modified every 
fifth time step for the 0.2 cm plate system. Thus the input bubble 
growth lags the experimental records. This results in a maximum error 
of about 6 percent in bubble "radius." Such an underapproximation 
of bubble size will lower the predicted perturbation frequencies and 
decay rates. 

The run-to-run experimental initial liquid depth variation was 
about 2 percent [2j. The initial liquid depth used in the calculations 
is about 6 percent higher than the nominal experimental value. This 
should result in a prediction of frequencies that are about 3 percent 
low. 

Based on simple tests of our algorithm we believe the errors intro-
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duced by the numerical schemes to be at most of the same order as 
the other uncertainties previously discussed. As described earlier, 
provisions for increased accuracy were made in situations where it was 
believed useful such as an increased number of mesh points between 
the bubble and the plate and integration of the plate equation over 
an interval smaller than the fluid mesh spacing. Due to the finite time 
step size, the peak in the rigid system pressure history will be missed 
unless it occurs at a time step. For the 0.2 cm plate system model, this 
leads to an underestimation of the input rigid base plate pressure peak 
by about 272 percent. 

Conclusions 
The perturbation method is a promising practical tool for modeling 

FSI problems involving complex hydrodynamic transients. It allows 
the use of both experimental and analytical data from rigid systems 
subjected to identical hydrodynamic transients. The implementation 
of the perturbation method is much easier than alternate approaches 
which involve the simultaneous solution of the nonlinear hydrody­
namic equations and the structural equations. 

Our analytical and experimental investigation of FSI phenomena 
in a simple test system of controlled flexibility has demonstrated the 
important effects that liquid mass redistribution has on both the 
frequency content and the spatial and temporal amplitude distribu­
tions of the perturbation pressures. 
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Nonlinear Response of an Elastic 
Cylindrical Shell to a Transient 
Acoustic Wave 
Governing equations are developed for the nonlinear response of an infinite, elastic, circu­
lar cylindrical shell submerged in an infinite fluid medium and excited by a transverse, 
transient acoustic wave. These equations derive from circumferential Fourier-series de­
composition of the field quantities appearing in appropriate energy junctionals, and from 
application of the "residual potential formulation" for rigorous treatment of the fluid-
structure interaction. Extensive numerical results are presented that provide under­
standing of the phenomenology involved. 

1 I n t r o d u c t i o n 
Although the literature is replete with analytical studies of the 

linear dynamic response of submerged structures, the dynamic in­
stability of such structures has received relatively little attention [1]. 
In 1965, Di Maggio [2] studied the unstable dynamic response of an 
infinite flat plate with a sinusoidal imperfection in one direction 
subjected to an in-plane static loading in that same direction; the plate 
was suddenly released so as to interact with an acoustic medium on 
one side of the plate. He found that, in the vast majority of cases, the 
acoustic medium may be treated in the incompressible approximation. 
In 1972, Deng and Popelar [3] studied the parametric instability of 
a submerged cylindrical shell initially undergoing sinusoidal breathing 
motions. They also found that the acoustic medium could be accu­
rately treated as imcompressible. References [4-6] report analyses 
of dynamically excited, submerged shells that exhibit instability 
characteristics. In all of these, however, approximate treatments of 
the fluid-structure interaction are used, which raises questions re­
garding the accuracy of the results. 

This paper presents a rigorous treatment of the nonlinear response 
of an infinite, elastic, circular cylindrical shell excited by a transverse, 
transient acoustic wave. The field quantities appearing in appropriate 
kinetic-energy, potential-energy, and work-potential functionals are 
expanded in circumferential Fourier series, and high-order terms are 
eliminated in a consistent manner. The residual potential formulation 
[7-9], which constitutes an exact formulation, is used to treat the 
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fluid-structure interaction. The resulting modal response equations 
provide a complete and rigorous description of the dynamic pro­
cesses. 

The modal response equations are integrated numerically in time 
for excitation by plane waves of rectangular pressure-profile. Tran­
sient response histories are provided that display: 

1 Modal response as a function of incident-wave magnitude. 
2 The effects of ambient hydrostatic pressure and "live-load" 

forcing terms (i.e., terms that account for finite translations and 
rotations of the shell). 

3 Shell response at various locations. 
4 The impact of flexural stiffness on mode participation. 

2 G o v e r n i n g E q u a t i o n s 
Consider the two-dimensional, plane-strain motions of the sub­

merged, infinite, circular cylindrical shell shown in Fig. 1. The shell 
is excited by a transient acoustic wave that first contacts the shell at 
8 = w. The shell is thin and remains elastic at all times; geometric 
nonlinearity is considered, however, which introduces the possibility 
of dynamic instability. 

2.1 Energy Expressions. Kinetic and strain-energy expressions 
for the cylindrical shell of Fig. 1 are: 

U--

--hpoh f 2 ' (v2 + w2)adB 

0 J-h -h/2 
aoto dz add (1) 

where v = dv/bt, etc., ae is the circumferential stress, e« is the cir­
cumferential strain, and z is the thickness coordinate. Stress-strain 
and strain-displacement relations for the shell are [10] 

E 
<r0 = 

1 bv \ 1 bw 

a \bB 'la2 \b0 ~~ a2\bd2 ~OB) 
(2) 
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Fig. 1 Infinite, elastic, circular, cylindrical shell submerged In an infinite 
acoustic medium 

where only first-order geometric nonlinearities are considered. The 
introduction of (2) into (1) then yields 

+ Hi—Pm-n" + — Pm+na\(em + fm) (en+fn) 

+ - E E 
2a n = l m=l 

-(Pm-na ~ Pm+na)\mem, fm\\nen --fn\ 
.2 \ m l\ n I 

- [(m - n) pm-n
a + (m + n) pm+n

a]\mem fm\(e„+fn) (7) 

2 (1 - v2)a Jo [[d8 2a \ 

1 (bw_ 

d6 

h2 d2W dv\2] ,„ ,„, 
+ r \d6 3 

12a2\d<92 d0 /J 

An expression for the work potential appropriate to a pressure field 
acting on the surface of a smooth shell has been provided by Cohen 
[11]. For the present problem, that expression reduces to 

_ r2'[ I <>v \ it dp 
11 - I Pia H 1- w \w + - a p 

J o n d0 / 2 \ dr 
1 , <>P 

+ - puz + vw — 
2 dd 

dd (A) 

where p = p(r, 8, t) denotes the total pressure field. Although Cohen 
lists continuity of the pressure field as a requirement for the existence 
of the work potential, it is easily shown that a more lenient require­
ment is satisfactory, viz., that the pressure field contain a finite 
number of integrable discontinuities. 

Now the displacement and pressure fields may be expanded in 
Fourier series as follows: 

v(6,t) = £ vn(t) sin n.6 

(Cont.) 

where p„° = pn(a,t), dpn
a/dr = [dpn(r,t)/dr]r=a, gn = 2nen + [(n2 -

l)/n] fn, em-n = pm-n - 0 for m. < n, and the 5y are Kronecker deltas. 
Equations (7) constitute the basic energy expressions required for the 
present study. 

2.2 Elimination of High-Order Terms. It is now appropriate 
to eliminate from (7) those terms of order higher than that necessary 
for a consistent formulation. For this purpose, the n = 0 pressure 
harmonic is taken to be of the order of the critical buckling pressure 
for the shell, which is [12] 

Eh3 

Pc = — jr~a (8) 
4(1 - vz)a6 

Hence po° ~E(h/a)3, so that the two singly underlined terms in (7), 
which govern linear, static, axisymmetric response, yield wo/a ~ 
(h/a)2. Next, flexural displacements are taken as fn/a ~ h/a, so that 
the doubly underlined terms, which govern linear, static, flexural 
response, yield pn" ~ E(h/a)A. Finally, the triply underlined terms, 
which govern linear, static, nonaxisymmetric-extensional response, 
yield e„/a ~ (h/a)3. The use of these order-or-magnitude relations 
in (7), followed by the elimination of terms of order (h/a)6 and higher, 
yields the simplified energy expressions 

-2-r=*<?+l£[n--}tn* 
irp0ah 2 „=i \ nzj w(0,t) = £ wn(t) cos nQ 

p(r,9,t) = £ pn(r,t) cos nd 
71=0 

(5) 

— = U)n H E 
irEh/d - v2)a 2 „=i 

(yh)2 

„ nl H 
12a2 a 

<*n2fn2 

Also, the n ^ 0 Fourier coefficents for v and w may be transformed 
into extensional and flexural coefficients as follows [9]: 

vn = nen /„ 
n 

wn - en + fn (6) 

The incorporation of (5) and (6) into (1), (3), and (4) then yields 

T 1 » 
T = »o2 + - E 

7rp0on 2 n=i 
U 

+ r 7 ~ ; E E E E b-Umn fhflfmfn 
3 2 0 ^ = 1 ( = l m - l n = l 

1 1 c, a _L £ at P»° ^ « » , , , ! aP0° £ r 9 

— = 2p0
aW0 + Z Pnafn ~ — ' E — fn2 + ~ — ~ E fn2 

tea n=i 2a n=i n 2 dr n=i 
= (nz 

(9) 

- = u>o2 + — E 
TtEhKl - v2)a — 2 n=i 

2 + 

(n2 

In2 + 1\. 

1 , 2 h 
+ D2e„2 (7) 

where an = (n2 - l)/n and Afejm„ = akaiaman [&(k-ua 5(m-n)0 + 
5(*-i)(m-n) - 8(*+()(m-n) - 8(A_;)(m+n) + 5()j+()(m+n)]- Note that, be­
cause «i = 0, the lower limits of six of the summations in (9) may be 
changed from 1 to 2. 

A few remarks about (9) are in order. First, nonaxisymmetric-ex­
tensional response fails to appear as a significant energy contributor. 
Second, in the reduction of (7) to (9), it has been assumed that 
a\dpn

a/Sr\ ~ |p„" | for all n. Third, the last of (9) contains no non­
linear terms involving pn\ this implies that the last term in the inte-
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grand of (4) is unimportant. Fourth, a nondimensional parameter y 
has been introduced into the flexural strain-energy term to permit 
consideration of a sandwich shell consisting of two concentric shells 
of thickness h/2 separated by a uniform core of negligible mass and 
in-plane stiffness. Such a shell serves as a convenient plane-strain 
model for a stiffened shell [7, 13]. With D as the sandwich shell's 
flexural stiffness, y2 = 12(1 — v2)D/Ehs. Finally, the simplified ex­
pression for the shell's strain energy is positive-definite; this is readily 
seen by observing that, with w(d,t) = wo(t) + f(6,t), it constitutes a 
Fourier-series decomposition of the expression [cf. (3)] 

rr 1 Eh r2*\\ 1 l±l 

+ /*): 

+ ^ r ( / ' + f l W (10) 
12a2 

where a prime denotes a 0-derivative and the asterisk a ft-integral. This 
corresponds to the use of Rayleigh's inextensibility assumption, i.e., 
w = —dv/dd for nonaxisymmetric shell response [14]. 

It is interesting to examine results produced by (9) in certain special 
circumstances. First, consider the nonaxisymmetric, linear, free vi­
brations of a hydrostatically pressurized shell. In this case, po(r,t) = 
PH, Pn(r,t) = 0 for n ^ 0, and the flexural displacements are infini­
tesimal. The application of Lagrange's equation [15] 

d_ I dDt _ dL _ 

dt \dq) dq 

where L •• T — U — II, then yields, for q = wo, 

(1 - v2)a2
 n 

w0 = • 
Eh 

( ID 

(12) 

For q = /„, the application of Lagrange's equation yields 

Po ! + — / „ + 
E 

(1 - v2)a2 

(yh)2 

12a2 a 

( l - * 2 

n 2 

Eh \nj 
fn=0 (13) 

: fc&) * - 1)2(1 -PulPcn) (14) 

The introduction of (12) into (13), followed by the assumption of si­
nusoidal free vibration, yields the modal natural frequency equa­
tion 

, ho]2 {yh)2 i 

where Co2 = E/po(l — v2) is the plate velocity for the shell material and 
Pen = Po Co2 (h/a)(n2 — 1) (yh)2/12a2 is the critical pressure for the 
nth flexural mode; note that Pc2 = Pc [cf- (8)]. Equation (14) clearly 
corresponds to the flexural frequency equation for a pressurized ring 
[16]. 

Next, consider the response of an unpressurized shell to nearly 
uniform radial impulse-excitation. The application of Lagrange's 
equation, (11), to the simplified energy expressions, (9), yields for 
axisymmetric extensional and nonaxisymmetric flexural response 

(a/c0)2 w0 + u>o + — E a« 2 /„ 2 : 

4a n=2 
0 

n2 + 1 
( a / c o ) 2 — — / „ + 

(yh)2 w0 

r « + — 
12a2 a 

an
2fn 

+ • 
32a2 E E E AWm<"> fkfifm = 0 (15) 

where &kimin) = b-kimn + Akinm + &knim + &nkim and the discussion 
following (9) has been utilized. 

These equations are similar to equations presented in [17-19] which 
treat this particular problem in considerable detail. Equations (15) 
are superior, in fact, to the corresponding equations in those references 
because only (15) exhibit all of the following characteristics: 

1 n = 1 rigid-body motion is decoupled from n = 0 breathing 
motion. 

2 Linear-vibration frequencies for the flexural modes are given 
by the first of (14) with PH = 0. 

3 The associated strain-energy expression is positive-definite. 
From this brief examination of two special cases, it is concluded that 

(9) are suitable for the present analysis. This suitability derives from 
the consistent elimination of high-order terms from appropriate en­
ergy expressions. 

2.3 Fluid-Structure Interaction. A rigorous formulation of 
the fluid-structure interaction, which must be considered in con­
junction with (9), may be constructed as follows [7-9]. First, fluid 
pressure and radial fluid-particle velocity are expressed as derivatives 
of a fluid velocity potential as 

P = ~P<P 

u = d<fi/dr (16) 

Second, the total acoustic field is treated as the superposition of an 
acoustic field for the (known) incident wave and an acoustic field for 
the (unknown) scattered wave, i.e., 

(p(r,6,t) = <pi(r,d,t) + <ps(r,8,t) (17) 

Third, compatibility of radial fluid-particle velocity and radial shell 
velocity is enforced at the wet surface of the shell as 

u(a,6,t) = w(8,t) (18) 

Finally, the wave equation and radiation condition for each circum­
ferential harmonic of the scattered wave [see (7)] are replaced by the 
equivalent residual-potential relation 

&<PSn , 1 . , 1 1 
— + - <PSn + — <PSn = ~ f>Rn 

dr c 2r r 
(19) 

in which the residual potential ipRn is given by the convolution rela­
tion 

<PRn(r,t) = - f rn(r,t') <psn(r,t - t') dt 
J o 

(20) 

where the rn are characterisitic functions that resemble step-expo­
nential functions [7]. 

Equations (16)-(19) may now be utilized to produce, for each cir­
cumferential harmonic, the fluid-structure interaction relations 

Pn" = ~P (<f>In" + <PSna) 

i>Pn\ 

dr -pwn 

1 1 1 
U>n + ~ <PSn" + — <PSn" = U-In" + ~ <PRn 

c 2a a 
(21) 

where (pRn
a = <PRn(<*,t) is obtained from (20). These equations con­

stitute the optimum form of the information required for a rigorous 
treatment of the fluid-structure interaction. 

2.4 Modal Response Equations. Convenient nondimensional 
equations may be obtained through introduction of the following 
convention: 

t>-palpc2, w = w/a, t = ct/a 

Application of this convention to (9) yields 

T = IppK 

irpa2c2 \pa 

(22) 

wo2 + ̂ i [l + ~}fn2 

2 „ = i \ nl] 

U Poh\ lco\2 

paj\c 
wo2 + ~i:o 

2 n-2 

f(7«)s 

12a2 
n2 + wo „ 2? 2 

" n In 

+ "7; E E E E kklmn fkflfmfn 
S2k=2l=2m=ln=2 

II °> 1 ro a 1 *" 
• — = 2p0U>0 + E Pnfn ~ ~P0 E — /n2 + ~P0 E fn2 

•wpaLci „=i 2 „=2 n 2 „=i 
(23) 

where u>o = dwo/di, fn = dfn/di, pV = [dpo/df]t=\, and the discussion 

Journal of Applied Mechanics MARCH 1981, VOL. 48 / 17 

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



following (9) has been utilized. In like fashion, nondimensionalization 
of (21) and (20) yields 

Pn = -(<PIn + <PSn) 

Pn = ~Wn 

1 
U>n + <PSn + - <PSn = " / n + PRn 

f>Rn '• -I'n * <PSn (24) 

where the asterisk denotes temporal convolution. Note that all non-
dimensional acoustic-field quantities in (23) and (24) pertain to the 
wet surface of the shell. 

The application of Lagrange's equation, (ll)-(23), followed by the 
appropriate utilization of (24) and the second of (6) with e„ neglected, 
yields the nondimensional modal response equations for the sub­
merged shell 

1 " /re2 - 1\2 
/xwo + fi^wo + - ^ E /-i2 ~ i>so = Wo 

4 n = 2 \ re / 

n 2 + 1 . . 
M r - / " + HP £(re2- l)2 + 

1)2 
w0 

n 2 - l 

X (<pj0 + ipso) - wo 
tf-

fn + —T. E L &klmM fhflfm ~ i>Sn = VIn 
32 k=2l=2m=2 

U>0 + (pSO + - <PS0 = " /0 + <PRo 

fn + <PSn + — <PSn = Uln + <pRn 

<PRn = ~rn * <PSn (25) 

where all circumflexes have been dropped, and where fi = pore/pa, j3 
= (co/c)2 and £ = (7«)2/12a2. The nondimensional critical buckling 
pressure for the shell is, from (8), Pc = 3 p. /3 £. 

Equations (25) constitute the modal response equations neeeded 
for a rigorous analysis of the nonlinear dynamic response of a sub­
merged, infinite, elastic, circular, cylindrical sandwich shell excited 
by a transverse, transient acoustic wave. They lend themselves to 
step-by-step numerical integration in time, producing modal response 
histories that, through (6) with en neglected and through (5), yield 
corresponding shell response histories. From (2), (5), and (6) with e„ 
neglected, extensional and flexural strain response histories may be 
obtained as 

1 / - re2-l , . )2 
e0

e = w0 + - E fn sin nb 
2 Vi=i re 

to1 = z £ ( r e 2 - \)fn cosretf (26) 

where z is nondimensional [see (22)]. For the sandwich shell described 
after (9), the distance from the neutral axis to the outer shell fiber is 
given by 

1 + 7 l + ^ ( 7 2 - l ) (27) 

3 N u m e r i c a l R e s u l t s 
The numerical results presented in this section have been generated 

by the application of fourth-order Runge-Kutta numerical integration 
to the first four of (25) and the use of trapezoidal integration for the 
last of (25). A variable incrementing procedure with 0.002 < At < 0.2, 
has been used. Results have been obtained for two steel shells sub­
merged in sea water, all characterized by po/p = 7.72, Co/c = 3.53, and 
a/re = 100. The two shells differ in terms of their 7-values, which are 
5 and 10; these values correspond to moderate and heavy stiffening 
of a uniform homogeneous shell. The shells are excited by plane 
acoustic waves of rectangular pressure profile that make initial contact 
at time t = 0 along the line d = w. The generalized excitation functions 
for these waves are given by 

Fig. 2 n = 0 displacement of the 7 = 10 shell to rectangular incident waves 
with r = 10 

hn(t) = ( - D - ' + i - P / Cg(t - 1 + cos f) cos nid^ 
•K JO 

uIn(t) = (-l)n+1-Pi f* g(t-1 +cos Ocos {cos n{d{ (28) 
•K JO 

where en = 1 for re = 0 and en = 2 for n > 1, Pj is the maximum value 
of the incident-wave pressure profile, andg(£) = H(t) - H(t — T), 
where H(i) is the Heaviside step-function and T is the pulse duration. 
Note that all of the preceding quantities are nondimensional, having 
been normalized in accordance with (22). 

3.1 Modal Response. Fig. 2 shows displacement response 
histories for the (re = 0) breathing mode of the 7 = 10 sandwich shell 
when excited by broad, rectangular, incident waves of duration T = 
10. The pressure magnitudes of these waves vary from 1-300 percent 
of the critical buckling pressure for the shell [see (8), or the discussion 
following (25)]. Note that all responses are normalized to the magni­
tude of the incident wave, so that coalescence of response histories 
implies linearity of response. In this connection, it is seen that the 
response for Pi = Pc and Pj = 2Pc are virtually coincident with the 
(linear) response for P0 = 0.01 Pc; nonlinear effects are discernible 
for Pj = 3Pc, but they are relatively unimportant. 

Velocity response histories for the (re = 1) translational mode are 
shown in Fig. 3. Nonlinear effects are barely discernible. This implies 
that the last term in the last of (23) is of negligible importance because, 
without it, the re = 1 mode is totally uncoupled from the other modes 
and is governed by purely linear equations [see (25) and the second 
of (24)]. 

The re = 2 lobar mode is the one that exhibits significant nonlinear 
behavior, as shown by the displacement response histories of Fig. 4. 
The response may be conveniently described as occuring in four 
phases: an "envelopment phase," which extends from t - 0 to t = 2, 
a "pressurization phase," which extends from t = 2 to t = T, a "de­
velopment phase," which extends from t = T to t = T + 2, and a "free 
vibration phase," which extends onward from t = T + 2. During the 
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Fig. 3 n = 1 velocity response of the 7 = 10 shell to rectangular incident 
waves with 7 = 10 

envelopment phase, in which the incident wave front is passing over 
the shell, the response is essentially linear. The pressurization phase, 
in which the shell is essentially hydrostatically pressurized by the 
incident wave, is characterized by either oscillatory or exponential 
response, depending upon the magnitude of P/. During the develop­
ment phase, in which the back of the rectangular incident wave is 
passing over the shell, the response exhibits sudden, but modest re­
versal. Finally, the free-vibration phase is characterized by low-fre­
quency sinusoidal motion. Clearly, the appearance of response over­
shoot during the free vibration phase depends upon exponential 
growth experienced during the pressurization phase, which, in turn, 
depends upon the magnitude of Pr. 

Displacement response histories for the n = 3 lobar mode are shown 
in Fig. 5. The preceding description of n = 2 response is applicable 
here also. Especially visible in the n = 3 response histories is the vir­
tually undamped nature of the sinusoidal motions during the free-
vibration phase. This indicates that the surrounding fluid provides 
very small acoustic-radiation damping for these motions, which is to 
be expected when the characteristic structural wavelength 2-wa/n is 
much smaller than the acoustic wavelength elf, where / is the fre­
quency of oscillation [1]. The n = 4 and n = 5 lobar modes have been 
included in these y = 10 shell calculations, but exhibit peak dis­
placements substantially smaller than that of the n = 3 mode. Hence 
response histories are not shown for these modes. 

It is instructive to examine dynamic instability of the flexual modes 

Fig. 4 n = 2 displacement response of the y = 10 shell to rectangular in­
cident waves with T = 10 

50.0 

Fig. 5 n = 3 displacement response of the y = 10 shell to rectangular in­
cident waves with 7 = 1 0 
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10.0 

Fig. 6 n = 2 displacement response of the 7 = 10 shell to a rectangular 
incident wave with r = 10, P( = 2P„ 

during the pressurization phase. During this phase, n = 0 displace­
ment is approximately equal to the hydrostatic value 

w0(t) « -
Pi 

(29) 

Also, flexural response is relatively slow, so that <psn « <PSn and, from 
the last of (25) and [7], 

c° / A 
<PRn™ ~<PSn \ rn(t')dt' = -Ul \(f>Sn 

(30) 

Hence the fourth of (25) yields, with ujn = 0 for n > 2, 2 < t < T 

[9], 

<PSn 
1 . 

n 
(31) 

Equations (29) and (31), along with the approximations ipso x 0, 
wo x 0 and neglect of the triple summation in the second of (25), yield 
for flexural response during the pressurization phase 

L 2-11 +IU; + {n2 _ 1} (Pcn _ Pl) fn = 0 
\ n2- n 

(32) 

where Pen = (re2 - lV/3f. This equation exhibits the effect of added 
fluid mass associated with low-frequency shell response; it also indi­
cates that shell response is oscillatory for P; < Pcn and exponential 
for Pj > Pcn, as seen in Figs. 4 and 5. It is worth noting that, with the 
removal of Pj, (32) also governs flexural mode response during the 
free-vibration phase. 

Modal response histories for excitation by incident step-exponential 
waves with decay constant X = 1 are provided in [20]. These exhibit 

behavior similar to that observed in Figs. 2-5, with significant non­
linear effects appearing only in the n > 2 harmonics. 
3.2 Ambient Hydrostatic Pressure and Live Load. It is inter­
esting to examine the effects of ambient hydrostatic pressure on the 
shock response of the 7 = 10 shell. The modifications in (25) required 
for such an examination merely involve the replacement of i»o by wo 
— PH/HP and of ipio by <pia — PH where P # is the magnitude of the 
hydrostatic pressure. With these replacements, the first of (25) re­
mains the same, except that it now pertains to breathing motions 
about a static equilibrium radius of 1 — P H / V / 3 . The second of (25) 
changes only to the extent that the term £(re2 — l ) 2 is now multiplied 
by (1 - PH/PCU), where PCn is given after (32). 

For static stability, PH must be less than the smallest of the Pen, 
which is Pc2 - Pc = 3yu/8£. Hence the reduction in static equilibrium 
radius cannot exceed 3£, which is very small. Thus the principal effect 
of ambient hydrostatic pressure is the reduction of flexural stiffness, 
which is a destabilizing influence. 

It is also interesting to examine inaccuracies introduced into 
transient response computations by the neglect of the "live-load" 
terms in (4). These terms account for the effects of finite translations 
and rotations of the shell on the work done by the normal pressure 
loading as referenced to the undeformed shell surface. All the terms 
in (4) exceptp -a -w are live-load terms; when processed through the 
Fourier-decomposition and term-elimination operations of Subsec­
tions 2.1 and 2.2, they appear in nondimensional form as the last two 
summation terms in the last of (23). Following the application of 
Lagrange's equation (11) and the introduction of the fluid-structure 
interaction equations (24), live-load effects manifest themselves as 
the terms [(n2 - l ) /n2] (£70 + <Pso) and w0 in the second of (25). 

Response computations designed to demonstrate the effects of 
ambient hydrostatic pressure and live load have been performed for 
the 7 = 10 sandwich shell excited by both T = 10, Pi = 2Pc rectan­
gular and (in [20]) X = 1, Pi = 5Pc exponential incident waves. As 
would be expected, n = 0 and n = 1 response is unaffected by the in­
troduction of ambient hydrostatic pressure or the omission of live-load 
terms in (25). In contrast, the response behavior of the n = 2 flexural 
mode is substantially affected, as indicated in Fig. 6. It is clear from 
this figure that ambient hydrostatic pressure and live load are both 
significant destabilizing influences for this mode.1 The higher modes 
are much less influenced, however, as indicated by the n = 3 response 
histories of Fig. 7. 

3.3 Shell Response. Modal response histories for 0 ^ n < 5 
have been superposed in accordance with (5) and (26) to construct 
the shell response histories of Fig. 8-10, which pertain to excitation 
by a T = 10, P/ = 2Pc recntangular incident wave. Shown in Fig. 8 are 
deformational displacement histories, which constitute displacement 
histories with rigid-body motion removed, i.e., wD(d,t) = w(8,t) - f\(t) 
cos 8. It is seen that the effects of ambient hydrostatic pressure and 
live load are significant for excitation by the rather broad rectangular 
pulse; they are less significant, however, for narrower pulses. 

Fig. 9 shows radial velocity histories at two points on the shell. The 
effects of the ambient hydrostatic pressure and live load are clearly 
negligible. Strain response histories are shown in Fig. 10 at locations 
selected to emphasize flexural and nonlinear-extensional contribu­
tions to total strain. The coincidence of the wo and ^-his tor ies in the 
figure demonstrates that the nonlinear-extensional term in the first 
of (26) is minuscule. This, along with the smallness of the flexural 
strain history, demonstrates that the strain response of the shell is 
dominated by the n = 0 breathing mode. Hence, peak strain in the 
shell is accurately estimated as 

I f c i max ~ max )-NPc (33) 

where N = Pi/Pc- For the shell of Fig. 2, for example, P/_1|w0|ma>t 

1A development like that which produced (32), but which includes ambient 
hydrostatic pressure and excludes live-load terms, leads to a prediction of the 
coalescence, f or 0 < t < 10, of the response histories of Pig. 10 with the circle 
and triangle designators. 
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Fig. 7 n = 3 displacement response of the 7 = 10 shell to a rectangular 
incident wave with T = 10, Pt = 2PC 
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Fig. 8 Deformational displacement response of the 7 : 

tangular Incident wave with T = 10, Pi = 2PC 

10 shell to a rec-

Flg. 9 Radial velocity response of the 7 = 10 shell to a rectangular incident 
wave with T - 10, P, = 2PC 

= 1.125 andP c = 3/tj8£, = 2.405 X 1(T3; hence \e\max » 0.21N percent, 
as suggested by Fig. 10. 

3.4 Flexural Stiffness Effects. It is informative to compare 
the response behavior of a moderately stiffened (7 = 5) shell with that 
of the heavily stiffened (7 = 10) shell of Fig. 2-10. As the flexural 
stiffness of a sandwich shell is proportional to y2 [see the discussion 
preceding (10)], the Pc-value for the moderately stiffened shell is only 
one-quarter of that for the heavily stiffened shell. Hence, in order to 
maintain proper calibration between the excitation levels for the two 
shells, P/-values of 0.04 Pc, 4 Pc, 8 Pc, and 12 Pc are used for the 
moderately stiffened shell. 

Figs. 11-14 show modal response histories for the 7 = 5 shell. A 
comparison of the first of these with Fig. 2 indicates that nonlinear 
effects in n = 0 response are more pronounced for the 7 = 5 shell than 
they are for the 7 = 10 shell; even so, they remain relatively unim­
portant. Rigid-body n = 1 response of the 7 = 5 shell is virtually a 
duplicate of Fig. 3 in which nonlinear effects are barely discernible. 

Fig. 12, which pertains to n = 2 response, displays significant 
nonlinear behavior, as does Fig. 4 for the 7 = 10 shell. For the same 
value of Pj > Pc, an n = 2 response peak during the free-vibration 
phase for the 7 = 5 shell considerably exceeds its counterpart for the 
7 = 10 shell. This is suggested by (32), which predicts exponential 
response growth for Pi > Pci = Pc during the pressurization phase. 
For example, for the 7 = 5 shell with Pi = 12 Pc, the stiffness coeffi­
cient multiplying f2 is - 3 • 11 • Pc = - 9 9 • /t/S -25 h2/12a2, which ex­
ceeds in magnitude its counterpart for the 7 = 10 shell with Pi = 3 
Pc, which is - 3 • 2 • P c = - 1 8 • /i/3 • 100h2/12a2. 

It is clear that the nonlinear response of a flexural mode to rec­
tangular-wave excitation depends critically upon the "initial condi­
tions" for the pressurization and free-vibration phases and the value 
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Fig. 10 Strain response of the 7 = 10 shell to a rectangular Incident wave 
with T = 10, P, - 2PC 
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Fig. 12 n = 2 displacement response of the 7 = 5 shell to rectangular in­
cident waves with 7 = 1 0 

Fig. 11 n = 
cident waves 

0 displacement response of the 7 = 5 shelf to rectangular In-
wlth r = 10 

of the pressurization-phase "stiffness" parameter in (32). With P / = 
NPc, (32) predicts exponential growth during the pressurization 
phase for those modes whose modal index satisfies the inequality n 
< (3N + 1)1/2. Hence a large value of N implies that many flexural 
modes may contribute significantly to shell response, while a small 
value of N implies that only the lowest flexural modes need be con­
sidered. This is illustrated in Fig. 13, which shows that the n = 4 mode 
of the 7 = 5 shell responds strongly, especially for P/ = 12 Pc. This 
is in contrast to n - 4 response for the 7 = 10 shell, which is so small 
that it is not even included in the discussion of Subsection 3.1. 

The increased participation of the higher flexural modes in the 
response of the 7 = 5 shell suggests that flexural strain might now play 
a much more important role than that portrayed in Fig. 10 for the 7 
= 10 shell. This is not the case, however, as shown in Fig 14, because 
the increase in flexural mode response is essentially negated by the 
decrease in the distance between the outer fibers of the shell. There 
is a discernible nonlinear-extensional contribution to total strain, but 
it is hardly significant. 

The preceding comparison of 7 = 5 and 7 = 10 shell response il­
lustrates the dissimilarities between the response behavior of mod­
erately stiffened and heavily stiffened shells to a given incident wave. 
The contrast between an unstiffened shell and a moderately stiffened 
shell is even greater. For example, Pj = 8 Pc for 7 = 5 corresponds 
to Pi = 200 Pc for 7 = 1. Thus, for this incident-wave magnitude, (32) 
predicts exponential growth during the pressurization phase for the 
n < 25 flexural modes of the 7 = 1 shell, while it predicts such growth 
for only the n < 5 flexural modes of the 7 = 5 shell. Experimental 
observations of short-structural-wavelength instability are reported 
in [21, 22]. 
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Fig. 14 Strain response of the 7 = 5 shell to a rectangular incident wave 
with T = 10, P, = 8PC 

Fig. 13 n = 4 displacement response of the y = 5 shell to rectangular in­
cident waves with T = 10 

Conclusions 
This study has dealt with the dynamic instability of an infinite, 

elastic, submerged, circular cylindrical shell excited by a transverse, 
transient acoustic wave. Circumferential Fourier decomposition of 
the field quantities appearing in appropriate energy functionals, 
followed by consistent elimination of high-order terms, has led to 
rather simple shell response equations with satisfactory attributes. 
The fluid-structure interaction has been treated rigorously in accor­
dance with the residual potential formulation, which has been used 
successfully in a number of previous studies. 

Numerical results have been presented in the form of transient 
response histories pertaining to excitation by plane waves of rectan­
gular pressure-profile. Examination of these results has led to the 
following conclusions: 

1 Dynamic instability effects are significant only with respect to 
flexural shell response. 

2 The dynamically unstable flexural response that occurs while 
the incident-wave profile passes over the shell profoundly affects 
subsequent free-vibration flexural response. 

3 For peak total strains smaller than 1 percent, only the lowest 
flexural modes of a heavily stiffened shell experience dynamic in­
stability; if the degree of stiffening is reduced, however, higher flexural 
modes exhibit such instability until, in the limit of an unstiffened 
shell, numerous flexural modes are involved. Hence, the response of 
an unstiffened shell to a given incident wave is significantly different 
than that of an appreciably stiffened shell to the same wave. 

4 n = 0 breathing motion dominates strain response, and quasi-
linear (especially n = 1 translational) motions dominate velocity re­

sponse; nonlinear flexural motions are important only with regard to 
deformational displacement response, i.e., displacement response 
exclusive of rigid-body translation. 

5 As a consequence of the preceding conclusions, live-load forcing 
terms and ambient hydrostatic pressure substantially affect defor­
mational displacement response, but have minor impact on velocity 
and strain response. 

6 The live-load terms in the surface-pressure work potential that 
involve pressure gradients may be neglected [see (4)]. 
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A Model to Estimate Forces on 
Conical Penetrators Into Dry 
Porous Rock1 

A model to predict the forces on conical-nosed penetrators for normal impact into dry 
rock targets is developed. The target medium is described by a linear hydrostat, a linear 
shear failure-pressure relation, and the material density. A cylindrical cavity expansion 
approximation to the target response permits one-dimensional wave propagation calcula­
tions in the radial coordinate. The equations of motion are reduced, via a similarity trans­
formation, to a nonlinear ordinary differential equation. This equation is solved numeri­
cally by a shooting technique which employs an asymptotic expansion to the solution near 
the wave front. Results include stress wave profiles in the target and curves for the stress 
on the penetrator nose as a function of its velocity for a wide range of realistic target pa­
rameters. Finally, results from the theory are compared with the deceleration history of 
a penetrator in a field test and reasonable correlation is observed. 

Introduction 
The penetration of projectiles into targets has been studied for a 

wide range of applications, many of which are discussed in [1-3]. For 
geological targets interest is usually focused on the prediction of 
penetration depth, penetrator deceleration history or stresses on the 
nose. For the calculation of these quantities, recent solution tech­
niques may be grouped into three main categories: 

1 Empirical equations for final depth of penetration based on full 
scale test data [4-6]. 

2 Models which use a cylindrical [7, 8] or spherical [9, 10] ex­
pansion approximation to the target response and allow for one-
dimensional wave propgation. 

3 Detailed numerical solutions which employ two-dimensional 
wave codes [2, 11]. 

All of these approaches have advantages and limitations which must 
be considered for a given application. 

The present investigation falls into category (2) and is concerned 
with the prediction of forces on conical-nosed penetrators during 

1 This work was supported by the U. S. Department of Energy. 
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY 

OF MECHANICAL ENGINEERS, for presentation at the 1981 Joint ASME/ASCE 
Applied Mechanics, Fluids Engineering, and Bioengineering Conference, 
University of Colorado, Boulder, Colo., June 22-27, 1981. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N. Y. 
10017, and will be accepted until June 1,1981. Readers who need more time to 
prepare a Discussion should request an extension from the Editorial Depart­
ment. Manuscript received by ASME Applied Mechanics Division, April, 1980; 
final revision, September, 1980. Paper No. 81-APM-15. 

normal impact into dry rock targets. The cylindrical cavity expansion 
approximation considers the target as thin independent layers normal 
to the penetration direction and allows only radial target motion, 
which is reasonable for sharply pointed penetrators. The constitutive 
description of the target contains minimum detail; a linear hydrostat 
and a linear shear failure-pressure relation. This material description 
matches closely triaxial test data of cored field samples [12,13] from 
the Sandia Tonopah Test Range, Nevada. The present material de­
scription is different from that used in the other cavity expansion 
solutions which model the targets with locked hydrostats. 

Results of this study include stress wave profiles in the target and 
families of curves for the stress on the penetrator nose as a function 
of its velocity for a wide range of realistic target parameters. Target 
wave profiles indicate that the stress diminishes rapidly with distance 
from the penetrator nose when shear strength is significant. Finally, 
results from the theory are used to calculate the rigid-body deceler­
ation history of a full-scale penetrator which entered a layer of Mt. 
Helen welded tuff. This prediction is compared with measurements 
from two on-board accelerometers [14] and reasonable agreement is 
found. 

Formulation of the Problem 
A rigid projectile with a conical nose penetrates a uniform target 

medium with normal incidence. The problem is axisymmetric and is 
further simplified by applying the cylindrical cavity expansion ap­
proximation. As shown in Fig. 1, this approximation considers the 
target as thin layers normal to the direction of penetration and 
simplifies the analysis to one-dimensional wave propagation in the 
radial coordinate. This model assumes that all motion in individual 
target layers is one-dimensional, radial, and independent of any other 
layer. 
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Fig. 1 Geometry of the problem 

The target medium is described by a linear hydrostat, a linear shear 
failure-pressure relation [15], and density. Many rock materials with 
low water content can be modeled with these idealizations; e.g., see 
the data for Mount Helen welded tuff shown in Figs. 2 and 3. These 
hydrostat and shear failure data were obtained from static triaxial 
tests of cored field samples from the Sandia Tonopah Test Range, 
Nevada. Additional data at high strain rates with gas gun experiments 
[16] have shown rate effects to be negligible. 

An idealized layer of target material is expanded by a conical nose 
with half cone angle d as shown in Fig. 1. The equations of momentum 
and mass conservation in cylindrical, Lagrangian coordinates are 

d2u d<rr 
p o r — = - ( r + u) — -

dt' dr 
(o> 

p0r = p(r + u)\l + — 

<rc) — (r + u) 
dr 

du' 

do) 

(16) 

where po,p are the initial and current densities, u is the radial dis­
placement, and ay, <rc are the radial and circumferential components 
of Cauchy stress, taken positive in compression. Elastic strains are 
neglected and the material is described by the hydrostat 

p = K(l- p0/p) = KV 

and the shear failure-pressure relation 

T = ay - ac 

where p is the hydrostatic pressure 

MP 

p = V8(o> + 2<rc) 

(2a) 

(2b) 

(2c) 

In equation (2c) it is assumed that az = oy during a penetration event, 
which matches the physical situation for triaxial tests [12]. Equations 
(26,c) are combined to give 

ffr = (1 + 2/ l /3)p. (2d) 

Equations (2a, b, d) are used to eliminate the stress components 
from equations (la, 6) which become 

d2u dn I du\ 
p0r—z+ (l + 2n/3)K(r + u) — +nKr)'\l + — = 0 (3a) , 

d t 2 dr \ dr) 

du u I du\ 
v + — + _ 1 + _ = 0 

dr r \ dr/ 
(36) 

The conical penetrator traveling at constant velocity Vz begins to open 
a circular cavity in a given layer at time t = 0. This displacement at 
the, cavity wall, Lagrangian coordinate r = 0, is given by 

u(0,t) = Vt, V = V z t a n ( (4) 

The other boundary condition requires that the radial displacement 
at the wave front is zero and the formulation of the cavity expansion 
problem is complete. 

Analyses 
Similarity Solution. In this section equations (3a, b) are solved 

by the similarity method which reduces the partial differential 
equations to nonlinear ordinary differential equations. As discussed 
in [17], similarity transformations have been previously applied to 
problems in gas dynamics with the Eulerian spatial description. 
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Fig. 3 Idealized linear shear failure relation and data from [12] 

Following the procedures outlined in [17], the dimensionless variables 
u, f are introduced 

u(r, t) = ctu(£) (5a) 

J = r/ct, c2 = (1 + 2ii/3)K/pQ (56) 

The wave-front velocity c for the medium described by equations (2a, 
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_b, c) is obtained from the momentum and mass conservation equa­
tions across the wave front [15]. The dimensionless radial coordinate 
£ ranges from £ = 0 corresponding to the position of the expanding 
cavity to £ = 1 which is the location of the wave front. Equation (2a) 
indicates that r] is dimensionless and no transformation is required 
for this variable. With these transformations the equations of motion 
and mass conservation become 

„„d2u ,. dn I 3a 
P—z+ (£ + ") — + —— 

d£ 2 d£ 13 + 2,11, 
i / l + 

du 

dl, 
- = 0 

1/ + 
du u I du\ 
— + - 1 + — = 0 

The boundary conditions at the cavity wall and wave front are 

u(0) = V/c, u( l ) = 0. 

(6a) 

(66) 

(6c) 

During the analysis phase of this study it was found that the ad­
ditional transformation 

«(£) = U(H) - £ (7) 

could condense the length of equations and a single equation in U is 
given by 

/g4 - U2\ d2{7 

U )d£2 

U + U dU , _, tdU\2 r^-^b?) -° (8a) 

in which 
Jl = 3u/{3 + 2ji) 

The boundary conditions are 

U(0) = V/c, 1/(1) = 1 

and the radial stress in the medium is given by 

or = (1 + 2H/3)KT), v 
_U_dU_ 

(8b) 

(8c) 

(9) 

Numerical Procedure and Results. Equation (8a) is a nonlin­
ear, ordinary differential equation and its solution is obtained nu­
merically by a Runge-Kutta integrating subroutine [18]. For this 
numerical procedure the equivalent system 

&V 

dN_ 

d£/_ 

(1 + JJ)£UN* - £(/Z + £2)JV 

(10a) 

(10b) 
£4-U2 

is introduced. The integrating routine requires initial values of U and 
N specified at an end point, but for this application boundary con­
ditions are specified at £ = 0 and £ = 1. Consequently, an iterative 
shooting method is used. The usual procedure is to guess a value of 
N at the starting point, perform the integration, and compare the 
computed value of U at the other end of the interval with the specified 
value. If necessary, the process is repeated with a new value of N until 
agreement is reached in the computed and specified values of U. This 
process is modified in the solution of equations (10a, b) because of the 
singularity at £ = 1 in equation (106). 

Special treatment is given to the end points, £ = 0 and £ = 1. 
Equation (8a) has an apparent singularity at £ = 0 which is removed 
by the choice of equations (10a, b). An actual singularity exists at the 
wave front £ = 1 and numerical values from asymptotic expansions 
are used to start the integration at a point near the wave front. Ex­
pansions for 0 < 1 - £ « 1 which satisfy the condition U (1) = 1 
are 

f / = f + A ( l - £ ) " + .'. £• 

N = 1/£[1 - 0A(1 - &P-1 + . . . ] , £ -* 1 

i8=(3+/Z)/2 

(11a) 

( l ib) 

( l ie) 

where A is an undetermined constant a n d . . . indicates higher-order 
terms. Equation (11a) indicates a singularity in the second derivative 
of U for Ji < 1 (n < 3) which is a practical range for this study. These 
expansions are determined in the usual way by assuming u - TJ — £ 
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Fig. 4 Radial stress profiles (or V/(K/po)1'2 = 0.047 
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Fig. 5 Radial stress component on the conical nose 

has the form (1 — £)'' and substituting into equation (8a) to determine 

0. 
An expression is derived which gives a crude, but adequate initial 

estimate of A to start the numerical procedure. A three term Taylor 
series for U about £ = 0 which satisfies condition (8c) is developed. 

U = V/c + £ £ 2 + . . . , £ — 0 (12) 

where B is an unknown constant. Then U and its derivative from 
equations (11a and 12) are matched at an appropriate point, £ = V/c, 
to determine A and B. The resulting expression for A is 

A= YIl (18) 
2 ( 1 - V / c ) 0 - ! [ l - (1-/3/2)V/c] 

The strategy for the numerical solution is to use the asymptotic 
expansions to start the solution at a point slightly less than £ = 1 and 
integrate toward £ = 0 where the numerical integration is well be­
haved. Using equation (12) an initial value of A is estimated, and U 
and N are evaluated at £ = 1 - 10 - 6 from equations (11a, b). Next, 
the numerical integration of equations (10a, 6) is performed up to the 
point £ = 10 - 6 , although it can be performed arbitrarily close to £ = 
0. Depending on the difference U — V/c at £ = 10 - 6 , a new estimate 
for A is made and the process repeated until the difference in U — V/c 
is less than 10~6. 

Computed values of U, dU/dl; and equations (9) are used to produce 
the results of Figs. 4-6. The stress profiles in Fig. 4 are for a single 
cavity expansion velocity and three values of the shear strength pa-
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Fig. 6 Radial stress component on the conical nose 

rameter. These profiles show the wave-front stresses are zero, as in­
dicated by equations (9, 11a), and that the radial stress increases 
monotonically from the wave front to the cavity boundary. Fig. 4 also 
shows the effect of shear strength and that radial stress diminishes 
rapidly with distance from the penetrator nose when shear strength 
is important. Figs. 5 and 6 give generalized curves for the radial 
component of stress at the cavity surface as a function of the cavity 
expansion velocity for a realistic range of values of the target shear 
strength parameter for dry rock targets. As discussed in the next 
section, the curves in Figs. 5 and 6 may be easily used to predict stress 
on a penetrator nose. 

Force on the Penetrator and Deceleration. The similarity 
solution for this problem indicates that the radial stress component 
at the cavity wall or the surface of the conical penetrator is constant 
for a given velocity V. Thus the stress distribution on the conical nose 
is spatially constant. The incremental radial ring force on the conical 
nose for a thin target layer with thickness dz is 

dFr = 27ro>(0)fl(z)dz 

and the incremental axial force is 

dF, = dFr tan t 

thus 

: 27TO> 
(o) X' z tan2 6 dz = irr2ar(0) 

(14a) 

(146) 

(15) 

where r is the radius of the penetrator aft body, / is the nose length, 
and oy(0) can be obtained from Figs. 5 and 6. 

As will be discussed later, acceleration-time is measured in field 
tests. Convenient formulas for acceleration as a function of time or 
penetration distance can be obtained by linearizing the data in Figs. 
5 and 6. These data have only slight curvature and can be linearized 
without substantial loss of accuracy. For linear curves which pass 
through the origin, the radial stress and axial resisting force can be 
written as 

o> = aVz tan 0(i?po)1/2 

F, = aTtflVz tan 0(Kpo)1/2 

(16a) 

(166) 

where a is the slope of the linear fit to the curves in Figs. 5 and 6. 
The axial velocity Vz is now permitted to vary with time. From 

equation (166) the equation for rigid-body motion of the penetrator 
with mass m is 

dv 
m — = — bv, 

dt 

Equation (17) with the initial condition v(t = 0) 
tions 

6 = avr2 tan 6(Kp0)
1/2 (17) 

V0 has solu-
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Fig. 7 Deceleration-time measurements and prediction for a field test 

s = mV0/6[l - exp (-bt/m)} (18a) 

v = V0exp(-bt/m) (186) 

a = -bVo/m exp (—bt/m) (18c) 

for distance, velocity, and acceleration. From equations (18a, 6, c) 

u = V0[l - s6/mV0] (18d) 

a = -bV0/m[l - sb/mVo] (18e) 

which describe velocity and deceleration as a function of penetration 
depth. 

C o m p a r i s o n W i t h a F i e ld T e s t 
There is currently only one penetrator test into a natural, undis­

turbed rock layer for which acceleration-time data have been suc­
cessfully retrieved [14] and the appropriate material data are avail­
able. The target was a layer of welded tuff located at the Sandia, To-
nopah Test Range, Nevada. Details of the site characterization and 
the material properties required to apply the predictions derived in 
this study are presented in [12]. For this test, the penetrator had total 
length 1.52 m (60.0 in.), outer diameter 0.165 m (6.50 in.), an ogive nose 
profile with 9.25 CRH (caliber radius head), nose length 0.495 m (19.5 
in.), and mass 182 kg (400 lb). The penetrator was accelerated to a 
vertical velocity of 411 m/s (1350 ft/s) with a Davis Gun [19]. A 53.2 
kg (117 lb) pusher plate which fits the internal diameter of the gun 
barrel is attached to the end of the penetrator and follows the pene­
trator until the pusher plate impacts the rock surface. Two acceler-
ometers (Endevco 225-MZ piezoelectric and Kistler 805 A quartz) 
were packaged within the penetrator and these acceleration-time data, 
filtered to 500 Hz, are shown in Fig. 7. The data were filtered in order 
to estimate the rigid-body motion of the penetrator and eliminate the 
vibrations associated with mounting the instrumentation package. 

The theory derived in this study is for a penetrator with a conical 
nose; whereas, the penetrator used in the field test had an ogival nose 
shape. Based on several hundred full-scale soil penetration tests, 
Young [4, 5] presents nose performance coefficents for several ogival 
and conical nose shapes. These deceleration and final depth of pen­
etration data indicate that a 9.25 CRH (caliber radius head) nose and 
a conical nose with half-conical angle 6 = t a n - 1 (1/4) are nearly 
identical. The analysis used for comparison with this rock penetration 
test assumes that the ogival nose is equivalent to a conical nose with 
6 = t a n - 1 (1/4). Material data required for application of the theory 
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p0 = 1.97 X 103 kg/m3, K = 9.52 X 103 MPa, fi = 4/3; R e f e r e n c e s 

as deduced from Figs. 2 and 3. 
With the foregoing data the resisting stress on the penetrator nose 

can be obtained from Fig. 5; Vz tan 8/(K/p0)
1/2 = 0.047, ar/K = 0.037. 

From equation (18c) with a = 0.80 the deceleration-time profile can 
be calculated and this prediction is compared with the field mea­
surements in Fig. 7. For this calculation, it is assumed that no decel­
eration takes place until 0.329 m (1.08 ft) which corresponds to the 
distance of full nose penetration of the assumed conical nose shape. 
After nose penetration, equation (18c) predicts an exponential decay. 
At 1.52 m (5.0 ft) the pusher plate impacts the target surface, and is 
removed from the penetrator; this sudden mass change causes a de­
celeration jump. At this position s = 1.52 m (5.0 ft), a new initial value 
problem is begun without the pusher plate mass. As indicated by the 
data in Fig. 7, the penetrator comes to rest suddenly at s = 2.6 m (8.6 
ft). At this distance the penetrator does not have enough kinetic en­
ergy to open a cavity as large as the penetrator aft body. The analytical 
model presented herein does not predict this phenomena. 

S u m m a r y and D i s c u s s i o n 
A model to estimate forces on penetrators for normal impact into 

hard geological targets is presented. The target medium is described 
by a linear hydrostat, a linear shear failure-pressure relation and the 
material density. These simple constitutive laws represent triaxial 
test data [12,13] on two different dry rock layers at the Sandia, To-
nopah Test Range, Nevada. The mathematical solution for the model 
is obtained by similarity methods and generalized solution curves for 
a wide range of practical parameters are presented. Finally, a com­
parison of this theory with a field test into a natural, undisturbed rock 
layer is presented and reasonable correlation is observed. 

The model provides a quantitative estimate of force on the pene­
trator nose with minimum detail about the constitutive description 
of the material. Along with the previously stated approximations to 
the problem, the Coulomb frictional stresses tangent to the penetrator 
nose are neglected. Measurements of dynamic friction between rock 
and steel were performed with a rotating steel wheel arrangement [20] 
and data obtained for velocities up to 30 m/s which is an order-of-
magnitude lower than the velocity range required for this application. 
No attempt was made to quantify Coulomb frictional effects in this 
study, but the inclusion of this effect would produce larger predicted 
accelerations than those shown in Fig. 7. 
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Dynamic Analysis of Explosive-
Metal Interaction in Three 
Dimensions 
This paper demonstrates the capability to perform three-dimensional computations for 
explosive-metal interaction problems with complex sliding surfaces. An analysis is per­
formed for an explosive device which accelerates a metal liner known as a self-forging 
fragment. Results are presented to show the effects of off-center detonation, asymmetric 
liner thickness, and asymmetric explosive density for an otherwise axisymmetric device. 
These three-dimensional conditions have little effect on the linear velocities, but they do 
introduce significant angular velocities to the self-forging fragment. Unlike projectile-
target impact computations, which require only a single sliding surface between the pro­
jectile and the target, the explosive devices have multiple, intersecting, three-dimension­
al sliding surfaces between the expanding explosive gases and the various metal portions 
of the devices. Included are descriptions of the specialized "search routines" and the 
"double-pass" approach used for the explosive-metal interfaces. 

I n t r o d u c t i o n 
Recently there has been much interest in explosive devices which 

accelerate a metal liner known as a self-forging fragment [1-4]. Unlike 
a conical-shaped charge, which forms a high velocity jet consisting 
of multiple particles [5], a self-forging fragment remains essentially 
intact and eventually forms a relatively rigid body as it travels at a 
constant velocity after being accelerated by the explosive. The pri­
mary uses for such devices involve military and mining applications 
where it is desirable to deliver a large amount of kinetic energy to a 
distant location. Many of these devices are axisymmetric, such as that 
shown in the upper portion of Pig. 1. Although the dynamic formation 
of such devices has been accurately simulated in two dimensions [1-4], 
little is known about the effect of three-dimensional, asymmetric, 
variations from a baseline axisymmetric configuration. 

This paper contains two related items of interest; a numerical 
technique for explosive-metal interaction problems with complex 
sliding interfaces, and an analysis of three-dimensional asymmetric 
variations for an explosive device. Although the EPIC-3 computer 
code has been used to simulate high velocity impact problems in­
volving projectile-target interaction [6], for the explosive-metal de­
vices in Fig. 1, the sliding surface computations are significantly more 
complicated. The analysis examines the three-dimensional effects 
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of off-center detonation, tapered liners, and variable density explosive, 
as shown in the lower portion of Fig. 1. These variations are ±10 
percent of the nominal conditions and are generally greater than 
would be experienced in the fabrication of actual devices. 

C o m p u t a t i o n a l A p p r o a c h 
A description of the basic EPIC-3 code is given in reference [6]. It 

is based on an explicit, finite-element, Lagrangian formulation which 
uses constant strain tetrahedral elements. The additional features 
for explosive-metal interaction are described herein. 

Explosive Formulation. For explosive detonation, the hydro­
static pressure is obtained by a procedure similar to that used in the 
two-dimensional HEMP code [7]. The pressure, determined by the 
Gamma law, is given by 

P = F(y- 1)E/V (1) 

where F is the burn fraction (0 ^ F < 1.0), 7 is a material constant, 
and E is the internal energy per initial unit volume. The relative 
volume is V = V/Vn, where V and Vo represent the current and initial 
element volumes, respectively. Other, more accurate expressions for 
the pressure can also be used, such as the JWL equation of state [8], 
if the appropriate material constants have been determined and are 
available. 

The explosive is effectively initiated with the burn fraction, which 
is dependent on the time for the detonation wave to arrive and travel 
through the element, or the compressed state of the element. The burn 
. fractions for these two conditions are 

F = 
(t -ts)D + fa/2 

(2a) 
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OFF-CENTER TAPERED VARIABLE DENSITY 
DETONATION LINER EXPLOSIVE 

Fig. 1 Geometric definition of the axisymmetric case and the three asym­
metric cases 

In equation (2a), t is the current time and ts is the time required for 
the detonation wave to reach the center of the element when traveling 
at the detonation velocity, D. A reference distance, b = 2V}/3, is used 
to spread the wave front over a limited number of elements. Equation 
(2b) gives the burn fraction in terms of the compressed state, where 
VCJ = 7/(7 + 1) is the Chapman-Jouquet relative volume. This allows 
a converging detonation wave to travel at a velocity greater than D. 
The maximum value of F from equations (2a) and (2b) is selected, 

. if it is within the limits, 0 < F < 1.0. If F is negative or greater than 
unity, then F is set to 0 or 1.0, respectively. 

Sliding Surfaces. Since the explosive gas expands significantly 
and eventually vents at the intersection of the liner and the confine­
ment shell, it is necessary to allow for sliding to occur between the 
explosive and the confinement shell. For the explosive-metal interface, 
the formulation is based on a double-pass approach. For the first pass, 
the metal is designated as the master surface and the explosive is 
designated as the slave surface. After the equations of motion are 
applied to the nodes of both surfaces in the usual manner, each slave 
node is checked to determine if it has passed through the master 
surface. Before this check is made, it is necessary to search through 
the master surface until the proper triangular plane (tetrahedral side) 
is identified. These "search routines" can be very complicated and 
will be described later. 

If the slave node is found to pass through a triangular plane on the 
master surface, it is brought back to the surface of the plane and the 
normal velocities of the slave node and the three master nodes are 
adjusted. The adjusted velocities are obtained by conserving linear 
momentum normal to the plane, and angular momenta about the two 
axes contained in the plane. The fourth imposed condition is that the 
normal velocity of the slave node is equal to the normal velocity of the 
master plane at the slave node position. The formulations for the 
velocity adjustments are given in reference [6]. The velocity match 
is often altered as subsequent slave nodes are processed since each 
master node can be affected by more than one slave node. Therefore, 
the process must sometimes be repeated to provide an acceptable 
velocity match throughout the interface. 

The second pass consists of redefining the explosive as the master 
surface and the metal as the slave surface. This insures that there is 
no intrusion of the metal material into the explosive material as could 
occur if the spacing of the explosive nodes was significantly larger than 
that of the metal nodes, or if the metal surface was convex toward the 

STEEL CONFINEMENT 

Fig. 2 Potential sliding surface problems associated with omission of the 
second pass 

explosive. The double-pass approach also allows the expanding ex­
plosive to slide off the end of the metal surfaces without the use of 
artificial extension surfaces. 

Fig. 2 shows some of the problems which occur if the second pass 
is omitted. For illustrative purposes, these conditions are shown in 
two dimensions only; the x-z plane at y = 0. The inner surface of the 
steel confinement shell is the master surface and the outer surface of 
the explosive is the slave surface. The common phenomenon associ­
ated with each of these conditions is that the master material intrudes 
into the slave material. The upper portion of Fig. 2 shows excessive 
slave node spacing; the distance between adjacent slave nodes S\ and 
S2 is significantly greater than the spacing of the associated master 
nodes. The result is that master node M is not directly resisted by 
either of the slave nodes. Due to the intensity of these loading con­
ditions, the material tends to flow along the path of least resistance. 
In this case, node M would probably move into the slave material, the 
grid would overlap, and the computation would soon become mean­
ingless. 

A similar situation exists when the master surface is convex toward 
the slave surface. Generally this condition is not self-correcting; in­
stead the master node continues to intrude, and slave nodes Si and 
S2 remain on either side of the master node M. When the edge of the 
master surface is encountered, as shown in the lower portion of Fig. 
2, slave node S2 is no longer contained by the master surface and 
rapidly expands, effectively leaving master node M intruding into the 
slave material. Improper treatment of this area has been shown to lead 
to erroneous results [4]. 

All of these undesirable conditions can be corrected by using a 
double-pass approach. Since the second pass consists of interchanging 
the master and slave surfaces, node M becomes a slave node and is 
therefore placed back on the new master surface defined by nodes Si 
and Si. As a result, it is no longer possible for one material on the in­
terface to intrude into the other material. 

The preceding discussion regarding the placement of the slave node 
into the master surface, and the subsequent adjustment of nodal ve­
locities, has been for a specified slave node and the three corre­
sponding master nodes which define the master surface at the slave 
node location. The identification of the appropriate triangular master 
plane for a specified slave node can be a very complex process, how­
ever. 

There are two types of search routines; specialized and generalized. 
The specialized routines require much less computer time and should 
be used whenever possible. They can generally be used if the initial 
and deformed geometry of the master surface can be expressed as a 
single valued function of any two principal coordinates (i.e., any line 
parallel to the third principal axis must not pass through the master 
surface at more than one point). Under these conditions, the master 
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PROJECTIONS 

ON X-Y PLANE I 

AT Z • 0 

Fig. 3 Some examples of the search routine logic 

surface projects onto a principal plane as an arrangement of triangles 
with no crossover of one triangle onto another. Then the projection 
of each slave node is checked to determine if it falls within the trian­
gular projection of any master plane. As soon as a master triangle is 
found, the search is discontinued since the slave node can be associ­
ated with no other master triangle. The check for containment within 
the triangle is done by determining the distance from the slave node 
projection to each of the three lines of the master triangle projection. 
If all three distances are positive, then the slave node is contained 
within the triangle [9]. (This requires a specified sign convention and 
consistent designation of the three master lines.) This specialized 
approach can be used for many projectile-target impact problems [6, 
9]. It can also be used for the sliding interface between the liner and 
explosive as shown in Fig. 1; this interface can be projected onto the 
y-z plane, where x is a single-valued function of y and z. 

For the interface between the explosive and cylindrical steel con­
finement, however, the generalized approach must be used. Before 
stating a general rule for finding the proper master triangle, several 
definitions are required. bn is the normal distance between the slave 
node and the master plane. 5ref = VrefAt where At is the integration 
time increment and Vte{ is an input velocity (positive) which is greater 
than any relative velocity difference expected in the simulation. 5ref 
is then a positive reference distance greater than the relative move­
ment of any two nodes during one integration cycle. Another distance, 
^edge. is the distance between the slave node projection and the pro­
jection of one line of a master triangle. Since all projections cannot 
be made onto the same principal plane for the generalized approach, 
the principal plane selected is that plane which is most nearly parallel 
to the master plane. This can be readily determined from the normal 
direction cosines of the master triangle. 

The selection is now based on the following: If a slave node is con­
tained in the triangular projection (onto a principal plane) of one or 
more master surface triangles, and if it is close to the triangular plane, 
8n < 5ref> then the master plane closest to the slave node is selected. 
If the slave node projection is not within any master triangular pro­
jections but is close normally to at least one triangular plane, Sn < 5ref, 
and if the distance from the slave node projection to the master tri­
angular projection is small, 5edge < 5ref, then the master triangle with 
the smallest e>edge is selected. 

Fig. 3 shows examples of the search logic. Again, for clarity, the il­
lustrations are shown in two dimensions only, the y-z plane at x = 0. 
Case A demonstrates the importance of the reference distance, 5ref. 
For this case the explosive is the master surface, and it is desired to 
determine which master triangle (line in two dimensions) slave node 
Si should be associated with. The triangle containing master nodes 
Mi and Mi is projected onto the x-y plane since it is more nearly 
parallel to this plane. (The absolute value of the direction cosine in 
the z-direction is greater than those in the x and y-direction.) It can 

be seen that slave node Si falls within the projection of Mi and Mi 
on the x-y plane. However, the normal distance, 5„, is significantly 
greater than <5ref so the triangular plane containing nodes Afi and M% 
is not the proper plane. The master plane containing nodes Ms and 
M4 also projects onto the x-y plane and contains the projection of the 
slave node. Since bn is less than <5ref, this is the proper plane. Slave 
node Si is therefore placed onto the master triangle containing nodes 
M3 and M4, and the velocities are adjusted as described in reference 

[6]. 
Cases B and C show special instances which can arise when adjacent 

master triangles are projected onto different planes. In Case B, the 
explosive is the slave material and slave node S2 has crossed over the 
master surface. The triangular plane containing master nodes M5 and 
M% is projected onto the x-y plane and the triangular plane containing 
master nodes Me and Mq is projected onto the x-z plane. Neither 
projection contains slave node S2. Since the normal and edge distances 
are less than 5ref, and since 8f^ge is less than 8l£se, then the slave node 
is correctly associated with the triangular plane containing master 
nodes Me and M-j. 

In Case C the explosive is the master material. Here, slave node S3 
is contained within the projections of two different planes. In addition, 
the normal distance to the two planes is less than 5ref. Therefore, slave 
node S3 is correctly associated with the triangular plane containing 
master nodes Mg and Mio since it is closer normally to that plane; 5®"10 

<58„9-

Results 
The preceding explosive and sliding surface options have been in­

corporated into the EPIC-3 code [6] such that numerical solutions 
can be obtained for the four different configurations in Fig. 1. The 
steel confinement and copper liner have plastic flow stresses of 0.35 
GPa and 0.48 GPa, respectively. The octol explosive is represented 
by 7 = 2.85, E = 8860 J/cm3, p 0 = 1-80 g/cm3, and D = 8377 m/s. For 
the sliding interfaces between the explosive and metal parts, the ex­
plosive is slave for the first pass and master for the second pass. The 
finite-element model contains 1288 nodes and 4392 tetrahedral ele­
ments. The coarse grid was selected to hold the computer time within 
acceptable levels. Each of the four conditions requires about 3 hr of 
CPU time on a Honeywell 6080 computer. The coarse grid, together 
with the simple Gamma law for the explosive, is not adequate to ac­
curately simulate all the details of the problem. It does, however, show 
the relative magnitude of the various three-dimensional effects. 

The dynamic formations of the various configurations are shown 
in Fig. 4. The cross-sectional results are at the x-z plane of symmetry 
at y = 0. The y-z plane at x = 0 is also a plane of symmetry, and the 
asymmetric conditions are relative to the z-axis. The axisymmetric 
condition at the top of Fig. 4 is included to provide a reference point 
for the other three conditions. It also provides a check for the sliding 
surface formulation. Even though this problem is essentially sym­
metric about the x axis, the sliding surface procedure is not inherently 
symmetric; when there is node to node contact on a sliding surface, 
the adjustments to the two nodes must be made in a direction normal 
to one of the triangular master planes which contains the master node. 
Since the selected triangular plane is the first one (which contains the 
slave node) encountered in the search, and since the triangular planes 
are not ordered in a symmetric manner, the symmetric slave nodes 
are not necessarily adjusted in a symmetric manner. The high degree 
of symmetry in the results indicates that this condition is probably 
self-correcting. 

The initial cross section for the axisymmetric case is shown in Fig. 
1. The first deformed shape in Fig. 4 is shown at 35 [is after detonation. 
The explosive has expanded significantly and is venting between the 
steel confinement and the copper liner. It can be seen that there is no 
intrusion of one material into another on the sliding interfaces, and 
that the upper and lower portions are essentially symmetric. A more 
detailed check indicates the velocities at the top and bottom edges 
of the liner are 1719 m/s and 1715 m/s, respectively. At 35 /us, the ex­
plosive has a negligible effect on the liner and is therefore removed 
from the simulation. The dynamic formation of the liner is shown from 
50 ps to 200 ixs after which there is limited plastic flow and the basic 
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Fig, 4 Cross-sectional views of the dynamic formations 

shape of the liner has been established. The axial velocity of 1890 m/s 
is essentially identical for all four conditions. A further check on the 
sliding surface formulation is provided by noting the low vertical 
off-axis velocity of 0.4 m/s and rotational velocity of 35 rad/s. 

The second condition considers an off-center detonation where the 
explosive is detonated at a point 1.06 cm above the center line. During 
the initial stages of the response, the explosive pressure first reaches 
the upper portion of the liner and the liner achieves a clockwise ro­
tational velocity of 4840 rad/s at 7.6 /is. Since this causes the upper 
portion of the liner to move away from the explosive at a faster rate 
than the lower portion, the explosive pressure is relatively decreased 
at the top and increased at the bottom. The increased pressure at the 
bottom eventually causes the final rotational velocity to be counter­
clockwise; 1073 rad/s at 200 /is. The effect of rotation is particularly 
significant for fragments where the length is much greater than the 
diameter, since the effect on the target is dependent on the orientation 
at the time of impact. 

The next condition considers the effect of a tapered liner where the 
thickness varies linearly from 0.9 to at the top to 1.1 to at the bottom. 
The total mass of the tapered liner is equal to that of the constant 
thickness liners. This condition results in a significant rotational 
velocity of 2722 rad/s. At a linear velocity of 1890 m/s, the resulting 
rotation is 1.44 rad/m. 

AXI-SYMMETRIC 

OFF-CENTER DETONATION 

TAPERED LINER 

« « VARIABLE DENSITY 
EXPLOSIVE 

-.i -.2 0 .2 .4 .6 

STRAIN IN LINER laL /L I 

Fig. 5 One-dimensional, center-line strains, from node Af1 to node M 1 3 , at 
the plane of symmetry, 200 / is after detonation 

The final condition demonstrates the effect of a variable density 
in the explosive. It varies linearly from 1,1 po at the top to 0.9 po at the 
bottom. The total amount of explosive energy is equal to that of the 
other conditions. As expected, the denser explosive imparts a higher 
velocity to the upper portion of the liner and the resulting angular 
velocity is 962 rad/s. 

Fig. 5 gives an indication of the relative distortions in the deformed 
liners. The internal strain distributions are important inasmuch as 
they can be used to give an indication of fracture; if the fragment 
breaks into several pieces, the effect on the target can be significantly 
altered. The one-dimensional strain along the center row of nodes, 
from node Mi to M13, is shown as a function of the initial liner ge­
ometry. The strains are plotted at the midpoints of the adjacent nodes. 
The same general pattern exists for all four conditions. 

Several additional comments should be made about the computed 
results. First, the asymmetric conditions are generally more severe 
than would be expected in actual devices. An approximation would 
be to linearly interpolate the results for less severe asymmetric con­
ditions. An additional numerical solution for a tapered liner with a 
±5 percent variation indicates the rotational velocity of the liner is 
53 percent of the velocity achieved with the ±10 percent variation 
shown in Fig. 4. This appears to indicate that the results could be 
interpolated. However, more solutions should be obtained to deter­
mine if this is true for the other conditions. 

The rotational results are presented in terms of angular velocities 
for clarity. It is the angular momentum, however, which is conserved 
from 35 /is to 200 /is. Therefore, if the rotational inertia is significantly 
increased, as it would be for a long slender fragment, the rotational 
velocity would decrease accordingly. Vertical off-axis velocities were 
also experienced for the final three conditions. Generally, they were 
very low; 21 m/s, 4 m/s, and 9 m/s (all downward) for the off-center 
detonation, tapered liner and variable density explosive, respec­
tively. 

Referring back to the axisymmetric condition, it was previously 
stated that the results were essentially symmetric on the x-z plane 
of symmetry at y = 0. This symmetry condition does not exist as ac­
curately around the periphery, however. Fig. 6 shows a three-di­
mensional view of the axisymmetric condition. It can be seen that 
jagged edges exist on the venting explosive at intervals of vr/4 rad. This 
effect also occurs to a much lesser degree on the expanding confine­
ment shell. This is due to the change in the orientation of the elements 
at these points, which is required to represent an expanding grid from 
the center of the device. This effect would probably be significantly 
reduced with a finer grid. 

Another factor, relating to the sliding surface approach, is the ac­
curacy of the velocity match between the explosive and metal portions 
of the device. It was previously stated that the velocity match between 
a slave node and the master surface could be altered as subsequent 
slave nodes were processed. For the results presented herein, a second 
velocity matching iteration is included for the first pass only. Fig. 7 
shows a comparison of the normal velocities, at the interface of the 
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Fig. 6 Three-dimensional view of the axlsymmetric dynamic formation 
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Fig. 7 Normal velocities at the explosive-confinement interface for the 
axlsymmetric condition 

explosive and confinement shell, for the axisymmetric condition. Since 
the detonation wave does not arrive at the confinement shell until 
about 6 us, the confinement is rapidly accelerated between 6 us and 
10 us. There is very little acceleration after 15 us. It can be seen that 
the velocity matches are generally good. A part of the velocity dif­
ference at 15 us may be due to the fact that the interface is no longer 
a straight line, but rather two curved surface, and the normal direction 
is taken as an estimated average of the two surfaces. 

S u m m a r y 
A numerical technique has been presented for three-dimensional 

problems involving explosive-metal interaction. Included is a de­
scription of an approach which can be used to obtain solutions for 
complex sliding surfaces. Numerical results are presented for an ex­
plosive device which accelerates a metal liner known as a self-forging 
fragment. The three-dimensional effects of off-center detonation, 
asymmetric liner thickness, and asymmetric explosive density are 
determined. For the conditions examined, the angular velocity of the 
liner is the most sensitive to the three-dimensional variations. 
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A Correct Definition of Elastic and 
Plastic Deformation and Its 
Computational Significance1 

The plastic part of an elastic-plastic deformation is that remaining when the stress, and 
hence the elastic strain, is reduced to zero. Elastic deformation is that produced in this 
purely plastically deformed material by the action of stresses up to yield. The associated 
exact finite-deformation kinematics shows the almost universal assumption that the total 
rate of deformation is the sum of elastic and plastic rates to be in error. An incremental 
elastic-plastic theory is developed using the nonlinear kinematics. The theory is contrast­
ed with that in common use and anomalies in the latter are discussed. 

1 I n t r o d u c t i o n 
The kinematics of elastic-plastic deformation at finite strain was 

incorporated into elastic-plastic constitutive relations by means of 
the matrix analysis of sequential deformations [1-3]. The configu­
ration of a body in its undisturbed reference state at uniform tem­
perature do is specified by the Cartesian position coordinates X = (X\, 
X% Xz) of the body's material points. After loading beyond the elastic 
limit the body takes on the configuration x at time t given by the 
mapping 

; x(X, t) (1) 

For elastic-plastic analysis the deformation is appropriately expressed 
in terms of the deformation gradient matrix 

F(X, t) = dx/dX, (Fu = dxi/dXj) (2) 

In order to define appropriate variables in which to express elas­
tic-plastic analysis, the body is considered to be destressed and re­
duced to the initial temperature do at time t thus releasing the ther-
moelastic strains. The configuration is then specified by the map­
ping 

a = a(X, t) (3) 

Since after elastic-plastic deformation a body is commonly left in a 
state of residual stress when loads are removed and the temperature 
is reduced to the base value, destressing may require the body to be 
divided into infinitesimal elements so that the mapping (3) may then 

1 Dedicated to the memory of Suresh Chandra who was studying this problem 
before his untimely death. 
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ment. Manuscript received by ASME Applied Mechanics Division, March, 1980; 
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be discontinuous and not one-one [3,4]. However a local "deformation 
gradient" Fp(X, t) can be defined in each element which specifies the 
deformation after the macroscopic stress, and hence the thermoelastic 
strain, has been removed. Fp thus expresses the plastic deformation 
which has taken place. It corresponds directly to the deformation 
which would be associated with the migration of dislocations through 
unstressed crystal lattices according to the physical theory of plas­
ticity. It also corresponds directly to the method of measuring the 
onset of plasticity through a proof stress test which determines the 
loss of reversibility to zero strain, and hence of purely elastic behavior, 
when the stress is cycled back to zero. 

A similar local deformation gradient Fe specifies the mapping from 
the unstressed plastically deformed configuration a, (3), to the elas-
tically-plastically deformed configuration x, (1), and constitutes the 
elastic deformation gradient. Since a is not in general a continuous 
one-one mapping, Fe(X, t) is, like Fp , a point function and not the 
partial derivative dx/dot (which usually does not exist). 

The configurations of a material element in the neighborhoods of 
X, a(X, t) and x(X, t) are related since the sequence of transformations 
X —• a(X, t) followed by a(X, t) -*• x(X, t) is equivalent to the mapping 
X -* x(X, t), so that the chain rule determines 

F(X, t) = Fe(X,t)fP(x, t) (4) 

This expresses a simple but generally noncommutative coupling 
between elastic and plastic deformation. 

But plasticity is an incremental or flow-type phenomenon so that 
increments or rates of deformation must be incorporated into the 
formulation of the theory. The gradient of the particle velocity 

v = dx/dt | x (5) 

in the current configuration at time t is given by 

dv _ dv dX 

dx dX dx 

where F = dF/di |x- L can be decomposed into its symmetric part D 

FF~ (6) 
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(the rate of deformation, velocity strain or stretching tensor) and its 
antisymmetric part W (the spin tensor): 

L = D + W (7) 

Substituting (4) into (6) gives 

L = FF_ 1 = F e F e _ 1 + FeFPFP"1Fe""1 = L" + FeLPFe'1 (8) 

in which Le = F*Fe_1 corresponds to the velocity gradient of the purely 
elastic deformation, and LP = F P F P - 1 corresponds to the velocity 
gradient of the purely plastic deformation. 

Equation (8) clearly demonstrates, as was pointed out in [3], that 
in general for strain rates expressed by D, D", and Dp (the symmetric 
parts of L, Le, and L") 

D * De + DP (9) 

Relation (9) with an equality sign, or equivalently by multiplying by 
At to obtain strain increments, 

Ae = A«e + Ac? (9a) 

is the almost universal assumption in finite-element elastic-plastic 
computer codes and as a basis for incremental measurements of 
elastic-plastic material characteristics. For a recent reiteration and 
elaboration of the rate summability concept, see Nemat-Nasser [14]. 
This anomaly is examined in [4] where it is shown that the adoption 
of (9a) implies that certain elastic strain increments contribute terms 
then categorized as plastic. In the present paper we show that a 
careful development based on the kinematics expressed in (8) gen­
erates a new incremental theory, using the finite-strain elasticity 
constitutive relation, which exhibits the appropriate structure and 
symmetry properties to be incorporated into Hill's rate-potential, 
finite-deformation, variational principle [5] and hence into finite-
element computer codes. 

We shall assume isotropic elastic and plastic response to stress 
throughout the deformation and invariant elastic properties since 
these generate a relatively transparent analysis which is sufficient to 
contrast with the commonly accepted approach. Such isotropy implies 
that the plastic strain rate, based on normality with an isotropic yield 
surface, and the Euler or Almansi elastic strain have the same prin­
cipal directions as the stress tensor. 

It has been pointed out [3] that the component deformation gra­
dients Fe and FP are not uniquely defined because arbitrary local 
material element rotations in the unstressed state give alternate un­
stressed configurations. For analytical convenience, and with no basic 
loss of generality, we take the elastic deformation gradient Fe, asso­
ciated with destressing, to be rotation free and hence given by Ve, a 
symmetric matrix. 

Fe = Ve (10) 

(8) then takes the form 

L = veVc~' + VC(DP + Wp)Ve-1 = VeVc_I + yeDP\le~l + V 'W'V'" 1 

(11) 

and since Ve has the same principal directions as the elastic Euler 
strain, and hence also the same principal directions as stress and DP, 
the multiplications in VeDPVe-1 are commutative so that, taking 
symmetric and antisymmetric parts, gives 

D = De + OP + ( V « W V r l ) s (12) 

W = We + (VeWPVe~1)/i (13) 

where the subscripts S and A indicate the symmetric and antisym­
metric parts, respectively. 

Thus, in rate form, the elastic-plastic coupling appears to be more 
involved than the deformation gradient relation (4). An interpretation 
of the significance of (12) is presented in [4], The last term in (12) 
expresses a rate of strain contribution associated with elastic des­
tressing, followed by rotation arid elastic restressing, although it ap­

pears as a contribution associated with LP, and constitutes a residual 
strain increment following application and removal of a stress in­
crement [4]. This may appear to be artificially associated with plastic 
flow because of the choice (10), but the additional strain-rate term, 
which contributes an increment of residual strain, arises from rotation 
of the body relative to the stress tensor and would still appear if the 
choice (10) had not been made. The theory must be sufficiently 
flexible to incorporate arbitrary rotation with elastic-plastic defor­
mation if it is to be used as a vehicle for finite-element implementa­
tion. As explained in [4], such an elastic residual strain increment has 
commonly been categorized as contributing to plasticity. 

Instead of utilizing the first term on the right-hand-side of (8) to 
give the elastic strain-rate De, the approach developed in this paper 
is to combine it with the last term in (12) to yield a more cogent sep­
aration of elastic and plastic effects. Moreover use of the exact kine­
matic relation (12) eliminates anomalies associated with hypothe­
sising an equality sign in (9), i.e., that the total strain-rate is the sum 
of elastic and plastic strain-rates. 

2 The Elastic-Plastic Constitutive Relation 
First, let us consider elastic response to stress. Since, without loss 

of generality, we define elastic deformation by the strain recovery on 
destressing without rotation, Fe = Ve, (10), and using the Truesdell-
Noll notation [6 p. 52] the right and left Cauchy-Green tensors, Ce and 
Be respectively, are equal 

Ce - peTpe - ( y e)2 _ pepgT _ Qe ( 1 4 ) 

Thus the stress deformation relation for an isotropic thermoelastic 
material (equation (18) of [3] or equation (84.11) of [6]) takes the 
form 

where T is the Kirchoff stress (det (Fe) times the Cauchy stress) and 
\p is the free energy per unit undeformed volume (equal to palp as de­
fined in [3]). The deduction of (15) depends on the fact that, for an 
isotropic body, Ve, Ce and d\{//dCe all have the same principal axes 
so that products of the matrices are commutative. 

Since the incremental or flow-type structure of the plasticity law 
demands that the elastic-plastic relation appear in rate form, (15) 
must be expressed in terms of the velocity gradients developed in the 
previous section. 

Qe -yeye+ y e y e _ (yeye)T + yey/e _ 2(Ve V c ) s (16) 

so that 

De = ( v e v e _ 1 ) s = ( V e _ 1 V e V e V c - 1 ) S 

= ve~I(vevc)sv
e~1 = - v«~1ceve'"1 (17) 

Thus the elastic terms in (12) can be rewritten as 

De + (VeWPVe-1)s = -Ve~16eVe~1 + Ve~1(VeV«V/P)sV
e~1 

= - ve~l[ce - w c + cewp]ve~' (18) 

by making use of the antisymmetry of WP, The expression in square 
brackets is the Jaumann or corotational derivative ( ), [7, p. 402] of 
C for axes rotating with spin W , i.e., 

Ce = C* - V/PCe + CeVJP (19) 

and (12) becomes 

D = 3)e+DP (20) 

where 

2)e = -V e - 1 C c V e _ 1 (21) 
2 

Thus the rate-of-deformation or stretching tensor D of the elastic-
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plastic deformation can be expressed as the sum of an elastic com­
ponent involving the Jaumann rate of Ce (effectively a term involving 
the rate of finite elastic strain) and the plastic rate-of-deformation 
tensor, DP. This provides a basis for writing the elastic-plastic con­
stitutive relation in incremental form. 

Taking the Jaumann derivative with spin VI P of the elastic consti­
tutive relation (15) gives 

f = 2C< + 2Ce a2^ 
ce + 

d0dCe (22) 

where the colon,:, denotes the trace of the matrix product. In com­
ponent form this becomes, for isothermal response with which this 
paper is mainly concerned 

(23) 
V 

T u M^l+2C*&L V, 

CSa0 

and substituting for Ce from (21) gives 

f ( /=4 
v>M^l+c*nM^L, 

or in concise notation 

ry = n i ; mnae
m n , T - f l ( » « ) 

Inversion giv< ss 

De = Ae(r) 

(24) 

(25) 

(26) 

The plastic rate of deformation or velocity strain, Dp, is given by 
the plastic-potential, time-independent, hardening law [3, equation 
(40)] 

DP 
h \dr d6 I dr 

(27) 

where f ~ g(r) — c = 0 is the yield function, g being on isotropic scalar 
function for isotropic hardening, and c a scalar function of tempera­
ture, 6, and history of plastic deformation, h is also a scalar function 
of plastic deformation history and temperature. 

Since f is a scalar function of T, the first term in the parenthesis in 
(27), being a part of/, will not be changed by replacing f by another 
tensor time derivative, such as T. Thus (27) can be written 

1 
DP = -

h dr dd I d r 
(28) 

For the remainder of the development we will restrict ourselves to 
isothermal deformation (6 = 0), and write (28) in the form 

\h dnj dTmn] 
DP = A P ( T ) (29) 

Combining (20), (26), and (29) gives 

D = (A e + A P ) ( T ) •• Mr) 

a rate-type law for elastic-plastic material. The operator A is a func­
tion of the current state which depends on the stress and the history 
of deformation. Inversion of (30) gives 

-JC(D) (31) 

3 Object iv i ty and S y m m e t r y P r o p e r t i e s 
In order to contrast the elastic-plastic kinematic relations (9) (with 

an equality sign) and (20), we examine the relevant transformation 
characteristics of quantities involved under rotation of the current 
configuration by the proper orthogonal transformation Q(t) 

x* = Qx 

The deformation gradient changes to 

F* = Q F 

(32) 

(33) 

Since elastic destressing is considered to occur without rotation, each 
element of the unstressed configuration must be subjected to the same 
rotation, Q(t), as the current configuration and this constraint must 
be introduced into the objectivity requirements. Thus 

and 

pp* = QFP 

Ve* = QV eQT 

(34) 

(35) 

It is clear that (33)-(35) are consistent with (4) and (10). Using 
(33)-(35) it can be readily shown that the following transformations 
arise: 

D* = QDQ' 

DP* = QDPQ7' 

Ce* = QC e Q T 

Cc* = QC e Q T + Q C e Q r + QC e Q T 

C€* = QC«QT 

(36) 

(37) 

(38) 

(39) 

(40) 

De* = QD«QT + - Q(V e 6 T QV e _ 1 + Ve'1QT<XVe)QT (41) 

3)e" = QX>eQT (42) 

It is clear that (20) is objective since D, jD", and DP all transform in 
the same way, whereas the common assumption of additive elastic 
and plastic strain rates; i.e., (9) with an equality sign, cannot be ob­
jective since De transforms differently from the other two terms. 

It is important to examine the symmetry of the operators Av-m„ (30) 
and JCijmn (31) to check that the structure of the constitutive relation 
generates a rate-potential function [5] and hence can be incorporated 
into Hill's variational principle valid for evaluating solutions of 
problems involving finite deformation. 

Equation (30) expresses A as the sum of elastic and plastic operators 
Ae and Ap , and we examine these parts independently. 

For isothermal isotropic elastic response the Helmholtz free energy, 
4>, is a function of I\, I2, and / 3 the principal invariants of the Cau-
chy-Green deformation tensor C: 

h = tr ( C ) , h = [(tr Ce)2 - tr (C*2)]/2, 73 = det C* (43) 

where tr stands for trace. The derivatives of \p in (22) are then 

dCf,- di i dl2 d/3 

(44) 

and 

dV 

r a 2 ^ 
a/! ?>aB + 

d2j/ 

dhdh 
(/i«« 

d2\p e_1 

(30) + 

a/ 2 d/ i 

d2\p 

a 2 ^ 
&a0 + TTT7" (h&aP • 

d/3d/i 

Z>I2dI2 

d2f 
dl3dl2 

Clp) + 

(hdafl - Ce„„) + 

ay 
a/ia/3 

a2^ 
a/3a/3 

i>hdh 

/ s C S 

hc$ 

(IAj - Cfj) 

IzCff1 

+ ^ f ( M y - 5 - M + 7T VsCS'Cj-1 -hCfu'bkJteCtj-') (45) 

(25),-

dh a/3 

Substitution of (44) and (45) into (24) gives the operator HiJmn, 
and term-by-term examination establishes the symmetry 

n« n„ (46) 

The variables T;y and 2) e
m„ are both symmetric in their suffixes, this 

property of the former being confirmed by deduction from (21), (24), 
(44), and (45). This, in combination with (46), permits the constitutive 
relation (25) to be formulated so that 

*-*ijmn ~ *-*jimn ~ Hy'nm (47) 

In view of the symmetry (46), and regarding (25) as a matrix trans­
formation of a vector with subscript (mn), to one with subscript (y), 
inversion to (26) yields a symmetric inverse matrix Ae. This combined 
with the symmetry of r;y and 2) „„ establishes the symmetry rela­
tions 

A;;*! - A|(y - Aejiki - Af ijlk (48) 
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It is immediately clear that the plastic operator, Ap , (29), exhibits 
the same symmetries, and hence also the elastic-plastic operator A, 
(30). Again the symmetries are preserved by the matrix inversion of 
(30) to produce the operator X, (31). 

4 An Appropriate Variational Formulation 
The symmetries established in the previous section guarantee the 

existence of a rate-potential function [5, 8] and hence lead to appli­
cation of Hill's variational principle for velocity fields which is valid 
for finite deformation. Sequential application and time integration 
over the period of deformation permits the history of the deformation 
and stress distributions to be evaluated. 

However, substitution of (31) into the variational formulation would 
involve unnecessary complexity since the Jaumann derivative of 
stress, f, involves the spin tensor Wp (equation (19)), which cannot 
be simply expressed in terms of the velocity field as is evident from 
(11). In contrast the total spin W is simply the antisymmetric part of 
the velocity gradient. Incorporation of the Jaumann derivative based 
on the total spin is therefore more simply expressed and yields a 
convenient variational-principal structure for the determination of 
the velocity field. 

To this end we define the Jaumann derivative associated with the 
total spin W, 

( ° ) - C ) - w ( ) + < )w (49) 

The corresponding differentiation of the elastic constitutive relation 
(15) yields 

"4+cfi^Uc- (50) 

where 

Ce = Ce - WCe + CeW (51) 

Manipulation of this relation, by substituting from (13) 

W = (WeVe~l)A + (VeVIPVe~l)A (52) 

yields, after some algebraic manipulation 

te = DeCe + CeDe (53) 

S e being defined in (21). When this is substituted into (50) we 
have 

\dCeli>j 1 v 

d2i/A 

i)Ce2jkjafi, 

+ Cam8pn)2)e
mn (54) 

and inversion and combination with the plastic strain-rate operator 
(29) according to (20) gives 

: (A" + A") f = A(f) (55) 

where Ae is the inverse operator to that in (54). Inversion of (55) 
gives 

T = X(D) (56) 

On the basis of (54), (44), and (45) it can be shown that the operator 
X exhibits the same symmetry properties established in the previous 
section for operator X in (31). Thus the operator £ can be expressed 
in rate-potential form and so incorporated into Hill's variational 
principle [5], 

In order to include convection influences associated with finite 
deformation in a simple and complete manner, Hill's variational 
principle involves the unsymmetric nominal stress TJI (Piola-
Kirchhoff / ) and the gradient of the actual material velocity in the 
deformed configuration with respect to the reference position coor­
dinates X. The variational principle for the velocity field v, (5), takes 
the form 

f fjidi—AdVo- f bi&VidVo- f fiSVidSo = 0 (57) 

bt being the body force per unit reference volume, /; the surface 
traction per unit reference area, and the superposed dot indicates time 
derivative. The rate of change of stress is expressed in terms of the 
rate-potential function E by the relation 

Tji 
dE 

d(du;/dXj) 
(58) 

Thus, to incorporate directly the constitutive relation in the form (56) 
into (57) and (58), D being the symmetric part of the velocity gradient 
in the current configuration, the current configuration must be chosen 
as the reference configuration, and Tji expressed in terms of the rate 
of Kirchhoff stress, T, defined with respect to the initial configuration. 
The velocity distribution is thus evaluated at time t and hence the 
increments of displacement in the time interval t to (t + At). The new 
configuration is then used as the reference state for evaluating the 
deformation during the next time-step. Iteration is used to improve 
the accuracy of the sequential procedure, and stresses are determined 
by integrating the constitutive relation as the deformation pro­
ceeds. 

Now the Piola-Kirchoff I stress is given in terms of the Kirchoff 
stress (see, for example, [8] with the notation s for T and J a = f for 
r ) b y 

T = F - ! T (59) 

For the reference state coincident with the current state at time t 

fF(4) = I (60) 

the unit matrix. Differentiating (59) with respect to time in the in­
terval t to t + At, using (49) and (60), then gives at time t 

tT+ ( T D - D ( T - ( r L (61) 

where the superscript t indicates that these stresses are defined with 
the configuration at time t as reference state. But the Kirchhoff stress 
in (56) is based on the unstressed reference state of density po, and 
is defined, in terms of the Cauchy stress a at some arbitrary time, 
by 

Po (62) 

whereas in (60) and (61) the configuration at time t is the reference 
state, and in the time interval t to t + At 

e r = a • 
pit) po _ pit) 

Po P Po 
(63) 

Substituting into the variational principle (57) with X = x(i) and in­
corporating (56) then yields after some manipulation 

f m UijmnDmnSDij + Tij(-2Dkj5Dik + LkjdLki)]dV 
Jv p 0 

- f hbvidV - f hdvidS = 0 (64) 

where 6; and /; are per unit volume and area, respectively, in the 
configuration at time t. The formulation of the variational principle 
in terms of the Kirchhoff stress is essentially that presented by 
McMeeking and Rice [9] for the small elastic strain case except for 
the density ratio term which was not included and may not be im­
portant in that case. 

The variational principle (64) forms a convenient basis for the 
generation of finite-element computer codes, many of which are in 
successful operation for small elastic strains, for example [9-11]. 

5 Finite Elastic-Plastic Deformation With Small 
Elastic Strain 

Many problems involving the elastic-plastic deformation of metals 
may fall within the scope of a special case of the theory developed in 
this paper, that of finite deformation with small elastic strain. Then 
the squares of elastic strain components can be neglected. The elastic 
strain tensor can be defined as the Lagrange strain 
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te = (Ce - l)/2 (65) 

The Helmholtz free energy for isothermal deformation takes the form 
of the classical strain energy for infinitesimal strain 

i = (Xej.-eJ; + 2fit1tfi)/2 (66) 

Substitution of (65) into (66) yields 

$ = IMChC'jj - 6Cf; + 9) + 2/i(C?;CJi - 2C?j + 3)]/8 (67) 

Since in (54) De, which involves a time derivative of te, is considered 
a first-order small term, analysis to first-order permits zero-order 
substitution of factors and hence Ce to be replaced by I. 2)e can then 
be replaced by De, and (54) becomes 

.dC°*) 
(68) 

Differentiation of (67) shows that the first derivative of \p is of order 
«, and can be neglected compared with the second derivative, so that 
(68) becomes 

(\5ij8mn + 2/i<5 

Inversion gives 

D? i} — \bim6jn • 
2(x 

~Oijumn)trr 
3X + 2M 

Substitution into (20) with the plasticity law (29) then yields 

1 
A; = 

2n 3X + 2fi 
OijOmn) + 

(69) 

(70) 

(71) 

which can be inverted to give 

tij = 2fi 
2fi 

V V 

2fl <>Tmn Z>Tmn 

Da (72) 

the operator on the right-hand side being the corresponding X. The 
development following (69) parallels that given in [9] using different 
elastic moduli, If in certain problems, for example, stability analyses, 
a more precise formulation is needed, it may be possible to include 
higher-order terms in an approximation for the elastic-plastic operator 
X, (56). 

6 D i s c u s s i o n 

This paper presents a rate or incremental formulation of the fi­
nite-deformation, elastic-plastic theory developed in [3]. The fact that 
in [3] the elastic constitutive relation was left in total elastic defor­
mation form, rather than in rate form, limited utilization of the theory 
and application has been restricted to shock-wave analysis in which, 
by symmetry, principal directions of stress remained fixed in the body. 
This permits the use of logarithmic or natural strain which generates 
additivity of both elastic and plastic strain and strain-rates [12,13]. 
However, this approach is not possible for arbitrary loading with 
rotation and the present contribution removes this restriction. 

The present theory is based on exact nonlinear kinematics of elastic 
and plastic deformation. The latter is the deformation the body would 
exhibit if the macroscopic stress, and hence elastic strain, were 
maintained at zero while the remaining deformation proceeds. In the 
case of migration of dislocations, for example, increments of this 
plastic deformation are directly related to the specifics of the activity 
of such atomic mechanisms and are not coupled with the elastic strain 
to which the body is in fact continuously subjected. This is in contrast 
with an increment of irreversible or residual strain under maintained 
stress, which depends on the elastic strain because of the elastically 
deformed material lattice quite apart from the influence of rotation 
already considered. The elastic deformation is that due to stress acting 
on the purely plastically deformed material. The exact nonlinear ki­
nematics logically directs the development of the theory including 
the appropriate stress and strain variables which arise. 

The current commonly adopted elastic-plastic theory appears to 
have grown from a foundation of infinitesimal deformation kinematics 
which sets rates (or increments) of total strain as the sum of elastic 
and plastic contributions, using the rate-type law for the plastic strain 
and the derivative of the classical elasticity law for the elastic con­
tribution. Combining such kinematics and constitutive laws yields 
a linear stress-rate strain-rate relation with stress and history variables 
as coefficients. In order to preserve objectivity (or from a more ele­
mentary standpoint, to permit rigid-body rotation to correspond to 
zero stress rate) the Jaumann corotational stress rate is selected for 
the elastic-plastic rate law. While the final rate law developed is ob­
jective, the components from which it was constructed either are not 
objective or do not correctly express the physical entities they purport 
to represent. It seems to us that this explains the anomalies which 
appear in the currently accepted'elastic-plastic theory when it is 
subjected to careful scrutiny. 

Perhaps some comments are in order to clarify the concept that the 
residual strain increment, left after addition and removal of a stress 
increment Ac, on a body in which the stress a is maintained, contains 
an elastic part. Increments of stress and deformation about a state 
of maintained stress can be analyzed in terms of the rate of defor­
mation D defined in (11) and (12). During the loading increment, 
elastic and plastic deformation increments can arise and all the terms 
in (12) are likely to be nonzero. The simplest unloading assumption 
for the stress increment — ACT is to reverse the sign of Ve, the elastic 
deformation rate, and introduce no additional spin. Then the last term 
in (12) is zero for unloading, and the value of that term times At 
during the loading Atr will be retained as a residual or irreversible 
strain increment, although it is independent of the plastic flow oc­
curring during the loading increment [4]. Of course, the spin tensor 
Wp associated with the elastic-plastic loading increment could be 
reversed and incorporated into the elastic unloading increment, in 
which case the irreversible increment of deformation associated with 
W would become reversible. However this might be difficult to ar­
range in practice since in the loading increment the plastic strain will 
normally dominate and superposing the spin Wp on elastic unloading 
is likely to dominate the deformation process in unloading. In any 
event, to include spin in the unloading which defines plastic strain, 
and to have to devise a prescription for such spin, is likely to serve no 
useful purpose and would complicate the analysis compared with that 
corresponding to the choice (10), of unloading without rotation. Quite 
apart from the unloading question, it was already shown in [3] that 
the power expended by the deformation rate associated with the last 
term in (12) is zero, in contrast to that due to Dp, so that the former 
term was shown to be physically associated with elastic deformation 
even though it does not involve a change in the elastic deformation 

Prom the standpoint of application, the small elastic strain theory 
developed in the previous section, which results in essentially the 
formulation currently adopted in many computer codes valid for finite 
deformation, can be expected to be satisfactory for the majority of 
problems of metal deformation. Equation (18) shows that the plastic 
spin associated Jaumann derivative of the elastic Cauchy-Green 
tensor, Ce, is a good approximation to the elastic contribution to the 
strain rate, which includes the effects of both the rate of change of 
stress and the rotation of the body. Equation (22) shows that this is 
associated directly with the same derivative of stress, and (13) indi­
cates that the total spin will generally be a close approximation to the 
spin Wp, so that the Jaumann derivative based on total spin will be 
a good approximation to that based on W. The present new formu­
lation will permit a more accurate version of the theory to be devel­
oped if needed for particular problems. 

It should perhaps be pointed out that, although the concept of the 
definition of plastic deformation as that remaining when the macro­
scopic stress, and hence elastic deformation, is reduced to zero is 
stressed in this paper, the general structure of the theory presented 
can encompass the situation when a Bauschinger effect involves re­
verse plastic flow on unloading before zero stress is reached. In this 
case there need be no particular difficulty in devising a Helmholtz 
free-energy function for the elastic range. The application of incre-
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m e n t a l theory involves only r a t e s or i n c r e m e n t s of s t r a in a n d n o t a 

prescription of total elastic or plastic strain. Formally one could define 

t h e p las t ic s t r a in to cor respond t o zero s t ress eva lua ted from t h e 

elast ic law even t h o u g h th i s s t a t e c a n n o t be reached w i t h o u t a d d i ­

t ional plas t ic flow. T h e ut i l iza t ion of th i s artificial uns t r e s sed s t a t e 

provides no i m p e d i m e n t t o eva lua t ing s t resses according t o elastic 

or e last ic-plast ic theory where t h e co r respond ing physical behavior 

is occurr ing. 
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Self-Consistent Determination of 
Time-Dependent Behavior of Metals 
Though Kroner's self-consistent model is not fully consistent in the elastic-plastic defor­
mation of poly crystals, it is found to be perfectly consistent in the time-dependent defor­
mation of such materials. Hill's model, on the other hand, should be used with a modified 
constraint tensor containing the elastic moduli of the matrix in that case. Kroner's model 
is supplemented with a physically consistent constitutive equation for the slip system; 
these, together with Weng's inverse method, form the basis of a self-consistent determina­
tion of time-dependent behavior of metals. The kinematic component of the latent hard­
ening law and the residual stress introduced in more favorably oriented grains are the two 
major driving forces for recovery and the Bauschinger effect in creep. The proposed meth­
od was applied to predict the creep and recovery strains of a 2618-T61 Aluminum alloy 
under pure shear, step and nonradial loading. The predicted results are seen to be in gen­
erally good agreement with the test data. 

Introduction 
Since Eshelby's classic paper [1] on the stress field of an ellipsoidal 

inclusion was published in 1957, its results have been widely used to 
predict various mechanical behavior of materials. One of its most 
important applications was developed into the "self-consistent model" 
for polycrystalline plasticity, which was originally introduced by 
Kroner [2] and subsequently applied by Budiansky and Wu [3]. 
Kroner's model, then, offered a promising approach to account for 
the complicated grain interaction. Later, Hill [4] reexamined the 
structure of self-consistent scheme, and found that Kroner's model 
was not entirely consistent, in that the decreasing constraint power 
of the matrix in plastic flow was not considered. Hill then proposed 
a more rigorous self-consistent scheme, which was characterized by 
a constraint tensor. The constraint tensor depends on the tangent 
moduli, instead of the elastic moduli of the matrix in elastic-plastic 
deformation. Ever since, Hill's model has become perhaps the most 
highly regarded, and has been successfully applied by Hutchinson [5], 
and recently combining Kroner's "explicit" spirit by Berveiller and 
Zaoui [6], among others. 

Prompted by the success of self-consistent model in plasticity, 
Brown [7] first attempted to extend it to study the creep behavior of 
metals. Recognizing that Kroner's model was computationally easier 
than Hill's, he adopted the former model. Hutchinson [8] later also 
applied Hill's model to estimate the steady creep rate of a polycrystal 
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from that of its constituents. The derivations of Brown and Hutch­
inson have provided many significant results. Hutchinson's results 
are particularly useful for the estimate of long-time creep. 

It should be pointed out, at this stage, that both Kroner's and Hill's 
models were originally proposed for the study of time-independent 
plastic deformation of polycrystalline solids; they were not intended 
for the time-dependent creep problems. If the self-consistent models 
are to be extended to study the latter problems their applicability, 
in their given form, should be critically examined. In fact, upon ex­
amination it becomes evident that Kroner's model then becomes 
entirely consistent and that, while Hill's concept of constraint tensor 
still remains valid, its value should be given in a modified form. The 
crux of the matter is that, creep, unlike plastic deformation, is a truely 
"stress-free" process in the sense of Eshelby, because the creep strain 
rate, at any generic state, depends only on the current stress and de­
formation history and is independent of the stress rate. The latter 
independence obviously does not hold in plasticity, and this leads to 
the presence of tangent moduli in Hill's constraint tensor. This subtle 
point appears to have not been realized. Brown used Kroner's model 
but wrote: "Hill (1965) has shown that this model has certain limi­
tations, since the pronounced directional weaknesses in the constraint 
of an already-yielded aggregate are disregarded. The present work 
suffers from the same limitations." Such limitations simply did not 
exist. Brown's results were less time-dependent than what he exper­
imentally showed, because he used the steady state power law for the 
slip system to begin with. Hutchinson's formulation on the other hand 
is not affected by this consequence, since his objective was on the 
time-independent, steady-state creep rate of the aggregate. 

A separate, yet equally plausible approach to derive the inelastic 
constitutive relations of polycrystals has been pursued by Lin [9], by 
means of his "equivalent body force." This concept was originally 
introduced for plasticity, and later applied to study the creep behavior 
of metals by Lin, et al. [10], and Weng [1]]. Considering both transient 
and steady creep of the crystal, Lin, et al., derived the polycrystal 
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properties from single crystal creep data. A two-step inverse method 
was proposed in [11]: first, the single crystal properties are derived 
from polycrystal data, and then these properties are used to predict 
the creep behavior of the same polycrystal under other required 
loading conditions. The derived single crystal properties account for 
the effect of grain boundaries and therefore are in situ, and the pre­
dicted polycrystal results can be compared directly with experi­
ments. 

In this paper we apply Kroner's self-consistent model and Weng's 
inverse method to study the time-dependent behavior of metals. A 
more physically consistent constitutive equation than those used in 
previous studies will also be introduced to account for the active and 
latent hardening of slip systems. Our consideration will be restricted 
to the temperature range below half the melting point (Tm), so that 
crystallographic slip is the main source of creep deformation. Since 
the elastic property of the grain for most structural metals is fairly 
isotropic, such an isotropy will be assumed. For highly anisotropic 
crystals Eshelby's "equivalent inclusion" could be introduced to ob­
tain the additional inhomogeneous stress. Within the scope of small 
deformation grain rotation will be neglected. 

Self-Consistent Determination of Creep: A Stress-Free 
Strain Problem 

Kroner's self-consistent relation was given in [2], and rederived by 
Budiansky and Wu in [3]. However, by applying Eshelby's solution 
more directly the result could be so easily derived that it is tempting 
and revealing to reconsider it here. 

Consider an ellipsoidal inclusion (grain) embedded in an infinitely 
extended matrix (aggregate). The stress and creep strain of the in­
clusion are denoted by a and (c, while those of the aggregate are 
specified by the corresponding barred (averaging) quantities a and 
(c. When the matrix and inclusion undergo the stress-free incremental 
strains dec and dtc, respectively, the self-consistent scheme can be 
formulated by the two-step process: 

1 Let the matrix and inclusion deform with the given amounts 
separately without constraint. To bring the deformed inclusion into 
the deformed matrix compatibly we apply 

d<r1 = £{de<:-dee), (1) 

on the inclusion, where £ is its elastic moduli tensor. 
2 To remove the unwanted layer of surface force we apply a sur­

face traction characterized by da* = — da\ on the interface. Then 
Eshelby's result shows that the additional stress induced in the in­
clusion, denoted by da?., is given by 

da2 = £S(dtc - dec), (2) 

where Eshelby's S matrix, when multiplied by the effective stress-free 
strain increment, gives rise to the constraint local strain increment 
of the inclusion. 

Thus, at the end of operation the induced stress increment in the 
inclusion is the sum of do\ and doz, i.e. 

da = - X ( l - S)(dec - dic), (3) 

where I is the fourth-rank identity tensor. When the inclusion is 
spherical, equation (3) can be written as 

d<r = -2ix(l-l3)(dec-di'), (4) 

where fi is the shear modulus, and (3 = 2(4 — 5i<)/15(l - v), v being 
Poisson's ratio. Equation (4) is the familiar Kroner's self-consistent 
relation. Since (3 < 1, the stress in more favorably oriented grains, 
characterized by dec > dec, is relieved during this incremental process; 
conversely it is increased in less favorably oriented grains. 

Suppose that during this incremental deformation the aggregate 
is further loaded with do. Then, with the assumed elastic isotropy we 
have 

da-da= -£{\ - S)(dec - d(c) 

=-2n(l - P){dec - de"). (5) 

Since the difference between the total strain of the grain and of the 
aggregate is given by S(dtc — dec), Hill's constraint tensor L% in view 
of (5), is seen to satisfy 

L*S = £(\ - S), (6) 

instead of his original form L*S = L(l — S), U being the tangent moduli 
of the matrix under elastic-plastic deformations and S interpreted, 
in this context. Evidently L = 0 in a constant-stress creep test; the 
constraint power of the matrix would have vanished if Hill's original 
relation had been used. 

Equation (5) provides the self-consistent variation of internal stress 
in the grain for each incremental process; the average of da over all 
grain orientations gives rise to da, and so does dec to dec. This equa­
tion can be used to calculate the time-dependent behavior of metals 
from those of its constituents, or vice versa. 

Constitutive Equations of Single Crystals and 
Polycrystals 

The self-consistent model provides a proper connection between 
the deformations of a grain and its aggregate. In order to use it to 
determine the time-dependent behavior of the aggregate, however, 
it needs to be supplemented with a physically consistent constitutive 
equation for the grain. Below Tm/2 creep in metal crystals is primarily 
caused by dislocation glide, during which their interactions, inter­
sections and structural changes lead to active and latent hardening 
in slip systems. The creep rate of a slip system thus decreases even 
under a constant stress, until a steady state is reached. The steady 
creep rate of a slip system in general can be described by the power 
function of its resolved shear stress T; so can its initial creep rate. The 
decrease of the transient creep rate, on the other hand, should be 
described in accordance with a proper theory of work hardening. For 
simplicity Taylor's isotropic hardening law [12] was used in [11]. This 
law offers a reasonable approximation under radial loading. But since 
it is in direct contradiction with the observed Bauschinger effect in 
crystals (for example, see Buckley and Entwistle [13]), it. tends to 
result in an underestimate for creep strains under recovery, reversed 
loading or other nonradial loading. Recently, Weng [14] analyzed the 
nature of some dominant hardening mechanisms in metal crystals and 
found that, though dislocation tangles, jogs, forest cutting and "cell" 
structure primarily lead to the isotropic hardening in slip systems, 
the hardening behavior caused by dislocation pile-ups and dislocation 
rings encircling dispersions is kinematic instead. A mixed hardening 
law, which incorporates both isotropic and kinematic hardening, and 
is characterized by the "degree of isotropy in work hardening a," was 
proposed. Using this hardening law as the basis for the transient creep 
rate 7(c, and again employing the power function for the steady creep 
rate y.s

c, we write the following constitutive relation for the j'th slip 
system: 

U) (>) 

7 / = KT\ (7) 

, (i> 

f T x _ 
j 

(J) 

where d is the angle between the slip directions of the ith and ; th slip 

systems, </> between their slip plane normals, and K, A, ?/, and fare four 
other single crystal constants. Both a and X are dimensionless and 
K, f, and 7) are in the units of (stress) -x (time) - 1 , (stress)-*, and 
(time) - 1 , in turn. The total creep rate of a slip system 7C is the sum 
of its transient and steady components. It is evident from (8) that the 
creep rate of a slip system decreases in accordance with the mixed 
hardening law, with a = 1 and 0 corresponding to the isotropic and 
kinematic hardening, respectively. The kinematic nature associated 
with a = 0 has been fully discussed in [15]. A constitutive equation 
like that given in [11] was found insensitive to recovery due to the 
overwhelming dependence of creep rate on r, even with the isotropic 
hardening law replaced by the mixed hardening law. 

To assist the determination of these five constants from the tensile 
creep data of its polycrystal, it is helpful to introduce similar consti-
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tutive equations for its creep behavior. We write the steady and 
transient creep rates es

c and lt
c, respectively, as 

:s = an", 

•c{dab - e t ) , 

(9) 

(10) 

where the four parameters a, b, c, and d can be easily determined from 
two tensile creep curves. 

Comparison of equations (7), (8) to (9), (10) indicates that the na­
ture of K, A, ?), and f are similar to those of a, b, e, and d, in turn. The 
corresponding parameter of a for the polycrystal is not present in (10), 
which under pure tension does not require any specific hardening law. 
These five constants, each possessing a distinctive property, can be 
determined from two tensile, constant-stress creep and one recovery 
curves of the polycrystal. 

Derivation of Single Crystal Properties From the 
Tensile Data of Its Polycrystal 

Consider a polycrystalline aggregate, consisted of randomly ori­
ented, equally sized single crystals. When the elastic anisotropy of 
each grain is neglected, the creep ra te of the aggregate is simply the 
average of the creep rates of its const i tuent grains. In te rms of rec­
tangular components , 

~tijc = \iae), (11) 

where j ( denotes the average taken over all crystal orientations. This 
notat ion will be used in the remainder of this paper . 

The creep rate of a grain, on the other hand, depends on the slip rate 
of its slip systems. We allow at any ins tan t every slip system to be 
active. This removes the single-slip restriction placed in [11], and 
appears to be more physically consistent. Consequent ly 

(k) (k) 
(12) 

where i/;;- is t he symmetr ic pa r t of t he dyad birij, bi and rij being the 
slip direction and slip plane normal, respectively, of a slip system. The 
superscr ipt k refers to t he feth system, and the sum includes all sys­
tems in the grain. This summation convention is implicit throughout 
the paper and unless ambigui ty might arise, the indicator k will be 
dropped for brevity. 

Fur thermore , the creep ra te of a slip system, following (7) and (8), 
is a function of its resolved shear stress, which is related to t he local 
stress in t he grain by 

(*) (fe) 
(13) 

T h e local stress a t t ime t is calculated following the self-consistent 
relation (5) with dey c = etjcdt, dt being the t ime increment. 

We now consider the following quantities for the derivation of single 
crystal constants from the tensile propert ies of its polycrystal: 

1 Init ial Creep Rate . P rom equat ions (9) and (10) it is given 
by 

€0
C = (a + cd)ab. (14) 

On the other hand from (11)—(13), (7) and (8), i t can also be writ ten 

eoc = (K + vn\2vu*+1\vx-

Comparison of (14) and (15) leads to 

X = b, 

a + cd 
K + yr-

(15) 

(16) 

(17) 
| 2 * i i 6 + 1 ) 

2 Steady Creep Rate . T h e steady creep ra te of t he aggregate 
under tension is given by equation (9). Also, by means of equat ions 
(11)-(13) and (7) 

f.c = K | 2 I » I (18) 

I ts value is not known a priori, bu t can be es t imated approximately. 
In a tensile creep test , though the local stress field in each grain can 
be triaxial, its predominant component is still the tensile component. 
T h u s neglecting the other components, we have TS « vita's, where trs 

is t he said component a t steady state , which is heterogeneous 
th roughout t he aggregate and whose value in each grain depends on 
its orientat ion. We write 

(fc) (*)_ 
crs = pa, 

for the feth grain, subject to the constraint 

IPI = i. 

(19) 

(20) 

for self-consistency. T h e value of p for each grain thus characterizes 
the depar tu re of its local tensile stress from the uniformly applied 
aggregate stress <r. T h e n equat ion (18) becomes 

K{2vn
b+1Pb\ab (21) 

We further note t h a t a t s teady s ta te da = 0 for each grain. Conse­
quent ly from equat ion (4) dec = dic. Since the creep rate in every 
grain is now equal to t h a t of the aggregate, the averaging bracket in 
(21) can be deleted. Then , from equations (9) and (21), we arrive at 

(22) 

for each grain. Subs t i tu t ion of this relation into the constra int (20) 
yields 

(23) 
[(2!<ii6+1)1 /6J 

3 Initial Decreas ing Rate of the Creep Rate. From equations 
(9) and (10) it is given by 

dec _ c2d 

d(c t=o a + cd 

On the other h a n d consider the limiting process 

(24) 

d? 

de< 

A|ec 
; lim 

(0 (»> (i) (0 
From (12) we write AJ£C| = {'ZvnAy0]. T h e variation of yc, or Ayc, 

1 U) CO 
in view of (7) and (8), depends on AT and Ayt

c for all j . When the 
aggregate is under a changing, or sinusoidal stress, these factors are 
equally important. But in a constant-stress creep test, the former 
factor is less important than the latter. Thus 

(0 
(i) 

0) dy 

consequently from (7) and (8) 

(0 (i,j) (',;') 0') 
Ayc ~ -r} J2 [a + (1 - a) cos 8 cos <fi]Ayt

c. (25) 
;' 

Furthermore with A Y (
C = yt

cAt, (8), (13), and (16) we arrive at 

A | e ^ = 0 - - r ; 2 f 

X I > i i E [« + (1 - « ) cos 0 cos <£] I'll6 5r6At. (26) 
• j I 

On the other h a n d from (15) and (16) 

A M ( = 0 =(K + 7 ?f)(Z I / 1 1
6 +V' ,A£. (27) 

Then , from equat ions (24), (26), (27) and (17), we find 

where rs is the resolved shear stress of a slip system at s teady s ta te . 
vH 

(<) ( i j ) (ij)O') ' 

T. " i i E [cv + (1 - a ) cos 6 cos <l>]vub 

i j 
c2d. (28) 
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Combining equations (28), (17), and (23), we finally have 

(0 (i,j) ('J)O') • 
Y. "11 'E.[a+ (1 — a) cos 6 cos <t>]vnb 

c2d 

a + cd 

\Xvu
b+1} 1 (2J ' I I 6 + 1 ) 1 / 6 J 

(29) 

Equations (16), (17), (23), and (29) provide four equations for the 
five constants K, X, TJ, f, and a. The additional information can be 
obtained from the recovery curve. Since the degree of isotropy in work 
hardening a exists within the range 0 < a < 1, we may adopt the it­
erative process first by assuming a = 1 (isotropic hardening), to derive 
the values of the remaining four parameters so that the two tensile 
creep curves can be well simulated. Next, we use these five constants 
to calculate the recovery curve. The calculated recovery strain is 
usually too small under the assumption of isotropic hardening. We 
then reduce the value of a to increase the kinematic component, and 
repeat the same process, until the two tensile creep curves and the 
recovery curve are accurately simulated. The corresponding values 
of these five parameters then can be used to predict the behavior of 
metals under desired loading conditions. 

It should be pointed out that, due to the complicated nature of creep 
deformation in a polycrystalline solid, the foregoing equations can 
only provide the starting values for the iterative scheme. Since the 
stress relaxation in more favorably oriented grains under higher 
tensile stress is greater than that under lower stress, the actual value 
of X is always greater than b. 

Prediction of Creep, Recovery, and the Bauschinger 
Effect of an Aluminum Alloy 

The lattice of an aluminum crystal is face-centered-cubic; it has 
four {111} slip planes and three (110) slip directions on each plane. 
The polycrystal model used here consists of 75 different crystal or­
ientations, which were constructed with the aid of stereographic 
projections in the standard triangle to simulate the three-dimensional 
isotropy. Its isotropy, as measured by the generated creep strain 
components, has a maximum deviation from perfect isotropy of less 
than 4 percent. In this section we use the method outlined earlier to, 
first, derive the five single crystal constants from two tensile creep 
and one recovery curve of its polycrystal, and then use these constants 
to predict the creep, recovery, and the Bauschinger effect of the same 
polycrystal. 

The experimental data of Blass and Findley [16], Findley and Lai 
[17,18] on a 2618-T61 Aluminum alloy, tested at 200°C, will be used 
for derivation and for comparison. The two tensile creep curves were 
tested at a = 119.5 MPa (17.33 ksi) and 193.1 MPa (28 ksi) and the 
recovery curve taken following the creep at a = 119.5 MPa. The test 
data were given in terms of total strain. Since, as stated by Findley 
and Lai, there was no plastic deformation in these tests, the creep 
strains can be obtained from the total strain minus the elastic strain, 
with the Young's modulus E = 65.0 GPa (3.57 X 106 psi) [17]. The 
constant-stress creep tests lasted for 2 hr and the recovery 30 min. The 
creep and recovery data for these three loading conditions are shown 
as open circles in Fig. 1. These two creep curves were found to be 
representable by equations (9) and (10) with a = 4.33 X 1 0 - u , b = 
3.82, c = 9.14 X 10"2, and d = 1.09 X 10~8, where stress, strain, and 
strain rate were in the units of MPa, 10 - 4 m/m, and 10~4 m/m/min, 
respectively. 

We used equations (16), (17), (23), and (29), and the iterative 
method outlined to derive the values of single crystal constants. The 
results are K = 2.52 X lO' 1 0 , X = 4.12, r; = 0.10, f = 1.09 X 10"7, and 
a = 0.28, where stress and time are again expressed in terms of MPa 
and min, respectively. The calculated theoretical curves are also shown 
in Fig. 1; the experimental data are seen to be well simulated. In the 
numerical scheme the transient rate of a slip system was assumed to 
vanish when the parenthesis term in equation (8) became negative. 

Four distinctively different loading conditions are available from 
the test data for comparison. These are: 

60 90 
Time,min. 

Fig. 1 Derivation of single crystal constants from tensile creep and recovery 
curves of a 2618-T61 Aluminum alloy 

I80 

Fig. 2 Creep and recovery of a 2618-T61 Aluminum alloy under pure 
shear 

(i) Creep under constant shear stress at a\2 = 79.3 MPa (11.5 ksi) 
for 2 hr, followed by recovery for 1 hr. 

(ii) Creep and recovery under axial step loading: first creep under 
(Tn = 137.9 MPa (20 ksi) for 2 hr, followed by recovery for 30 min, and 
then creep under reloading at ~5\\ = 193.1 MPa (28 ksi) for another 
1.5 hr. 

(Hi) Creep under step and nonradial loading: first creep under 
a12 = 99.3 MPa (14.4 ksi) for 45 min, then step down to a12 = 70.3 MPa 
(10.2 ksi) for 15 min, and finally, creep under superimposed crn = 122 
MPa (17.7 ksi) for another 45 min. This program involves combined 
loading. 

(iu) To examine the Bauschinger effect in creep, an opposite shear 
at o:i2 = 99.3 MPa (14.4 ksi) was further imposed for 45 min at the end 
of recovery in (ii) (the actual experimental test lasted for 1 hr). On 
the other hand the first part of creep data in (Hi) under the same stress 
was replotted for comparison. 

The complete creep strain history for these four loading conditions 
are shown in Figs. 2-5, in which the experimental data are given as 
open circles and the theoretical predictions expressed by the curves. 
In view of the extremely complicated behavior of metals under com­
bined stress and step loading the agreement between the theory and 
experiments is seen to be generally good. In Fig. 2 creep strains pre­
dicted by the theory are fairly close to the test data, and the recovery, 
as evidenced by both the theoretical and experimental results, is far 
from complete after 1 hr. From the test data the recovered strain was 
about 0.50 X 10 - 4 m/m at the end; the theory on the other hand pre­
dicted the value 0.75 X 10~4 m/m. In Fig. 3 under axial step loading 
the theoretical results are very close to the experimental ones. In Fig. 
4 though the theory slightly overestimates the creep strain during the 
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Time, min. 

Fig. 3 Creep and recovery of a 2618-T61 Aluminum alloy under axial step 
loading 

first 45 min, the creep strains produced during the second and third 
stages of loading are in very good agreement with experiments. Fi­
nally, in Fig. 5, the creep strain under G3 was produced following a 
creep and recovery test in the opposite loading direction, while that 
under £ 1 was obtained without prior creep. The creep strain under 
G3 is seen to be far greater than its corresponding part under El from 
both theory and experiment. Although the theory in one case un­
derestimates the creep strain by about 8 percent and in the other 
overestimates it by 15 percent, the directional Bauschinger effect in 
creep deformation is vividly disclosed. 

Conclusions 
In this paper we examined the applicability of Kroner's and Hill's 

self-consistent models, and found that, while Kroner's model was not 
entirely consistent in plasticity, it is fully consistent in creep. Hill's 
model, on the other hand, should be used with a modified constraint 
tensor, containing the elastic moduli, instead of the tangent moduli 
of the matrix. 

Kroner's model was supplemented with a physically consistent 
constitutive equation for the slip system, which was based on a 
hardening law proposed by Weng. This law involves both isotropic 
and kinematic components in the latent hardening of slip systems, 
and is characterized by the degree of isotropy in working hardening. 
The kinematic component of the hardening law and the residual stress 
developed in more favorably oriented slip systems are the two major 
driving forces for recovery and the Bauschinger effect of the aggregate. 
Taylor's isotropic hardening law was found inadequate for the pre­
diction of such behavior. 

Kroner's self-consistent model, the proposed constitutive equation, 
and Weng's inverse method form the basis of the study of time-de­
pendent behavior of metals. This method is in the most general form, 
and can be used to predict creep, recovery, and the Bauschinger effect 
under varying and combined stress. 

We employed the proposed method to predict the time-dependent 
behavior of a 2618-T61 Aluminum alloy. The test data of Blass and 
Findley, and Findley and Lai were used for derivation and for com­
parison. First, the single crystal constants were derived from two 
tensile creep curves and one recovery curve of its aggregate. These 
constants were then used to calculate the creep and recovery strains 
of the same polycrystal under pure shear, axial step loading, and step 
and nonradial loading. The predicted results were seen to be in gen­
erally good agreement with experiments. 
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Fig. 4 Creep of a 2618-T61 Aluminum alloy under step shear and non-radial 
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Fig. 5 The Bauschinger effect of a 2618-T61 Aluminum alloy in creep de­
formation 
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Creep of 2618 Aluminum Under 
Side»Steps of Tension and Torsion 
and Stress Reversal Predicted by a 
Viscous-Viscoelastic Model 
Combined tension and torsion creep experiments are reported in which (A) one stress 
component was increased or decreased while the other remained constant; (B) one stress 
component was removed while the other remained constant; (C) torsion was partially or 
fully reversed with or without simultaneous constant tension. Among the observed fea­
tures of the experimental results were the following: when one stress component was re­
moved the creep from the other component was unaffected; upon small reductions in 
stress there was no recovery-type behavior; and when torsion was fully reversed, all prior 
strain was wiped out. A nonlinear viscous-viscoelastic model was used for which the mate­
rial constants were derived from constant-stress creep and recovery data and previously 
reported. This model, together with certain necessary modifications, was used to compute 
the creep resulting from the complex stress histories described. Most features of the ex­
perimental results were predicted reasonably well by the modified theory. 

Introduction 
The creep behavior of metals under changing stress—especially 

changes in state of combined stress and stress reversal—has received 
little experimental observation. Mathematical expressions employed, 
such as strain hardening or viscoelastic models, usually are unable 
to describe the detail of creep behavior under changes such as in the 
foregoing. References to prior work in this area are given in [1, 2]. 

In a previous paper [1] the authors described a viscous-viscoelastic 
model in which the strain was resolved into five components: elastic 
ee; time-independent plastic ep; positive nonrecoverable (viscous) 
e"(pos); negative nonrecoverable (viscous) £"(neg); and recoverable 
(viscoelastic) e"e components. From creep and recovery experiments 
under combined tension and torsion, the time and stress dependence 
of these components were evaluated for constant stresses. In [3] 
constitutive relations for changes in stress state were developed and 
their predictions were compared with actual creep behavior in simple 
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Applied Mechanics, Fluids Engineering, and Bioengineering Conference, 
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ment. Manuscript received by ASME Applied Mechanics Division, July, 1979; 
final revision, August, 1980. Paper No. 81-APM-8. 

stress states (uniaxial tension or pure torsion) under step changes in 
stress. 

In the present paper, results of combined tension and torsion ex­
periments with time-dependent stress histories including side step 
changes in tension and torsion and stress reversal in torsion are re­
ported. Predictions of the experimental results are also presented 
using the constants determined in [1] and the constitutive relations 
derived in [3], with some modifications. The last two experiments 
discussed in the following were reported in [4] as tests E and G. 

Material and Specimens 
An aluminum forging alloy 2618-T61 was employed in these ex­

periments. Specimens were taken from the same lot of 63.5 mm (2V2 
in.) dia forged rod as used in [1,3] and the same lot as specimens D-H 
in [4]. Specimens were thin-walled tubes having outside diameter, wall 
thickness, and gage length of 25.4,1.52, and 101.6 mm (1., 0.060, and 
4. in.), respectively. A more complete description of material and 
specimens is given in [1]. 

Experimental Apparatus and Procedure 
The conbined tension and torsion creep machine used for these 

experiments was described in [5] and briefly in [1]. The temperature 
control and measurement employed was described in [1, 4]. Stress was 
produced by applying dead weights at the end of levers. The shearing 
stress and tensor shearing strain reported were computed at midwall 
thickness of the specimen. The gage length employed was measured 
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Fig. 1(a) Tensile strain for combined tension and torsion creep of 2618-T61 
Al at 200°C under side-steps of loading, unloading, and recovery. Where the 
VV theory is not shown it is the same as the MVV theory. Numbers indicate 
periods on insert, (T-, = 119.5 MPa (17.33 ksi); o"2 = 143.4 MPa (20.8 ksi); T-, 
= 69.0 MPa (10 ksi); and T2 = 82.7 MPa (12 ksi). 

Fig. 1(b) Shearing strain for combined tension and torsion creep of 2618-T61 
Al at 200 C under side-steps of loading, unloading, and recovery. Where the 
VV theory is not shown it is the same as the MVV theory. Numbers indicate 
periods on insert, o"i = 119.5 MPa (17.33 ksi); o2 = 143.4 MPa (20.8 ksi); T-, 
= 69.0 MPa (10 ksi); and T2 = 82.7 MPa (12 ksi). 

at room temperature and no correction was made for thermal ex­
pansion. The weights were applied by hand at the start of a test by 
lowering them quickly (in less than 10 sec) but without shock. The 
time of the start of the test was taken to be the instant at which the 
load was fully applied. In the present experiments changes in loading 
were made at intervals during the creep tests. The load changes were 
accomplished by hand in the same manner. Strain was recorded at 
the following intervals following a load change: every O.Ol/i to 0.05/i; 
every Q.02h to 0.1/x; every 0.05h to 0.5h\ every O.lh to l.O/i; and every 
0.2/j to 2.0/x. All experiments discussed in this paper were performed 
at 200 ± 0.6°C (392°F). 

Experimental Results 
Three combined tension and torsion creep experiments are shown 

in Figs. 1-3. Each experiment consisted of multiple steps of stress 
changes in tension or torsion alone and simultaneous changes in 
tension and torsion. 

Fig. 1 shows results of a combined tension and torsion experiment 
in which there was a step increase in tension a in period 2 with no 
change in torsion T. In period 3, there was a step increase in torsion 
T, with no change in tension a. Subsequent periods involved partial 
unloading, first in torsion, then in tension, followed by recovery first 
in torsion, then in tension. 

Fig. 2 shows the results of the series of changes in stress state during 
creep for the portion of test E conducted at 200° C as reported in [4]. 

In period 1, Fig. 2(6), there was pure torsion and in step 2 the torsion 
was partially unloaded. In period 3, tension was added with no change 
in torsion. In period 4, the torsion was removed with no change in the 
tension. In period 5, the tensile stress was increased and in period 6, . 
the tensile stress was decreased back to that of period 4. In period 7, 
negative torsion was added with no change in tension. 

Reversals of torsion were performed as part of experiments shown 
in Figs. 2 and 3. In Fig. 2 (6) following recovery in torsion in periods 
4, 5, and 6 the shearing stress was partially reversed in period 7 to a 
negative value less than the maximum positive value in period 1, while 
the tensile stress remained constant at a level less than its maximum. 
In Fig. 3, the first reversal of torsion was preceded by positive torsion 
then recovery at zero stress. In periods 3,4, and 5, stress reversals were 
performed in pure torsion. In period 6, a partial stress reversal oc­
curred. In period 7, tension was added at constant torsion. Periods 
8, 9, and 10 included stress reversals in torsion while the tension re­
mained constant. 

Discussion of Results 
Among the features of the results of these creep tests the following 

may be noted at this point: 

1 (A) When a was increased while r remained constant in Fig. 1, 
period 2, there was a small increase in creep rate with a slight pri­
mary-type character (a positive creep rate decreasing with time). 
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Fig. 2(a) Tensile strain for combined tension and torsion creep of 2618-T61 0 0 4
 IZ 

Al at 2 0 0 ° C under side-steps, partial, and complete reversal of torsion. Where "" 
the VV theory is not shown it is the same as the / W W theory. Numbers indicate 0 0 2 ' • • • — • — ' — • — ' — ' — ' — ' — ' — ' — • — • — ' — ' — ' — ' — ' — L 

periods on insert. <S\ = 122.0 MPa (17.7 ksi); <j2 = 172.4 MPa (25 ksi ) ;^ = 0 0.5 l.O I.5 2.0 
99.3 MPa (14.4 ksi); and T2 = 70.3 MPa (10.2 ksi). T j m e h 

Fig. 3(a) Tensile strain for combined tension and torsion creep of 2618-T6I 
Al at 200°C under stress reversals in torsion with and without tensile stress. 
Where the VV theory is not shown it is the same as the MVV theory. Numbers 
indicate periods on insert, a-, = 122.0 MPa (17.7 ksi); T-, = 79.3 MPa (11.5 
ksi); T? = 99.3 MPa (14.4 ksi); and r3 = 70.3 MPa (10.2 ksi). 

Fig. 2(b) Shearing strain for combined tension and torsion creep of 2618-T61 Fig. 3(b) Shearing strain for combined tension and torsion creep of 2618-T61 
Al at 200°C under side-steps, partial, and complete reversal of torsion. Where Al at 200"C under stress reversals in torsion with and without tensile stress, 
the VV theory is not shown it is the same as the MVV theory. Numbers indicate Where the VV theory is not shown it is the same as the MVV theory. Numbers 
periods on insert, a, = 122.0 MPa (17.7 ksi); a2 = 172.4 MPa (25 ksi); T, = indicate periods on insert. <r, = 122.0 MPa (17.7 ksi); T-t = 79.3 MPa (11.5 
99.3 MPa (14.4 ksi); and T2 = 70.3 MPa (10.2 ksi). ksi); r2 = 99.3 MPa (14.4 ksi); and r3 = 70.3 MPa (10.2 ksi). 
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1 (B) However, when T was increased while cr remained constant 
in Fig. 1, period 3, there was a large increase in creep rate with some 
primary-type characteristics. 

2 (A) When r was reduced while a remained constant in Fig. 1, 
period 4, there was a large reduction in creep rate but no recovery-type 
behavior (negative creep rate decreasing with time). 

2 (B) However, when a was reduced while r remained constant 
in Fig. 1, period 5, there was a small reduction in tensile creep rate, 
no change in torsion creep rate and no recovery-type behavior. 

3 (A) On removal of one stress component to zero, time-depend 
dent recovery occurred in the strain associated with the removed 
component, as in Fig. 1(a), period 7, Fig. 1(6), period 6, Fig. 2(a), 
period 8, Fig. 2(6), period 4, Fig. 3(a), period 12, and Fig. 3(6), period 
11. 

3 (B) However, as noted in item 2, there was no time-dependent 
recovery-type behavior resulting from the moderate reductions of 
stress, as noted in item 2 and in Fig. 2(a), period 6 and Fig. 2(6), pe­
riods 2 and 10. 

4 When one stress component was removed to zero while the other 
remained constant no change occurred in the behavior of the strain 
component associated with the constant stress component as shown 
in Fig. 1(a), period 6, Fig. 2(a), period 4, Fig. 2(6), period 8, and Fig. 
3(a), period 11. 

5 On reversal of torsion stress new primary-type creep was ob­
served in the shearing strain. The magnitudes of shearing creep strain 
and creep rate were similar, but the rates were somewhat larger, at 
each stress reversal; see Fig. 2(6), period 7, Fig. 3(6), periods 4, 5, 9, 
10. The similarity of magnitudes meant that all prior strain was wiped 
out at each stress reversal. 

6 Constant tension stress in the presence of reversing torsion 
stress showed a second primary-type tensile creep on the first reversal 
of torsion, which was about the same as that on the first loading. On 
subsequent reversals of torsion smaller primary-type tensile creep 
was observed at each stress reversal; see Fig. 3(a). 

Const i tu t ive E q u a t i o n s for C r e e p U n d e r Combined 
T e n s i o n and Tors ion 

In the following the constitutive equations determined for the 
material under consideration in [1, 3] were used to predict the creep 
behavior resulting from the stress histories described in the preceeding 
sections. Some modifications of the theories are described which 
better predict some of the observed behavior described in the fore­
going. 

In [3] it was shown that creep of 2618 Aluminum at 200°C under 
combined tension and torsion could be described adequately by the 
following relation: 

eij{t)*°t<j+e»j+t1j(t) + t'if(t), (1) 

where ef,-, e"j, and e"J represent the time-independent elastic strain, 
time-dependent nonrecoverable (viscous) strain, and time-dependent 
recoverable (viscoelastic) strain, respectively, and the time-inde­
pendent plastic strain efj was zero in the present experiments, tlj was 
further resolved into positive and negative parts because of its non-
recoverable feature. Without separate positive and negative parts i" 
would be zero upon stress reversal because it is nonrecoverable. The 
elastic modulus E0, shear modulus Go, and Poisson's ratio v for the 
material at 200°C as reported in [1,3] are given in Table 1. The con­
stitutive relations for e"y(t) and e"/(t) under constant stresses and 
time-dependent stresses as proposed in [1, 3] are reviewed in the 
following. 

Constant Stress. Under constant stress, the components e" and 
fue under combined tension a and torsion T were represented by the 
following equations: 

e"A(t) = \~AF[(a-<,'),(r-T')]t-, (2) 

e!5(t) = (r+yG[(a ~ a']'(T ~ T')]tn' (3) 

Table 1 Constants for equations (2)-(11) using a', r' for F j , G3
+ , Gj 

F* = 6.084 x 10~12 , per Pa-hn (0.004195, % per ksi-hn) 

F* = -7.431 x 10~20 , per Pa2-hn (-0.0003533, % per ksi2-hn) 

F* = 7.596 x 10"2 8 , per Pa3-hn (0.0000249, % per ksi3-hn) 

a* = 9.143 x 107 , Pa (13.26, ksi) 

G* > 7.170 » 10"12, per Pa-hn (0.004944, % per ksi-hn) 

G* = 2.703 x 10"28, per Pa3-h" (0.00000886, % per ksi3-h"). 

T* = 4.571 x 107, Pa (6.630, ksi) 

F* = 1.0491 x 10~28, per Pa3-h" (0.000003439, % per ksi3-hn) 

G* = -4.020 x 10"20, per Pa2-hn (-0:0001911, % per ksi2-hn) 

G* = 9.222 x 10"28, per Pa3-hn (0.00003023, % per ksi3-h") 

Note: n =0.270 

R = 0.55 

E = 6.5 x 104MPa (9.43 x 106 psi) 

G = 2.45 x 104MPa (3.57 x 106 psi) 

v = 0.321 

€un(t) = ( — ~ ) F[(a - a'),(r - r')}t\ (4) 

eUt) = i~~j G[(<r - a'Ur - T')]t". (5) 

The nonlinear functions F and G in (2)-(5) were derived from a 
third-order multiple integral representation [1, 6, 7], where for con­
stant stress 

F(a -a'.T- r') = F^a - a') + F2(c - a')2 + Fs(a - tr')3 

+ F 4 ( ( T - ( T ' ) ( T - T ' ) 2 + F 6 ( T - T ' ) 2 (6) 

G(a -a'.r- T') = GAT - r ' ) + G 2 ( T - r ' ) 3 + G3(<x - O')(T - T') 

+ G4(<T - CT')2(T - T') , (7). 

and cr', T' are the components of stress corresponding to a creep limit 
which may be taken to have a Tresca form defined as follows: 

(a')2 + 4 ( T ' ) 2 = (<r*)2 = (2r*)2, 
n - n ™ 

a /a = TIT, 

and cr* and r* are the creep limits in pure tension and pure torsion, 
respectively. The coefficients Ft, G;, and constants cr*, T*, R, and n 
are values determined from constant combined tension-torsion creep 
tests reported earlier [1] and shown in Table 1. The values reported 
in [1] for Fi, G3, and G4 were incorrect. They should have been as 
shown in Table 1. 

Another possible representation for creep under combined tension 
and torsion is to use (2)-(7) with the apparent creep limit defined as 
fixed values a* and T* for tensile components and torsion components 
of stress, respectively instead of (8). This change required computing 
new values of Ft, GJ, and GJ. The best estimates of these three values 
from the available test data are shown in Table 2. 

Predictions of the creep behaviors based on these two different 
respresentations, variable creep limit a' and T', and fixed creep limit 
a* and T*, are presented in this paper. It must be noted that when the 
components of the creep limit are variable (cr', T') every change in 
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Table 2 Constants for equations (2)-(11) using a', r* for F, and Gj 

F, , F- , F, , a* , G,, G- , T* , n and R are the 

same as in Table I. 

F* = 6.214 x 10"27 per Pa3-hn (0.0002037, % per ksi3-hn) 

F5 = 0 

G* = 1.S62 x 10" 1 9 per Pa2-h" (0.0007424,% per k s i 2 -h n ) 

G4 = 0 

combination of stress requires a change in a', T' in accordance with 
(8). For fixed creep limits a*, T* no change is needed, however. 

Time-Dependent Stress. The modified superposition principle 
(MSP) derived as a simplification of the multiple integral represen­
tation was shown in [3] to describe the time-dependent recoverable 
(viscoelastic) strain reasonably well. Under a continuously varying 
stress a, the strain response c"e under the modified superposition 
assumption can be represented for nonlinear behavior by 

« £ ( * ) ' J o < 
-fij[a{&,T(Z),t-Zm)dt (9) 

q d<r(£) 

where fy(a, t) represents a nonlinear time-dependent creep function 
such as (2) and (3) for e"5 and e"|, respectively, and where a(t) = a(t) 
- a'(t) andf( t ) = r(t) - r'(t). 

For a series of m step changes in stress as employed in the present 
work, (9) becomes as follows for e?i for example: 

tvA{t) •• 
R 

| { G ( 5 i , f i ) [ t " - ( t - t i ) " ] + . 
\l + Rl 

+ G(EFm_i, fm_i)[(t - tm-2)
n ~(t- tm_i)n] 

+ G(Sm,Tm)(t-tm-i)n], tm-t<t. (9a) 

For the time-dependent nonrecoverable (viscous) strain component 
e", it was shown in [3] that the strain-hardening theory reasonably 
represented the behavior of this strain component under a time-
dependent stress input. The strain-hardening theory for e°i and €"2 

can be represented by the following equations: 

l+R[Jo 

l + R[Jo 

(10) 

(11) 

Equations (10) and (11) were derived from (4) and (5), respectively, 
using the strain-hardening concept as in [1, 3]. 

For a series of m step changes in stress, as employed in the present 
paper, (11) for example becomes as follows: 

\1+R, 
\G(ai, riWHti) + [G(5% T2)]

1/n(t2 - h) 

+ {G(53,73)}V"(t-t2)\", t2<t. (11a) 

Viscous-Viscoelastic (VV) Theory. The total strain following 
a time-dependent stress history was found according to (1) by adding 
to the elastic strain corresponding to the stresses existing at the time 
of interest the €ve given by (9) and the e" given by (10) or (11) for axial 
strain or shear strain. 

Modified Viscous-Viscoelastic (MVV) Theory. In [3] it was 
found that the observed characteristics of creep behavior of the ma­
terial under partial unloading were not properly predicted by the VV 
theory. It was found, however, that the MVV theory proposed in [3] 

described the creep behavior of the material under partial unloading 
more closely than the VV theory. In the following the MVV theory, 
which will be used also in this paper, is reviewed. The basic difference 
between the MVV and the VV theories is in the treatment of the creep 
limits for the recoverable strain eve. These differences in treatment 
are illustrated in Fig. 4. 

1 For the nonrecoverable strain component, the strain-hardening 
rule was employed. Upon reduction of stress from a A to a current 
stress OB, Fig. 4(a), the strain rate k" continued at the reduced (de­
creasing) rate prescribed by the strain-hardening rule, (10) and (11), 
as shown in Fig. 4(a), unless the current stress ac equaled or was less 
than the creep limit a* (or a'). When ac ^ a* (or a'),e" was zero as 
prescribed by (10) and (11); see Fig. 4(a). 

2 Upon reloading from a stress ac below to a stress ar> above the 
creep limit, the nonrecoverable strain rate t" resumed at the rate 
prescribed by (10) and (11) but as though there had been no interval 
tx for which ac :£ a* (or a'); see Fig. 4(c). 

3 For the recoverable strain component eve on partial unloading 
the recoverable strain rate iue became and remained zero for all re­
ductions of stress from a A to as, as shown in Fig. 4(b) unless the total 
change in stress from the highest stress <rmax [= a A in Fig. 4(6)] pre­
viously encountered to the current stress ac exceeded in magnitude 
the creep limit a* (or a'). That is, 

eve = 0 when (aA - <rB) < \<r*\ (or a'), (12) 

i"e ^ 0 when (aA - ac) > k* l (or a'). (13) 

Equation (12) can be considered as meaning that for a small unloading 
the recoverable strain component was "frozen." Equation (13) indi­
cates that if the change in stress was greater than \a*\ or \a'\ then 
recovery would occur followed eventually by creep; see Fig. 4(6). 

4 Upon increasing the stress to an (OD 5: a A ) following a period 
tx (a dead zone) for which (<rmax

 _ BB) < ff* (° r °"') a n d t"e = 0 as 
discussed in 3 in the foregoing the recoverable strain component e"B 

continued to creep in accordance with the viscoelastic behavior (9) 
as though the period tx never occurred; see Fig. 4(c). In computing 
the behavior for situations described in 2, 3, and 4, it was thus nec­
essary to introduce a time shift in equation (9), (10) or (11) to elimi­
nate the appropriate period tx when eve was "frozen." Thus the new 
time t' subsequent to a period tx = (tc — ta) becomes t' = t — (tc — 
ta), where t is the real time and ta, tc are the times when <TB and or> 
were applied. 

5 When recoverable and nonrecoverable strain components are 
considered together two special circumstances arise. Consider that 
the stress decreases from the highest value a A to a lower value as- If 
a A > 2cr* and a* < OB ^ (aA — a*) then there is creep occurring from 
e" and recovery from eue. However, if a A < 2<7* and (a A ~ c*) < CB 
< a* then there is neither creep nor recovery, e" = eue = 0. 

6 When one stress component decreased while the other re­
mained constant the recoverable strain component e"e was treated 
as follows. The material behavior in such situations (such as Fig. 1, 
period 5) suggested that reducing or removing one stress component, 
say T, while the other component, say a, remained constant affected 
the strain as follows. The strain corresponding to mixed stress com­
ponents behaved as though these mixed components had suffered a 
small stress reduction. That is, the strain, say en, associated with the 
mixed stress components, say or2 , became constant. The strain, say 
6n, associated with the pure stress terms, say a, a2, a3 which were 
unchanged, continued as though nothing had happened. 

Thus the following computations based on the (MVV) theory were 
used for decreasing side steps. 

For example, in Fig. 1(a), period 4, the strain components corre­
sponding to or 2 and T 2 remained constant at their values just prior 
to the stress change, while the strain corresponding to a, a2, a3 con­
tinued uninterrupted. Again in Fig. 1(a), period 6, the strain com­
ponents corresponding to or2 and r2 remained constant while the 
strain corresponding to a, a2, as continued uninterrupted (in this case 
they were also constant). For c i | in Fig. 1(6), period 4, there was no 
change from the value just preceding the stress change because the 
G(a, T) terms, see (7), decreased and the shear stress decrease was less 
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: Par t ia l Unloading at t a : Nonrecoverable S t ra in ,e v ; 
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Recoverable St ra in , e v e ; 
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a - A - a c < l<r"l, 

Time t c Sh i f ted. 
Fig. 4 Illustration of the role of the creep limit a' in partial unloading and reloading. Note corrections: In (6) interchange aB and 
(Tc in equations; In (c) for recoverable strain change Oc to <rs in equations. 

than the creep limit. Similarly, in Fig. 1, period 5, there was no further 
change in e™ or e"l. This is consistent with 3 described previously. 
Recovery of en in Fig. 1(a), period 7, was computed as though a, a2, 
a3 terms recovered from the end of period 4 and or 2 and T 2 terms re­
covered as from the end of period 3. For e^| in Fig. 1(6), period 6, the 
strain was computed by considering recovery from T, T 3 terms as 
though it started at the end of period 3, while the strain for ar, U2T 
terms remained constant. In Fig. 1(b), period 7, recovery continued 
from r, r 3 terms and recovery from the or, a2T terms started as though 
from the end of period 3. 

P r e d i c t i o n s for S ide S t e p s and R e c o v e r y 
Both the VV theory and MVV theory just described were used to 

predict the creep behavior of the material under side steps and re­
covery experiments as shown in Fig. 1 and in Pig. 2, periods 1-6. In 
applying the constitutive relations for the predictions, both the 
variable creep limit, a' and T' (8) and the fixed creep limits a* and T* 
and their corresponding constants as shown, respectively, in Tables 
1 and 2 were utilized. The results of the predictions are shown in Figs. 
1 and 2. 

In general the MVV theory using fixed creep limits (or*, T*) yielded 
the best comparison with the test data. It correctly described the 
constant creep rate observed in Fig. 1, periods 4, 5, Fig. 1(a), period 
6, Pig. 2(a), period 6, and Fig. 2(b), periods 2 and 10, whereas, the VV 
theory showed pronounced recovery-type behavior in these periods. 
Also the recovery in Fig. 1, period 7 was correctly described by the 
MVV theory, but not in Fig. 1(a), period 7 by the VV theory. 

The continuing creep observed in one component when the stress 
of the other component was removed was best described by the MVV 

theory, as shown in Fig. 2(a), period 4, Fig. 2(b), period 8, and Fig. 
3(a), period 11; whereas the VV theory showed a recovery. 

Comments on Fig. 1, Period 3. The marked difference between 
the predicted and the observed strains in the third period of Fig. 1 
might be a manifestation of material nonlinearity under combined 
stress not accounted for in the third-order theory. The possibility of 
employing a fifth-order was explored. Additional appropriate 
higher-order terms were added to (6) and (7). This approach did not 
yield any significant improvement. 

As reported in [1] combined tension and torsion tests XI and XII 
performed at the same stresses yielded a markedly higher creep rate 
from XI than XII. In [1], Test XI was omitted from the analysis from 
which the solid lines in Pig. 1 were predicted. Repeating the compu­
tations using an average of the results for XI and XII did not yield any 
overall improvements. 

P r e d i c t i o n s for S t r e s s R e v e r s a l s 
Straightforward application of the concepts that a portion of the 

creep of metals is nonrecoverable and strain hardening suggests that 
reversal of stress should cause no further change in the nonrecoverable 
e" component of strain. The fact that considerable changes were ob­
served, as shown in Fig. 3, was the reason that e" was resolved into two 
parts e£os and eneg in the present investigation. It was considered that 
positive and negative stresses would produce independent creep re­
sponses, the sum of which would be the resulting creep. Also it ap­
peared that the nonrecoverable strain t" accumulated prior to reversal 
of stress was entirely wiped out on completely reversing the stress. 

In Fig. 3(6) the dot-dash lines were computed using the VV theory 
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with Table 2 and considering all prior strain wiped out upon reversal 
of stress. The solid lines (MVV theory) were computed considering 
that the nonrecoverable strain only was wiped out upon reversal of 
stress and the recoverable strain was computed in the usual manner, 
by equation (9a). Fig. 3(6) shows that the solid lines describe the 
character of the observed creep for complete stress reversal very well 
for periods 3, 4, 5, 8, 9, and 10, except for increasing creep rates in 
periods 3, 4, 5, and a shift in period 9. 

The dotted lines in Fig. 3(b), periods 6 and 7, for which there was 
a partial reversal of stress, were computed by not wiping out the 
nonrecoverable strain at the end of period 6. The difference between 
the solid and dotted lines in periods 6 and 7 indicate the magnitude 
of the strain wiped out in arriving at the solid line. Comparing the solid 
and dotted lines with the test data for periods 6 and 7 suggests that 
the nonrecoverable strain was not wiped out at the start of period 6 
(which was an incomplete stress reversal). It also suggests that during 
periods 6 and 7 the prior nonrecoverable strain was gradually wiped 
out, resulting in the increased rate shown. 

The fact that the creep rate in Fig. 3(b), period 5, was not reduced, 
as would be expected from strain hardening as a result of the prior 
negatively stressed period 3, is proably due to the fact that the prior 
nonrecoverable strain was in fact wiped out (i.e., recovered). Thus 
there was no residual strain and hence no strain hardening. 

The recovery in periods 11 and 12 was computed in the same 
manner as just described, with excellent results. 

The torsion in Fig. 2(6), period 7, was not completely reversed. 
Again, as in period 6 of Fig. 3(6), the creep behavior suggested that 
the residual strain from period 6 was not wiped out during partial 
reversal of stress but was gradually reduced resulting in an increased 
creep rate. Thus the actual creep started at the dotted line and moved 
toward the solid line in Fig. 2(6), periods 7 and 8. In period 9, the 
torsion was increased so that it was then fully reversed. Fig. 2(b) shows 
both the VV and MVV theories for period 9 with the residual strain 
wiped out. Also shown as a dotted line is the MVV theory with the 
residual strain not wiped out. It appears that the actual data contin­
ued in period 9 to complete wiping out the residual strain by the end 
of period 9. 

Predictions for Tension in the Presence of Reversing Torsion. 
In Fig. 3(a), periods 7-10, tension was added to the existing torsion 
(reversed in each period). The observed tensile strain en in these 
periods showed small primary-type responses added at each reversal 
of torsion. The VV theory (9) and (10) were used first to treat the 
stress states in periods 7-11. Since en is an even function of r, re­
versing T was equivalent to a continuous stressing of <r = a\, r = T3. 
This approach yielded a continuous creep of fn as shown by the 
dot-dash lines in Fig. 3(a). Clearly, this is an inadequate description 
of the behavior except for period 7. 

Observing that on reversal of shear (torsion) stress in the presence 
of tension the principal stresses changed direction markedly it was 
likely that a different set of active elements (slip planes and disloca­
tions) would be involved for positive versus negative shear stress. Thus 
virgin-type behavior of e" would be involved in the axial strain re­
sulting from the first reversal of stress, as also observed for the cor­
responding shear strain component in Fig. 3(6). In subsequent re­
versals only the mixed stress terms would be involved in e". 

Thus, for the MVV theory in Fig. 3(a), periods 7-10, the nonre­
coverable creep e u was computed as follows by separating en(pos) 
from Cn(neg). en(pos) was computed from T3 in periods 7 and 9 and 
zero stress in periods 8 and 10. All stress terms contributed virgin-type 
creep in period 7. In periods 8-10, the pure tension component of creep 
continued without interruption. In periods 8 and 10 the creep for 
mixed stress term or 2 remained constant; while in period 9 a new 
virgin-type creep due to or2 was added (it was new because of the prior 
reversal of or2). The creep for en(neg) was computed in the same 
manner starting with creep from all stress terms in period 8. The fn 
creep was continuous through periods 7-10 since T had an even power 
in (6). The sum of all these components yielded the solid line in Fig. 
3(a), which compares well with the experiment except that the strain 
at the start of period 8 was too small. 

Recovery Following Stress Reversals. Recovery in Fig. 3, pe­

riods 11 and 12, was determined for the MVV theory as follows: In Fig. 
3(6), period 11, e^l for T,T3 recovered as from the end of period 10; e°l 
for or, (72r remained constant. In period 12 e°f for T,T3 continued to 
recover and t i l for or, CT2T recovered as though from the end of period 
10. This produced the slight dip in the MVV theory between periods 
11 and 12, as also observed in the data. In Fig. 3(a), period 12, en for 
a, a2, <r3 recovered as from the end of period 11 and 6 if for or 2 re­
covered as though from the end of period 10. 

Results and Conclusions 
Analysis of results of nonlinear creep of 2618 aluminum under 

combined tension and torsion stress states and under varying stress 
history including step changes of one stress component while another 
component remained constant and reversal of shearing stress showed 
that the viscous-viscoelastic (VV) theory with certain modifications 
(MVV) theory predicted most of the features of the observed creep 
behavior quite well. 

Among the conclusions are the following: 

1 The behavior may be represented by resolving the time-de­
pendent strain into recoverable and nonrecoverable components 
having the same time-dependence. 

2 The material behaved as though there was a creep limit such 
that only very small creep occurred unless the stress was greater than 
a limiting value having fixed values a*, T* for tensile stress and shear 
stress components, respectively. 

3 On partial unloading, the material behaved as though the 
nonrecoverable strain component e" continued to creep in accordance 
with strain hardening unless the stress became lefss than the creep 
limit; whereas the recoverable strain component eue remained con­
stant unless the decrease (change) in stress exceeded the magnitude 
of the creep limit. 

4 On reloading following an interval tx of partial unloading in­
volving no further change in tve the component tve resumed creeping 
as though the interval tx did not exist. 

5 An increase in tension under constant torsion was well repre­
sented by the theory but a subsequent increase in torsion at constant 
tension was not as well represented. 

6 Reduction of one stress component while the other remained 
constant required treating the pure stress and mixed stress terms 
separately. The strains associated with the mixed stress terms re­
mained constant, whereas the strain behavior associated with the pure 
stress remained unchanged. 

7 Removal of one of two stress components during creep was 
observed to have no effect on creep associated with the other stress 
component. This was partially accounted for by considering that the 
€ve strain associated with the mixed stress terms remained constant 
until both stress components were zero. 

8 On partial or complete reversal of stress the nonrecoverable 
strain component e" behaved as though the reverse stress was applied 
to a virgin material. 

9 If the stress was partially reversed the prior residual strain re­
sulting from e" remained. However, if the stress component was 
completely reversed the residual strain from the nonrecoverable strain 
component e" appeared to be completely recovered (wiped out). 

10 The axial creep resulting from cycles of reversed torsion in the 
presence of constant tension consisted of: continuous recoverable 
creep; plus continuous nonrecoverable creep from the first application 
of positive torsion and also from the first application of negative 
torsion associated with pure tension terms only; plus new virgin creep 
associated with the mixed tension-torsion stress terms at each reversal 
of torsion. 
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and Mechanics, rjr 
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Troy,,Y.12181 Temperature Under Quasi-Static 

Monotonic and Cyclic Loading 
Uniaxial tests using a seruocontrolled testing machine and strain measurement at the 
gage length were performed on a high-strength, low-ductility Titanium alloy. Tests in­
volved monotonic and cyclic loadings with strain rates between 2 X 10~8 to 10~3 s _ 1 , 
stress rates from 7 0 _ 1 to 102 MPa s~1, repeated changes in strain rates, and short-term 
relaxation and creep tests. The inelastic behavior is strongly rate-dependent. Ratchetting 
is shown to increase as the stress rate decreases. No strain-rate history effect was found. 
A unique stress-strain curve is ultimately reached for a given strain rate irrespective of 
prior history as long as only positive stresses are imposed. In the plastic range the relaxa­
tion drop in a given time period depends only on the strain rate preceding the test and is 
independent of the actual stress and strain. 

Introduction 
Stress-strain curves obtained under dynamic conditions (at strain 

rates above 10 s_1) can lie significantly above static stress-strain 
curves obtained at static strain rates (order 10 - 2 s _ 1 or less). Fre­
quently, in the case of static test results, no specific strain rate is re­
ported with the implication that rate (time)-dependence2 prevails for 
static loading conditions. This assumption is also made in "static" 
plasticity theories. However static stress-strain curves can be obtained 
at loading rates which differ by several orders of magnitude, and 
rate-dependence may be present within the static strain-rate range. 
Indeed this has been demonstrated in the case of several metals [1-3] 
tested at room temperatures. For AISI Type 304 Stainless Steel we 
have found significant room-temperature rate-dependence mani-

1 Permanent address—Institute of Basic Machine Design, ul. Narbutta 84, 
02-524 Warszawa, Poland. 

2 Rate (time)-dependence encompasses loading rate-sensitivity, creep, and 
relaxation. 
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fested in loading-rate sensitivity of the yield and flow stresses at 
different static strain (stress) rates, and in creep and relaxation be­
havior. AISI Type 304 Stainless Steel exhibits low-yield strength and 
high ductility. The Titanium alloy used in this study has high-yield 
strength and considerably less ductility than AISI Type 304 Stainless 
Steel. 

In materials science plastic flow is considered a rate process [4] and 
relaxation experiments are performed at room temperature [5,6] using 
specially equipped universal testing machines. 

In viscoplasticity, some constitutive theories assume the existence 
of a quasistatic or equilibrium stress-strain curve [7-11] characteristic 
of the rate-independent portion of material response. In some cases 
[7-9] dynamic-rate dependence is recognized and an equilibrium 
stress-strain curve is used which is obtained from static tests where 
loading rates are not specified. 

The purpose of this study is to examine in a qualitative way the 
loading rate-dependence of the stress-strain curves, the creep and 
relaxation behavior of this high-strength, low-ductility material using 
the method of servocontrolled mechanical testing. This method is 
frequently used in fracture mechanics and low-cycle fatigue testing 
but has not been employed for the determination of material prop­
erties for constitutive equation development. It is ideally suited for 
this purpose since it permits the accurate measurement of the material 
response at various loading rates through the use of feedback prin­
ciples. 
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Fig. 1 Specimens used In this study 

Material and Specimens 
The Ti-7A^-2Cb-lTa alloy was donated by the Naval Research 

Laboratory and was identified by the NRL Code T89. Blanks of ap­
proximately 20 X 20 X 120 mm were cut from the top (Label T) and 
bottom (Label B) of a 3-in. (76.2 mm) thick plate. The longest side 
of the blanks was perpendicular to the direction of rolling. To equil­
ibrate texture effects the blanks were subjected to a beta-anneal 
heat-tf eatment of xk hr at 2000°P in vacuum and subsequent cooling 
to room temperature in helium at a rate approximating air cooling. 
Two different types of specimens shown in Fig. 1 were machined from 
the heat-treated blanks. The specimens with the short-gage length 

were used for the cyclic experiments. A total of nine specimens were 
tested. 

Testing Equipment and Procedure 
All specimens were tested at room temperature in an MTS servo-

controlled tension-torsion system with dual ramp function generator. 
The test results were recorded on an XY-recorder. Displacement was 
in all cases measured by an MTS clip-on extensometer clamped on 
the gage length and converted to engineering strain and strain rate 
using standard methods. Engineering stresses based on the original 
cross section are used throughout this study. 

In the following we refer to stress (strain) control, creep and re­
laxation. In actuality the load (displacement) is controlled. During 
creep the load is kept constant and during relaxation the displacement 
in the gage length is held fixed. 

The clip-on extensometer together with the function generator and 
the servocontrolled system enable an accurate strain control which 
is not possible with conventional testing machines. By simply 
changing the command signal stress control can be achieved in the 
servocontrolled test system. The reported test data represent real 
material behavior. The strain measurement on the gage length to­
gether with the servocontrol (feedback) system and the frequencies 
used in this study insure that no testing machine bias enters into the 
recorded data. 

Test Results 
Behavior for Positive Stress. Influence of Loading Rate. Test 

results of three different specimens B2, B5, and T5 are depicted in 
Fig. 2. Specimen B2 was loaded under stress control at 69 MPa s_1 . 
Repeated loadings and unloadings with strain-rate changes were used 
in the tests with specimens B5 (full line) and T5 (dashed line). 

The stress-strain behavior is initially linear with slope B on all 
loadings starting at points O, D, P, and Pi. At stresses larger than 450 
MPa the effects of rate become noticeable and are significant in the 

Fig. 2 The effect of loading rate and type of control on the stress-strain diagram of three different specimens; no strain-rate history 
effect is observed 
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plastic range.3 Also the 0.2 percent yield strength is dependent on rate 
as seen in Pig. 2. 

Table 1 shows the variation of the 0.2 percent offset yield strength 
with loading rate. The difference between the yield strength at the 
slowest (2 X 10~8 s_1) and fastest (1.7 X 10~3 s"1) strain rate is 21 
percent or 131 MPa. The yield strengths for three different specimens 
determined at the same strain rate (10~4 s_1) differ at the most by 13 
MPa or 2 percent. We see that the scatter is not very large and that 

Table 1 Rate-dependence of 0.2 

Specimen 
No. 

Bl 

B2 

B4 

B5 

Tl 

T4 

T5 

e 
- 1 

s 

ID" 4 

ID"4 

1 . 7 X 1 0 - 3 

icf4 

i o - 5 

2 X 1 0 ~ 8 

percent offset yield strength <jy 

b 
- 1 

MPa s 

69 

a 
y 

MPa 

738 

764 

730 

763 

725 

675 

632 

3 Plastic range is the region of the stress-strain curve in which the tangent 
modulus changes very little and is small compared to the elastic modulus. 

the influence of rate is very noticeable in the range of static strain 
rates. 

The initial unloading behavior starting at points C, Ci, E, and Ei 
is not linear elastic. The slope is initially larger than the elastic 
modulus and continuously decreases as the stress decreases. At zero 
stress the unloading slope is less than the elastic modulus (see also 
Fig. 3). The initial slope on reloading is equal to the modulus of elas­
ticity and a small hysteretic loop develops as shown in Pig. 2. 

In the plastic range the stress-strain curves obtained at different 
strain rates are equidistant. The stress-strain diagram for specimen 
B2 obtained under stress control, however, shows a somewhat higher 
slope at a given strain level than the others. 

For specimens B5 and T5 which were subjected to a different 
strain-rate history up to points F and Pi, respectively, the same strain 
rate of 10~6 s_1 was used in the final loading starting at F and Fi and 
the two curves ultimately coincide within normal scatter. 

Although specimens B5 and T5 underwent different strain and 
strain-rate histories, their final stress-strain curves coincide when 
loaded with the same final strain rate. We observe that the material 
can forget the prior history and that a strain-rate history effect [12-14] 
is absent. Note added in proof: Extension of the graph beyond C for 

N=10 N=10 
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specimen B5 and comparison with DEj also implies the absence of 
a strain-rate history effect. 

Figs. 3 and 4 further demonstrate the effect of loading rate. In Fig. 
3 specimen T4 was first loaded and unloaded to zero stress at a strain 
rate of 10_B s_1; see curve (1) OA. At point A a stress controlled loading 
was started right away. During one loading and unloading cycle the 
absolute value of the stress rate was kept constant; however, each new 
cycle (points B and C) was started with a tenfold reduced stress rate 
without changing the maximum stress; see curves (2), (3), and (4). It 
is evident that the stress rate has a significant effect on the ratchet 
strain (distances AB, BC, CD) accumulated during one cycle. This 
ratchet strain is caused by a "creep deformation" allowed by the stress 
control at stress levels approaching the maximum stress of the cycle.4 

This creeping is negligible at a stress rate of 21.7 MPa s _ 1 but becomes 
significant at 0.217 MPa s_1. The stress controlled (2), (3), (4) and the 
strain controlled (1) unloading curves display significant differences. 
The former show initial negative slopes not found for (1). For curve 
(2) the negative slope is not pronounced since not enough time is 
available for "creep" to develop during initial unloadings. 

Fig. 4 is intended to illustrate the effect of "creeping out" further. 
In this test only partial loading and unloading is performed between 
"max and ffmin and the stress rate is varied by four orders of magnitude. 
At |o-g| the cycle took 51.42 hr for completion. It is important to note 
that the maximum stress equals the maximum stress obtained during 
prior loading. 

We see that stress rate has a significant effect on the ratchet strain 
accumulated in one cycle. It is of course very strongly dependent on 
stress level. Fig. 4 implies that insignificant ratchet strain would have 
developed at a stress of 690 MPa at | &$), since the stress -strain curves 

4 Such creeping motions are impossible in displacement control. 

corresponding to this loading rate are almost linear up to this stress 
level. Also the evidence in Figs. 3 and 4 suggests that the ratchet 
strains measured at <rmin in Fig. 4 are approximately equal to the one 
measured at a = 0. 

Relaxation Behavior for Positive Stresses in the Plastic Ran­
ge. The relaxation behavior of this material in the plastic range is 
shown in Fig. 5 which depicts stress drops in 10 min and subsequent 
reloading at various strain rates. It is evident that the total stress drop 
and therefore the relaxation rate depends on the strain rate preceding 
the relaxation tests. For a given strain rate the total stress drop is 
further independent of the strain at the start relaxation test. In other 
tests started at strains below the ones used in Fig. 5 we found that the 
stress drop is also independent of the initial stress. The validity of 
these statements is demonstrated in Fig. 6 where the stress drops in 
10 min relaxation of three different specimens are plotted versus total 
strain. We know from Fig. 2 that a unique stress-strain curve is as­
sociated with a given strain rate. Consequently the stress drops shown 
in Fig. 6 are also independent of the stress at the start of the relaxation 
test. 

The data in Figs. 5 and 6 permit the following statement: 

In the plastic range where the modulus is nearly constant and 
much less than the elastic modulus, the stress drop in a given period 
of time depends only on the strain-rate preceding the relaxation test. 
It is independent of the stress and strain at the start of the relaxation 
test. 

Fig. 5 shows that the stress-strain curve eventually returns to a level 
characteristic of the particular strain rate. The material forgets the 
prior history if only relaxation during loading periods are involved. 
Instead of performing relaxation during loading, in the test corre­
sponding to Fig. 7 a relaxation period was introduced after partial 
unloading where the modulus is close to the elastic one. Compared 
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to (a) the relaxation at (b) occurs at a reduced rate. Upon continued 
unloading the stress-strain curve does not return to the assumed 
original unloading curve (dashed in Fig. 7). Rather it is displaced to 
the right. In this case the prior relaxation history is not forgotten. 

Stress Change During Strain-Rate Changes. Figs. 2 and 5 indi­
cate that there exists at every strain a stress level characteristic of a 
given strain rate. Available data involving frequent relaxation periods 
and strain-rate changes such as shown in Fig. 5 were analyzed by de­
termining at a given strain the characteristic stress level for a strain 
rate of IO - 6 and IO - 3 s_1. The tests include cycling between the strain 
rates; see Fig. 9 of [1]. The results are shown in Fig. 8. It is seen that 
the stress level differences are independent of strain and prior history 
for positive stresses. 

Reversed Cyclic Loading. Strain Control. Completely re­
versed strain controlled cyclic loading was performed at a strain range 
of At = 1.6 percent (Bl) and 2.4 percent (Tl), respectively. After some 
initial hardening followed by softening the stress range is observed 
to be almost constant. This Ti-alloy exhibits cyclically neutral be­
havior. 

After the steady cyclic behavior was reached the effect of strain rate 
on the hysteresis loop was studied by changing the strain rate at 
suitable cycle intervals. At each strain rate two or three cycles were 
recorded before the next strain rate change was initiated. Both step-up 
and step-down changes in strain rate were performed. 

After each change in strain rate a different hysteresis loop devel­
oped. The transition from one loop to the next was accomplished 
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D SPECIMEN Tl AFTER CYCLIC LOADING 
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Fig. 8 Stress values characteristic of a given strain rate versus strain for three 
different specimens; each specimen was subjected to frequent relaxation and 
strain-rate changes as demonstrated In Fig. 5; although the stress levels are 
different for the cyclically preloaded specimen the stress level differences 
for the same strain rates are equal; see also Table 2 
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Table 2 Strain-rate change—stress change behavior 

Rate Change 

- i T° 
s 

io"4 

io"5 

io"6 

io"7 

io"5 

io"6 

io"6 

Corresponding S t r e s s Change* HPa 

Z e r o - t o - T e n s i o n Af te r Cycl ic** 
Loading Loading 

Specimen T4 Specimen Tl 

24 .9 

45 .8 

65 .6 

8 2 . 1 

20 .9 

40 .8 

19.4 

24 .8 

47.6 

63 .7 

79.7 

19.5 

37.2 

17.7 

Stress change is obtained from the xy-records by an extrapola­
tion of the respective stress-strain diagrams. An example of 
such an extrapolation is given in Figure 5. 

About 60 cycles at +^ 1.2%. 
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Fig. 9 The Influence of strain rate on the stress range and the width of the hysteresis loop at zero stress for a strain range of 2.4 and 
1.6 percent; transitions from loops obtained at various strain rates are reversible 
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2 MIN EACH RELAXATION TEST 

PRIOR HISTORY: 

2 9 CYCLES AT E=±1.2 % 

WITH D I F F E R E N T STRAIN RATES 

-1 .05 

Fig. 10 Strain-controlled test at Ac = 2.4 percent with 2 min relaxation periods commencing at each arrow and subsequent loading 
at | e| = 10~3 s_1; almost elastic behavior is observed In the nearly straight portions of the loop 

within less than 0.05 percent strain and was fully reversible, e.g., after 
a step-up test from 10-6 to 10-3 s_1 followed by a step-down test to 
10-6 s - 1 the two hysteresis loops for 10-6 s_1 coincided within ex­
perimental accuracy. 

An increase in strain rate results in an increase in stress range and 
a decrease in the width of the loop at zero stress. The results are shown 
in Fig. 9. For a change in three orders of magnitude in strain rate the 
corresponding stress range changes are 95 MPa or 7 percent and 125 
MPa or 11 percent at Ae = 1.6 percent, and Ae = 2.4 percent, re­
spectively. The line for Atr at Ae = 2.4 percent has a higher slope than 
the one for At = 1.6 percent. The plastic strain range (dashed lines 
in Fig. 9) decreases with increasing strain rate. 

Fig. 10 illustrates how "inelasticity is distributed" around the 
hysteresis loop. The arrows with the numbers indicate the strains at 
which a 2 min relaxation test was introduced. At the end of these tests 
loading resumed at a strain rate of 10-3 s_1. It is seen that no relaxa­
tion occurs in 2 min in the nearly straight portions of the loop and that 
relaxation increases gradually as the slope decreases. The initial slope 
at the commencement of each loading following relaxation is very close 
to the modulus of elasticity. After the relaxation periods the stress-
strain curve returns to the original hysteresis loop. (No relaxation 
periods are introduced right after unloading as was done in Fig. 7.) 
The relaxation periods are forgotten. (The differences in the com­
pression part of Fig. 10 are probably due to continued small cycle-
dependent changes.) 

Load (Stress) Control. Specimen B3 was used to perform 
stress-controlled loading with 2 min constant load creep periods 
(<r = 0) as indicated by the arrows on the right of Fig. 11. 

Starting from the origin the specimen was loaded to a maximum 
load and then unloaded to zero stress at point A, the end of Section 
(1). Section (2) starts at A and ends at B where loading compression 
and subsequent reloading in tension followed. Section (3) terminates 
at point C. 

— 2 MIN 
— HOLD TIME 

Fig. 11 Load controlled loading; at the stress levels corresponding to the 
arrows on the right 2 min creep periods are introduced during every loading 
and unloading; creep develops gradually and is more pronounced on loading 
than on unloading 

On loading (a > 0) creep develops gradually and in a nonlinear 
fashion. (Although the highest and lowest stress levels at which creep 
tests were performed differ by less than a factor of two, the respective 
creep strains accumulated in 2 min differ by much more than a factor 
of two.) We also note that at the same stress level creep is less during 
unloading than during loading. This can be seen at the two highest 
stress levels of each of Sections (1), (2), and (3). Indeed no creep was 
found at all at the low stress levels during unloading. Also the creep 

Journal of Applied Mechanics MARCH 1981, VOL 48 / 61 

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



10 ,-1 10 
KSI S - ' 

10' 10 

^i 10" 

z 
< 

" — 1 

SPECIMEN S3 
CT=+779 MPa 

PRIOR HISTORY 

10 CYCLE* i »T 1. r = 1.5 MPaS-1 

"~--̂  P~~~~" 
A - < ^ ^ ^ 

~ - ° — Ae 

^ — - < = • 

^ ~ ~ ^ A e 

tot 

P' 

10 ' 

< 
I-
o 

10 r3 

10" 10 l 
10 

STRESS RATE 
5 
MPd S 

10J 

Fig. 12 Load controlled loading; continuation of test in Fig. 11; the influence of loading rate on the total strain range, the plastic strain 
range and the strain reached during unloading from tension; the movement of the loop toward Increasing strain e* is permanent 

strains during loading are at the same stress level different for sections 
(1), (2), and (3). Creep is least developed for Section (2). 

After the tests shown in Fig. 11 the maximum stress was increased 
to ±779 MPa and uninterrupted cycling continued for 10 cycles at 1.5 
MPa s -1. Then after completion of one cycle the stress rate was con.-
secutively decreased at zero stress going into compression and the 
changes in the hysteresis loop were observed, specifically the strains 
at zero stress. Fig. 12 shows that the loop shifted toward positive 
strains («* increases as the stress rate was decreased), and that both 
the width at zero load (Aepi) and the total width (Actot) increased with 
decreasing rate. We also note that A«pi increases much faster than 
Aetot-

The movement of the hysteretic loop to the right is probably due 
to a higher maximum true stress in tension than in compression. (We 
use load control.) The movement is permanent. An increase of stress 
rate will narrow the loop; it will, however, continue to move toward 
positive strains. The original position of the loop, in contrast to strain 
cycling, will not be obtained when the stress rate returns to the same 
value after an excursion to low or high stress rates. 

Discussion 
The results of this study show clearly that the inelastic deformation 

of this high-strength, low-ductility Ti-alloy is rate dependent. The 
rate-dependence is basically logarithmic; the loading rates must be 
changed by an order of magnitude to get a significant change in the 
stress-strain behavior. 

Both the elastic and inelastic behavior of this material is very 
consistent and very well reproducible. The modulus of elasticity (the 
slope at the stress-strain origin), for example, was determined on nine 
specimens to be 117 GPa ± 1 Gpa. Further, the results in Figs. 6,8, 
and Table 1 permit the comparison of results obtained with different 
specimens. 

This study is qualitative in nature and demonstrates that at the 
loading rates used in this study plastic flow is basically rate-dependent 
and that loading rate-sensitivity, creep, and relaxation are closely 
related. The results suggest a number of qualitative conclusions im­
portant for constitutive equation development. 

No Strain-Rate History Effect (SRHE), The results shown 
in Figs. 2,5,8 and others demonstrate that prior history can be "for­
gotten." When the material is stressed into the plastic range.5 a unique 
stress-strain curve is ultimately obtained for a given positive strain 
rate provided the prior history consisted only of positive stresses. We 
do not observe a SRHE [12-14]. These results are in agreement with 
our findings for AISI Type 304 Stainless Steel [1,2] but are at variance 
with results obtained in dynamic plasticity [12-14] where strain rates 
in excess of 10 -1 s_1 are involved. 

We have not found dynamic plasticity experiments with strain-rate 
changes on AISI Type 304 SS and on this Ti-alloy. We do not know 
whether these metals exhibit a SHRE in dynamic plasticity. However, 
a very important difference between dynamic plasticity tests and our 
tests is in the strain rates and in the experimental equipment. The 
servocontrolled testing machine insures that the strain rate is always 
maintained at the specified value. Such assurance is not always 
available in dynamic plasticity experiments. 

Inelasticity Is Rate-Dependent. At the loading rates used in 
this study inelasticity6 is rate-dependent. As the loading rate is de­
creased the flow stress decreases (Figs. 2 and 5). Relaxation behavior 
is tied to loading rate. A decrease in loading rate causes a decrease in 
the stress drop in a given time in a relaxation test (Figs. 5 and 6). 

It is therefore not unreasonable to assume the existence of an 
equilibrium stress-strain curve [7-9, 15-17] obtained at very slow 
loading rates. Creep and relaxation tests started from points on this 
curve will not cause any time-dependent accumulation of strain and 
stress, respectively. The results of this study suggest that the equi­
librium stress-strain curve must be below the stress-strain curve of 

6 Fig. 7 shows that relaxation right after unloading (i < 0) can cause a per­
manent shift of the unloading curve. Also changes in stress rate during stress-
controlled cycling can cause a permanent shift of the hysteresis loop; see the 
discussion related to Fig. 12. In these cases prior history is not forgotten. 

6 Inelasticity denotes deviations from linear elasticity. 
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6 = 10~8 s_1. In [17] the curve corresponding to e = 10~12 s _ 1 was taken 
as the equilibrium stress-strain curve. 

Relaxation and Strain Rate-Stress Change Behavior. For 
positive strain rates and as long as the loading history involves only 
positive stresses the flow stresses and the relaxation behavior are 
directly related. After an initial transient period a flow stress char­
acteristic of a given strain rate is reached (Figs. 2,5, and 8). Relaxation 
rates observed in tests started from the flow stress in the plastic range 
depend only on the strain rate preceding the relaxation test. The sole 
dependence of the relaxation rate on previous strain rate ceases to be 
true when the slope of the a-e diagram preceding the relaxation test 
is different from the slope characteristic for the plastic range (Fig. 7; 
in Fig. 10 all relaxation tests start from a curve with e = constant; the 
relaxation drops are different.). 

A dependence of the flow stress on prior history is shown in Fig. 8 
for specimen T l which underwent prior strain cycling at Ae = 2.4 
percent. After about 60 cycles the specimen was unloaded from ten­
sion to zero load. A regular tensile test with repeated strain-rate 
changes involving increases and decreases in strain rates was then 
started. The flow stress for the T l specimen is less than for specimens 
T4 and T5; see Fig. 8. Table 2, however, demonstrates that the stress 
level difference between the flow stress at various strain rates before 
and after cyclic loading is equal within the accuracy of the extrapo­
lation used in getting the data. 

Cyclic loading changes the stress level characteristic of a given strain 
rate. The strain rate-stress change behavior remains Unaltered. 

In the experiments of AISI Type 304 Stainless Steel [1] which 
undergoes considerable cyclic hardening both the stress level and the 
stress level difference were altered. 

Unloading and Reloading Behavior. Figs. 2-5, 7, 10, and 11 
show that inelastic behavior is observed at and below the prior max­
imum stress level. This is especially true for Figs. 7,10, and 11. Figs. 
10 and 11 also indicate that inelasticity develops differently in loading 
and unloading. 

In the unloading leg, beginning at some stress level below the 
maximum stress (see Fig. 7), a nearly rate-independent linear be­
havior is observed which in this material extends to and beyond the 
zero stress axis. It appears therefore that during unloading a region 
of almost elastic behavior is present akin to the behavior obtained at 
the origin upon initial loading. 

The observed creep behavior in Fig. 11 is at variance with creep 
theories which assume that creep rate depends only on creep strain 
and stress. It can be explained by requiring that the creep rate de­
pends on overstress [15-17]. 

The type of control influences the unloading behavior considerably. 
When a low stress rate is used "creeping out" is observed during un­
loading, which can be considerable (Figs. 4 and 3). No such creep effect 
is possible in strain control. Constitutive theories should account for 
this bias between stress and strain control. 

Comparison With Experiments on AISI Type 304 Stainless 
Steel. Although AISI Type 304 SS is a low-strength, high-ductility 
material, its inelastic behavior [1, 2] is similar to this high-strength, 
low-ductility Ti-alloy.7 The stress levels are quite different in the two 

7 All tests with the Ti-alloy were terminated at strains of approximately 7 
percent. Small cracks were usually observed around this strain. Strains greater 
than 40 percent are needed for Type 304 SS before necking starts. 

cases; however, the relaxation, the strain rate-stress change behavior 
and the unloading behavior are qualitatively the same. These findings 
suggest that the viscoplastic model based on total strain and overstress 
[15-19] is capable of qualitatively reproducing the observed be­
havior. 
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An Isoparametric Finite Element 
With Nodal Derivatives 
A finite element using the nodal point values of the first partial derivatives of the un­
known function with respect to the coordinates to increase the order of the resulting inter­
polating polynomial is formulated as an isoparametric element. The shape functions in 
local coordinates are given and then to satisfy requirements for the transformation of de­
rivatives are modified for use with the global coordinates. Examples of a cantilever beam, 
a curved cantilever beam, and a flat bar with a hole demonstrate the high-order capabili­
ties of the element. The advantages of the element over other isoparametric elements are 
discussed. 

Introduction 
Most of the higher-order finite elements in use are constructed by 

the addition of nodes. If the interpolation polynomials known as shape 
functions can be defined so as to express the desired function, typically 
displacement, in terms of the nodal values of the function, the element 
is generally usable. Another technique used to develop a higher-order 
element is to express the desired function in terms of the nodal values 
of the partial derivatives of the function with respect to the coordi­
nates in addition to those of the function [1-3]. 

The former procedure is usually preferred in that the same shape 
functions can also be used to describe the mapping from local to global 
coordinates. When finite elements are so constructed, using one set 
of shape functions, the element is called isoparametric [4]. Isopara­
metric elements have the distinct property that each node defines a 
point in space as well as a value for the desired function. 

The latter procedure has used other techniques to describe the 
mapping from local to global coordinates [5-7]. This can result in 
subparametric or superparametric elements in that either extra nodes 
for defining the geometry or a different order of interpolation function 
for the geometry or both are utilized. The element described herein 
uses derivatives to achieve higher-order interpolating functions and 
also maintains the concept of isoparametric elements. 

Theoretical Development 
The two-dimensional quadilateral element (Figs. 1 and 2) has four 

corner nodes. At each node, two displacement components and their 
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Fig. 1 Quadilateral shaped element In local coordinate system 

Fig. 2 General four-sided element in global coordinate system 
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first partial derivatives with respect to the local coordinates (U, Ua, 
Up, V, Va, Vfi) are defined thus, allowing a total of six generalized 
displacements. The shape functions defining the displacements (U 
and V) in terms of the nodal point values of displacement and the first 
partial derivatives with respect to the local coordinates are developed 
using matrix inversion [8] in conjunction with a Taylor series ex­
pansion [9]. The interpolating polynomial functions for the dis­
placements expressed in the generalized coordinates a; and 6; are 

U = ao + a\a + 02/? + 03a2 + a4aj3 + as/?2 + a 6 a 3 + aqoPfl 

ia/32 + a9/33 + ai0a3 |8 + ana^ ( la) + a8a|82 + 

and 

V = 60 + 61a + 62|8 + bsa
2 + biafi + b$2 + b6a

a + bna
2fi 

+ b8a/32 + b9p
3 + bwa^ + buaff3 (lb) 

The generalized coordinates are found by evaluating the polynomial 
and its first derivatives at each of the four nodes, and then inverting 
the resulting simultaneous equations. Substituting into equation (1) 
and grouping terms according to the 12 nodal displacements and 
derivatives results in the following shape functions: 
For U and V: 

Ni = -(1 + a 0 ) ( l + /3o)(2 + a0 - a2 + ft, - ft2); i = 1, 4, 7,10 

(2a) 

For Ua and Va: 

Ni = - - ( l + a 0 ) ( l + A > ) ( l - a 2 ) a ; ; £ = 2,5,8,11 (26) 
8 

For Up and Vf 

Ni = - - ( \ + «o)d + ft>)U - /3 2)f t ; £ = 3, 6, 9,12 (2c) 

where 

and 

a 0
: /So = 0 f t 

of,- = ±1 ft = ±1 . 

The displacements are expressed in terms of the nodal displace­
ments and derivatives in local coordinates by 

(MA 

U = [N] (3a) 

and 

V=[N] (3b) 

where 

• £ = 1, 2, 3, 4 (3c) 

and 

V 

Va\ £ = 1,2,3,4 (3d) 

Since the values of the first derivatives of the displacements with 
respect to the global coordinates differ from those of the first deriv­
atives of the displacements with respect to the local coordinates, it 
is necessary to modify the shape functions derived in local coordinates 
in order that the global nodal displacements and their first partial 
derivatives with respect to the global coordinates can be used. 
Thus 

Ni* = Ci(Ni) £ = 1,2, . . ,12 (4) 

where Ni* is the modified shape function and C; defines the trans­
formation on the original shape function iV,-. For the displacements 

CdNt) = N( i = 1,4, 7,10. (5) 

For the shape functions associated with the derivatives of the dis­
placements the chain rule gives 

_dU__Wdx_ ^U_^y__j,^ a *L 
da bx da dy da da da 

(6a) 

and 

Ua = —- = H = Ux —— + Uv — (6b) 

The partial derivatives of the global coordinates with respect to the 
local coordinates are evaluated by isolating the element boundaries 
that intersect at the nodal point associated with the given shape 
function. For example, at nodal point 1 the boundaries are defined 
in local coordinates by /? = — 1 and by a = — 1 (Fig. 1) and corre­
spondingly in global coordinates by y - F(x) and x = G(y), respec­
tively, where F and G are third-order polynomials. 

For /3 = — 1, the global abscissa of the boundary can be expressed 
(nonuniquely) in terms of the local coordinates by 

* 2 - • Xi X2 + * l 
— a H . (7) 

(This expression is chosen since it is identical to the x-a relationship 
for a curve-side boundary of an isoparametric element if the boundary 
is formed by nodes having evenly spaced global abscissa.) 

Taking the derivative of x with respect to a gives 

where 

dx _ h2 

da 2 

h.2 = Xi - xi. 

(8) 

Since the global ordinate of the boundary is defined as a third-order 
polynomial in terms of the global abscissa, the chain rule gives 

dy _ dy dx 

da dx da 

Substituting (8) into (9) gives 

F'(x): 
dx_ 

da 

^^F'(x). 
da 2 

(9) 

(10) 

Similarly, for a 
gives 

—1, using the global ordinate of the boundary 

.Nomenclature. 
B = strain-displacement transformation 

matrix 

Ci = transformation on shape functions 

D = stress-strain transformation matrix 

F,G = third-order polynomial functions 
h = vertical or horizontal projection of an 

element side 
K = stiffness matrix 
Ni = shape function 

Ni* = modified shape function 

U, V = displacements 

x, y = global coordinates 

a, /3 = local coordinates 
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where 

Thus 

3y = ^ 3 

dfi 2 ' 

ha = y*-yi 

d/S 2 y 

(U) 

(12) 

For Derivatives: 

hi 
Ci(Ni)=—Ni 1 = 2 ,3 ,5 ,6 ,8 ,9 ,11 ,12 (166) 

The partial derivatives of the coordinates of the boundaries with 
respect to the global coordinates at the nodal points must be defined 
values just as the coordinates are defined values. Again examining 
nodal point 1 and the boundaries defined by a = — 1 and 0 = —1. 
For |S = - 1 , 

Substituting equations (6), (8), (10), (11), and (12) for each of the 
four nodes into equation (3) results in the following modified shape 
functions for the derivatives: 

Ci(Ni) = -Nt + — F'(Xj)Ni+1 i = 2, 5, 8,11; 

and 

j = (i + l ) /3 (13a) For a = - 1 , 

Ci(Ni)=^Ni+^G'(yk)Ni-1 
2 2 

i = 3, 6, 9,12; 

k = i/3. (136) 

where h2 = h& = x2 - xi, he = h9 = y3 - y2, hs = hn = x3 - x4, /13 = 
hi2 = yi~yi-

The displacements can now be expressed in terms of the nodal 
displacements and derivatives in global coordinates by 

/ ( U * h \ 

U = [N*] • 
l " * 3 

(14a) 

and 

'W*h 

V = [N*] • (146) 

where 

U*\; = • 

and 

\v*\i 

• i = 1, 2, 3, 4 (14c) 

i = 1, 2, 3, 4. (14d) 

If the element is isoparametric, then the shape functions given by 
(2) must also transform the geometry from local to global coordinates. 
For nodal point 1, using equations (8) and (11) and the chain rule for 
the coordinates gives 

and 

dx _bx dx _ h2 

da dx da 2 

_ dy £>y by hs 

y" = d~P = ^W-~tyy 

(15a) 

(156) 

Substituting equation (15) for each of the four nodes into equation 
(3) where now the displacements are replaced by the coordinates re­
sults in the following modified shape functions: 

For Coordinates: 

and 

Xx 

yx = 

% = 

yy 

dx 

dx 

dy_ 

dx 

dx 

dy 

_ dy 

~ ?>y 

= 1 

F'(x) 

G'iy) 

= 1. 

(17) 

(18) 

(19) 

(20) 

The geometry of the element is now given b> 

X = [N*] • 

and 

Y = [N*] • 

\xh 

Mt 

Ms 

[xU 

{MA 
\yU 

Ms 
K\yU, 

(21a) 

(216) 

where 

1 

G'iyi) 

• ( = 1,2,3,4 (21c) 

and 

\y)i = 1,2,3,4. (21d) 

xt, yi, G'{yi), and F'(Xi) are specified values for each node of the ele­
ment. 

St i f fnes s M a t r i x 
The stiffness matrix is developed using the classical approach 

[K}= S[BF[D][B]dV (22) 

Ci(Ni) = Ni i = l , 4 ,7 ,10 (16a) 

where [K] is the stiffness matrix, [B] is the strain-displacement 
transformation matrix, [D] is the stress-strain transformation matrix, 
and V is the volume of the region. A procedure for evaluating this 
integral is given in reference [10]. 

E l e m e n t P e r f o r m a n c e 
Case 1. A cantilever beam (Fig. 3) is subjected to a concentrated 

load at the free end. A one element model is sufficient to give excellent 
results for the displacements and stresses. Since the partial derivatives 
of the displacements with respect to the coordinates can be con-
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strained or freed at the nodal points, the problem of the Poisson ef­
fects at the cantilever support is overcome with this element. 

Case 2. A curved cantilever beam (Fig. 4) is subjected to a con­
centrated load at the free end. A two element model gives very good 
results. The geometry of the element is approximated by a third-order 
polynomial on the boundaries. Expanding the equation for the curve 
of the beam into a Taylor series gives 

y = R{ sin 6 — h cot 0 + 
hP- h3cos 6 

2RiSm
a8 2fl;2sin50 

(23) 

where h is the distance from the starting point of the element side. 
For 6 = 90°, the curve is best approximated by a quadratic. Thus, 
when specifying the coordinate derivatives for noncubic boundaries, 
attention must be paid to the resulting polynomial curve. Unjudicious 
specification of nodal derivatives could result in undesirable S-shaped 
boundaries. 

Case 3. A flat bar with a circular hole (Fig. 5) is subjected to a 
uniform axial stress at the ends. The stress concentration factors 
found using a four element model are compared to those found pho-
toelastically by Frocht [11] for several variations in geometry (Fig. 
6). The element performed well except in the area of the discontinuity 
of the stress concentration factor as would be expected. 

Conclusion 
When compared to the four node quadilateral isoparametric ele­

ment, the isoparametric element with derivatives described gives 
higher-order accuracy for rectangular and quadilateral elements but 
requires no additional input. For curved-side boundaries only are the 
two slopes at each node given in equations (10) and (12) required as 
extra input. This allows much flexibility in describing the boundary 
elements while maintaining the ease of input for the internal quadi­
lateral elements. Continuity of stress and strain is maintained at the 
nodes. Thus displacements and stresses are specified at the same 
points, the nodes. Additional information such as rotations, normal 
strains, and shear strains is also available at the nodes. This method 
is easily extended to the three-dimensional case. 

It should be noted, however, that elements that use nodal deriva­
tives suffer the disadvantage of not being suitable for those cases 
where strain discontinuities exist at element interfaces. For example, 
material or thickness changes would require special treatment of the 
derivative degrees of freedom at the interface nodes. 
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Finite-Element Solution of Elastic-
Plastic Boundary-Value Problems 
It is demonstrated that elastic-plastic failure states may be captured in finite-element 
models by employing (1) the elastic-plastic material stiffness to form the global stiffness, 
(2) reduced/selective integration techniques to alleviate mesh "locking" due to incom-
pressibility, and (3), in the case of symmetrical configurations, an imperfection in the 
form of a weak element. 

Introduction 
It is the objective of the theory of plasticity to offer a mathematical 

description of the mechanical behavior of rate-independent materials 
in the plastic range. The theory follows the well-established precedent 
set by the theory of elasticity. Its recent popularity stems from its 
extreme versatility and accuracy in modeling real engineering material 
behavior. The origin of the theory dates back to a series of papers by 
Tresca in the 1860's in which he proposed the maximum shear stress 
criterion for the yielding of metals. The actual formulation of the 
theory was made by Saint Venant and Levy in 1870, Prandtl in 1924, 
and Reuss in 1930. References to early works on the subject may be 
found in [4]. 

Early works in plasticity only dealt with the simplest class of plastic 
materials, viz., isotropic elastic-perfectly plastic materials. In that 
case, the behavior of the real material is idealized by assuming that 
it behaves like a linear isotropic elastic solid until the shear stress 
reaches a critical intensity defined by the yield criterion, after which 
it flows plastically. Although this theory is the simplest, no general 
analytical method could then be developed for solving general 
boundary-value problems involving an isotropic elastic-perfectly 
plastic solid body. Until recently, exact solutions had only been ob­
tained for trivial problems which are one-dimensional or ones which 
involve proportional loading conditions. The recent development of 
numerical techniques such as the finite-element method has now 
rendered possible, in principle, the solution of any properly posed 
boundary-value problem in continuum mechanics. Numerous nu-
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merical solutions for elastic-plastic problems have thus been proposed 
in the recent literature. However, it appears that many of these so­
lutions are deficient 

1 In not converging toward a limit load (when such a limit load 
exists) but rather rising steadily and attaining values far in excess of 
the true limit load. 

2 In not exhibiting localization of deformation phenomena when 
such localizations should occur. 

The fact that the numerical solution does not exhibit a limit load or 
too high a limit load, indicates that the computed stiffness is larger 
than it should be and/or does not become singular when it should. A 
possible cause for this was pointed out in [11] and is related to the fact 
that special care must be taken in the numerical formulation in order 
to be able to handle the incompressible plastic flow which takes place 
at failure. New techniques have now been devised to deal successfully 
with incompressibility constraint requirements [7]. However, even 
when using these techniques, numerical solutions have not seemed 
capable of capturing localization phenomena, thus prompting several 
investigators [5,15], to devise special purpose finite-element proce­
dures. 

It is the purpose of this paper to: 

1 Investigate the ingredients necessary to capture failure states 
accurately by numerical methods. 

2 To demonstrate that limit loads and localization phenomena 
can be captured successfully by finite-element models. 

For simplicity, attention in this presentation is restricted to small 
strains/deformations only. As for notation, boldface letters denote 
vectors, second-order and fourth-order tensors in three dimen­
sions. 

Preliminaries 
The form of the plasticity equations first proposed by Melan [10] 

in 1938 is given as follows: 

(L)P (1) 

in which d = symmetric part of the velocity gradient; P = dimen-
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sionless symmetric second-order tensor normalized in such a way that 
P:P = 1 and such that P gives the direction of plastic deformations; and 
a superscript p is used to denote plastic rate of deformations. In 
equation (1), L is the loading function, 

L = — Q:i (2) 
H' 

in which H' = plastic modulus; i = material rate of Cauchy stress; Q 
= dimensionless symmetric second-order tensor normalized in such 
a way that Q:Q = 1 and such that Q is the outer normal to the yield 
surface in stress space; and the symbol () denotes the MacCauley's 
bracket, viz., (L) = L if L > 0, otherwise (L) = 0 . For a plastic 
hardening case, H' > 0, whereas H' < 0 for a softening case. When H' 
= 0, a perfectly plastic case is obtained. 

Before proceeding any further, it is of importance to note that, as 
a consequence of the normality rule the plastic fourth-order flexibility 
tensor is equal to the outer product of the two second-order tensors 
P and Q. The plasticity equations alone are therefore singular, and 
cannot be inverted to yield a purely plastic material stiffness. In order 
to be able to derive such a stiffness, the material's elasticity must also 
be taken into account. It is a fundamental assumption of the theory 
of plasticity that the total rate of deformation tensor in the plastic 
range may be decomposed into the sum of elastic and plastic rates of 
deformation. 

In order to be able to separate the contributions of the elastic and 
plastic properties in the total deformation, it is commonly assumed 
that the elasticity of the material is isotropic and linear. Anisotropic 
and nonlinear effects are assumed to be due to the material's plas­
ticity. The resulting elastic-plastic flexibility tensor is nonsingular 
and can be inverted to yield the material's stiffness as 

in which 

E„bcd = A5 a ( ,S c , i + Gi&ac&bd + &ad&bc) (4 ) 

denotes the elasticity tensor; and A, G = Lame's constants. Note that 
when P ^ Q (i.e., a nonassociative plastic flow rule is used), the C 
tensor does not exhibit the major symmetry and therefore leads to 
a nonsymmetric stiffness matrix. On the other hand, when P = Q (i.e., 
an associative plastic flow rule is used), the C tensor possesses the 
major symmetry and leads to a symmetric stiffness matrix. For the 
simple case of an isotropic elastic-plastic material which yields ac­
cording to the von Mises criterion [4], viz., 

§ s : s - f c 2 = 0 (5) 

where s = t - J trace (t)l = deviatoric stress tensor, equation (3) 
simplifies to 

or* fjjt o 

t = 2Gd + A(trace d)l - 2G s(s:d) (6) 
1 + 2G/H' 2fe2 

for an associative plastic flow rule. 

Limit Load 
A state of failure is reached when deformations start to occur under 

constant surface tractions. For the elastic-plastic solid body to 
eventually reach such a state, the material stiffness must be singular, 
i.e., 

C:d = 0 (7) 

must possess a nontrivial solution, so that the global stiffness of the 
solid body may be singular. 

Assuming Q:E:P ^ 0, it may be seen that the material elastic-plastic 
stiffness is singular if//' = 0. This follows by showing that 

X:C:X = 0 (8) 

where X is a nonzero, symmetric second-order tensor. Taking X = Q, 
equation (3) yields 

Q:E:Q 
Q:C:Q = H' (9) 

/ / ' + Q:E:P 

which is zero if / / ' = 0. 
It is therefore apparent that if the correct limit state is to be de­

tected by the numerical solution, it is helpful to use the elastic-plastic 
material stiffness rather than any other algorithmically convenient 
stiffness to form the global stiffness (as in initial-stress-type methods). 
However, to advance the solution into the post-bifurcation regime 
requires algorithmic strategies which are not considered herein. 

Localization Phenomena 
The basic theoretical principles for understanding the localization 

phenomenon are contained in references [1-3, 8,14,16], where it is 
shown that its existence in elastic-plastic solids is contingent upon 
the loss of ellipticity of the velocity equations of equilibrium, i.e., lo­
calization is to occur when [3] 

det (n • C • n) = 0 (10) 

in which det = determinant, and n = unit vector, whose orientation 
defines a characteristic curve for the equations of continuing equi­
librium (CabcdVc,d),a = 0, where v = spatial velocity. For an elastic-
plastic material, equation (10) imposes that [14] 

— = 2n • P • Q • n - (n • P • n)(n • Q • n) - P:0 
2G 

[(n • P • n) - trace P][(n • Q • n) - trace Q] (11) 
A + 2G 

It is of importance to note that the plasticity equations of equilib­
rium are the ones which lose ellipticity. This again suggests that if 
localization phenomena are to be captured by the numerical solution, 
it is helfpul to use the elastic-plastic material stiffness rather than any 
other algorithmically convenient stiffness. 

Numerical Examples 
In the following sections, a number of examples are presented which 

demonstrate that both limit loads and localization phenomena in 
elastic-plastic solid bodies may be accurately captured by a finite-
element solution of the velocity equations of equilibrium. For that 
purpose, the finite-element code DIRT [6] is used. Elastic-plastic 
equations lead directly to the definition of tangent stiffness matrix 
(see, e.g., [9]), and an incremental predictor-corrector-type algorithm 
is adopted [6]. The element and material model libraries are modu­
larized and may be easily expanded without alteration of the main 
code. The present element library contains a two-dimensional element 
with plane stress/plane strain options, and a three-dimensional ele­
ment. Full finite deformation effects may be accounted for. A contact 
element is also available for two and three-dimensional analysis. The 
present material library contains a linear elastic model and various 
elasto-plastic and soil models. Some features which are available in 
the program are 

• Both symmetric and nonsymmetric matrix equation solvers. 
• Reduced/selective integration procedures, for effective treat­

ment of incompressibility constraints [7]. 

In the following calculations, the four node bilinear isoparametric 
element was used with the standard selective integration scheme [6, 
71. 

1 Localization of Deformations Into Shear Bands. Numerical 
results which illustrate the phenomenon of localization of deformation 
into shear bands for a rectangular block constrained to plane defor­
mations and subjected to tension in one direction are presented 
hereafter. 

In order to make the study quite specific, the material is modeled 
as an incompressible isotropic elastic-plastic Prandtl-Reuss material 
(equation 6)). Fig. 1(a) shows the two-dimensional finite-element 
representation of the tensile specimen. The grid consists of 171 bi­
linear isoparametric rectangular elements. The specimen length-
to-width ratio is equal to two, and 9 elements are placed across the 
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width. Uniform longitudinal end displacements are prescribed, and 
no shearing tractions are applied. The lower left corner of the speci­
men is fixed, and the loading is accomplished by imposing increments 
of displacement at the upper end of the specimen. 

For the particular case of the Prandtl-Reuss material, loss of el-
lipticity of the velocity equations of equilibrium in the small defor­
mation regime is achieved simply by selecting a plastic modulus less 
or equal to zero. The best numerical results were obtained for H' < 
0, and in the following H'/2G = -0.048. The corresponding angle for 
the plane of localization is then 38.7°. The assumed stress-strain curve 
is shown in Fig. 1(6). 

In a first attempt to obtain localization, both the material properties 
and the end displacements were taken as uniform. These conditions 
resulted in smooth and continuously varying deformation patterns 
well into the softening range, but no localization occurred because of 
the symmetry of the loading, geometry, and homogeneity of the ma­
terial properties. This result may be interpreted by recalling that the 
loss of ellipticity is a necessary but not a sufficient condition for lo­
calization. Some type of nonuniformity (perturbation) is necessary 
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in order to trigger the phenomenon. In the following, localization is 
achieved by introducing a weak element which plays the role of a local 
"imperfection" in the material properties. This element is located 
either at the center (series C) or at the side (series D} of the specimen 
as shown in Fig. 1, and its plactic modulus is such that H'/2G = —1/3. 
Typical results are shown in Figs. 2-5. The spreading of the plastic 
zone is indicated by a shaded area. In both Figs. 2 and 3, the imper­
fection is located at the center of the specimen. In Fig. 2 it has a yield 
strength 5 percent smaller than the surrounding material. In Fig. 2(a) 
the axial strain = 0.099 percent, and only the weak element has 
yielded. Upon further loading, localization occurs and as shown in Fig. 
2(6) (axial strain = 0.101 percent) results in a very symmetrical pat­

tern. This pattern was found to remain stable upon further loading 
and the specimen failed by necking. In Fig. 2(e) (axial strain = 0.150 
percent) a slight nonuniformity in the end displacements was intro­
duced to break this symmetry. This was achieved by making the upper 
right-hand corner longitudinal displacement 1 percent larger than 
the remaining. By comparing Figs. 2(b) and 2(c), it is apparent that 
as a result, some elements unloaded and one shear band emerged. 
Note that the angle of the slip line is close to the predicted value 
38.7°). In Fig. 3, the imperfection has the same strength as its sur­
rounding. In Fig. 3(a), the axial strain = 0.100 percent, and all the 
elements have yielded. In Figs. 3(6) and 3(c), the axial strain = 0.103 
percent and 0.120 percent, respectively. Note that the localization ; 
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pattern is very different from the one found in Fig. 2. Again this is 
stable, and the subsequent failure of the specimen is illustrated by 
Fig. 3(c). In both Figs. 4 and 5, the imperfection is located at the side 
of the specimen. In Fig. 4 it has a yield strength 5 percent smaller than 
the surrounding material. In Fig. 4(a), the axial strain = 0.099 percent. 
Upon further loading, localization takes place and leads to the for­
mation of two symmetrical slip lines as shown in Fig. 4(6) (axial strain 
= 0.101 percent). However, this configuration is not stable, and upon 
further loading, only one shear band remains as shown in Fig. 4(c) 
(axial strain = 0.140 percent). In Fig. 5 the imperfection has the same 
strength as its surrounding and this leads directly to one shear band 
as shown in Fig. 5(6) (axial strain = 0.102 percent). Again, note that 
for all cases, the angle of the slip line is very close to the predicted 
value (38.7°). 

2 Failure States. In order to demonstrate that finite-element 
solutions can capture failure states accurately, i.e., both limit loads 
and localization phenomena, numerical results for the classical punch 
problem [4,12,13] are presented. 

The material is the classical incompressible isotropic elastic-per-
fectly plastic Prandtl-Reuss material (equation (6) in which H' = 0) 
and Fig. 6 shows the two-dimensional finite-element representation 
of the problem geometry and the notation. The punch is represented 
by a strip of elements ten-thousand times stiffer than the supporting 
medium. Loading is achieved by the centered vertical force F. the 
computed load-displacement curve is shown in Fig. 7, where c = k/y/Z 
= simple shear strength. Note that the failure load is very accurately 
captured by the numerical solution. Fig. 8 shows the computed ve­
locity field at failure when the medium is initially perfectly homoge­
neous. Note that again localization could not occur because of the 
symmetry of the loading, geometry and homogeneity of the material 
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Fig. 8 

• Prandti Solution 

Fig. 9 

properties. Fig. 9 shows the computed velocity at failure when a small 
inhomogeneity has been introduced by placing two weak elements 
(H'/2G = —V3) in the line of the foundation as shown in Fig. 6. The 
load-displacement curve in that case remains identical to the one 
obtained for the homogeneous deposit. However, note that at failure 
in that case, localization of the deformations takes place and the 
computed velocity field very accurately follows the classical slip line 
solution [13]. 
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Summary and Conclusions 
I t is shown in this paper t h a t finite-element models of elastic-plastic 

boundary-value problems can accurately represent failure s tates when 

the elastic-plastic mater ial stiffness is used to form the global stiffness, 

a n d reduced/se lec t ive in tegra t ion t echn iques are used t o alleviate 

m e s h locking due to incompressibi l i ty . In order t o trigger t h e local­

izat ion of t h e de fo rmat ions a t failure in symmet r i c p rob lems , a n d 

cap ture the correct slip line field, a local material imperfection is used 

in t h e form of a weak e lement . However , it is of in te res t to no te t h a t 

t h e use of such local imperfect ions seems to be necessary only ftfr 

s y m m e t r i c p rob lems . As shown for ins tance in [17], f in i te-e lement 

models c a p t u r e failure s t a t e s accura te ly w i thou t any such p e r t u r b a ­

t ions in n o n s y m m e t r i c p rob lems . 
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Asymptotic Distributions for the 
Failure of Fibrous Materials Under 
Series-Parallel Structure and Equal 
Load-Sharing1 

Asymptotic distributions are obtained for both the strength and the time to failure of a 
fibrous material for which mild bonding or friction exists between fibers. The analysis is 
based on the chain-of-bundles probability model, and equal load sharing is assumed for 
the nonfailed fiber elements in each bundle. Asymptotic results are obtained for the diffi­
cult but useful case where k, the number of bundles in the chain, grows very rapidly with 
respect to n, the number of fibers in each bundle. For both strength and time to failure, 
a classical extreme value distribution is found to be the asymptotic distribution, and the 
parameters are given in terms of certain fiber properties. The results apply to long, flexi­
ble fibrous structures such as yarns and cables. 

1 Introduction 
The fibrous materials of interest in this paper are long and flexible, 

and consist of strong fibers aligned in parallel. Very mild bonding or 
friction exists between fibers, as would be the case in long flexible 
cables, or in yarns with low twist. When an axial load is applied to the 
material, fibers break in a random manner, and the total load is dis­
tributed across the unfailed fibers according to some load-sharing 
mechanism. We will assume that the statistical failure characteristics 
of a single fiber are known for any given time varying load, and our 
problem is to determine the corresponding characteristics for the fi­
brous material. 

Because of the mild bonding or friction between fibers, a broken 
fiber becomes fully inoperative only over a region which is small rel­
ative to the total material length; indeed, the fiber is capable of sup­
porting almost all its original load at only a short distance from the 
break. It is this localization of the effects of failure which is responsible 
for the high strength of such materials. Thus we model the material 
as a chain of k statistically and structurally independent bundles with 

7(D 

2 3 . . . k 

•J(\) 

J - TOTAL APPLIED LOAD 

L - NOMINAL LOAD PER FIBER (L=J/n ) 

8 - FIBER INEFFECTIVE LENGTH (BUNDLE LENGTH) 

EQUAL LOAD SHARING AMONG SURVIVING FIBERS 

WITHIN BUNDLES 

Fig. 1 Series-parallel model for the failure of a fibrous material in the form 
of a chain of fc bundles with n fiber elements per bundle; failure of the material 
occurs with the failure of the weakest bundle 
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n fibers in each bundle as shown in Fig. 1. The length 8 of each bundle 
is the length of this ineffective region for a broken fiber. 

For each bundle, we will assume the simplest load sharing rule 
which is equal load-sharing; that is, at any time the total load is dis­
tributed equally over all unfailed fibers, with the failed fibers carrying 
no load. This assumption is most appropriate for a bundle of straight, 
parallel fibers of equal length in which there is no physical contact 
among the fibers, but we make this assumption in the present case 
of mild bonding or friction between fibers. However, in the case of stiff 
composite materials where the fibers are encased in a matrix material 
thus causing the bonding among fibers to be much stronger, this as-
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sumption of equal load sharing must be replaced by what is called 
local load-sharing. In this case, the mechanics of fiber/matrix inter­
actions comes into play, and the load redistribution is concentrated 
on fibers which are immediate neighbors to the failed fibers, while 
more distant fibers in the lateral direction remain unaffected. The 
mathematical analysis for this case proceeds in a very different di­
rection from that considered here. For further discussion, the reader 
is referred to Harlow and Phoenix [1-4]. Here, all analysis will be 
under the equal load-sharing rule. 

The early work on the model of this paper was performed in classic 
studies by Daniels [5] in the static case, and Coleman [6-9] in the 
time-dependent case. Daniels and Coleman obtained important as­
ymptotic results for certain cases involving single bundles of in­
creasing size n, and recently Phoenix [10, 11] has extended the as­
ymptotic results in the broader time-dependent framework proposed 
by Coleman [9]. The latter paper [11] of Phoenix ties together the 
models of Coleman and Daniels, these being distinct for the most part; 
Daniels' static model is actually not a special case of the time-de­
pendent model on which Coleman performed the bulk of his work. 

In this paper, we obtain asymptotic distributions for both the 
strength and the time to failure of the fibrous material; that is, of the 
chain-of-bundles. The results will be asymptotic as both n the number 
of fibers and k the number of bundles increase indefinitely together, 
but most important, we seek results for the most useful and difficult 
case where k increases rapidly with respect to n. The fibrous material 
is thus long and slender, as yarns and cables typically are. 

We begin with a brief description of the three versions of the model 
that we consider. These versions differ with respect to the assumptions 
made about the failure of a single fiber. The first model is based on 
that of Daniels for static strength, ignoring fatigue. The remaining 
models are all extensions of Coleman's model for time to failure in­
corporating fiber fatigue. In each case, we summarize earlier asymp­
totic results for single bundles. As bundle size n increases, an as­
ymptotic normal distribution occurs for both single bundle strength 
and time to failure in fatigue, and we give the distribution parame­
ters. 

Next, we focus on the analytical difficulties in determining the 
asymptotic distribution for the strength or time to failure of the chain 
oik bundles, as both k and n increase. Since failure of the chain occurs 
when the weakest bundle fails, the problem becomes one in the realm 
of the asymptotic theory of extreme order statistics, wherein the lower 
tails of the bundle distributions dominate in importance. Now, on 
the one hand, we have classic, asymptotic results in extreme value 
theory which would apply under the normal distribution for the k 
variates. On the other hand, we have asymptotic normal distributions 
for bundle failure as n -> <*>, the exact distributions being essentially 
unknown. The key question is "As n - • °>, under what conditions on 
the increasing of k with respect to n may we replace the (unknown) 
exact distributions for bundle failure with the corresponding (known) 
asymptotic distributions in this extreme value analysis?" 

To further understand the nature of these difficulties, we discuss 
certain ramifications of the central limit theorem, paying particular 
attention to the rates of convergence of the asymptotic distributions 
to the exact distributions, both in an absolute sense and in a relative 
sense. We will see that it is the relative error in their respective lower 
tails that is important, and this draws us into the framework of large 
deviations theory as developed by Cramer and Petrov [12]. We will 
quote certain relevant results for later use. 

Next, we focus on the Poisson limit law to gain a deeper under­
standing of certain technical aspects of the extreme value analysis, 
and to introduce the key asymptotic distributions which ultimately 
arise for the failure of the fibrous material. 

Finally, we obtain the main asymptotic results of the paper. It is 
found that both the strength and failure time of the fibrous material 
have an asymptotic distribution function of the form 1—exp (— exp 
[(y — bn)/an]\ where the parameters an and bn are given explicitly in 
each case. To a large extent, this form is a consequence of the equal 
load-sharing assumption and the asymptotic normality it yields for 
bundle strength. Elaboration on certain technical details, which are 
required in the light of the preliminary discussion, are reported 

elsewhere by Smith [13,14]. We conclude with an example which re­
veals some practical ramifications of the main results. We also discuss 
some additional results obtained by other authors. In particular, the 
calculations of Giicer and Gurland [15], whose model is actually the 
chain-of-bundles model in Daniels' static setting take on a new 
strength as we now justify certain steps in their analysis. 

2 T h e S e r i e s - P a r a l l e l Mode l and E a r l i e r R e s u l t s 
To reiterate, the fibrous material is a parallel structure of n fibers, 

and is partitioned into a series of k short sections or bundles of length 
5. Thus the material is viewed as a chain of k bundles with n fiber el­
ements per bundle, and its total length is / = kb. 

A total load JL is applied in tension along the axis of the structure, 
and in general this load will be time varying. But to compare results 
for different bundle sizes n, we speak in terms of the applied load L 
= JL/n, so that L is the nominal load per fiber in the bundle. In the 
static case, we focus on the strength which is the largest load L that 
the structure supports, and in the time-dependent case, we focus on 
the time to failure given the load L as a function of time. The k bun­
dles are structurally and statistically independent, and failure of the 
fibrous material occurs when the first bundle fails. 

At any time, the nonfailed fiber elements in each bundle share the 
total load X equally, and failed elements carry no load; earlier, this 
was referred to as the equal load-sharing rule. Thus, if i of the n fiber 
elements in a bundle have failed, each surviving element supports the 
higher load nL/(n — i) rather than the nominal value L. 

2.1 The Static Strength of Single Bundles. We now consider 
the static case, and summarize Daniels' asymptotic results for a single 
bundle [5]. If the individual fiber strengths are denoted by Xi, 
X% ..., Xn, and we let X(D £ X&) = • • • - X(n) be these strengths 
arranged in increasing order, then the bundle will support the load 
L if L £ X(D or nL/(n — I) £ X(2) o r . . . or nL s X(ny, if none of these 
inequalities are satisfied, the bundle will fail. Thus the bundle 
strength Vn is given by 

KM X (2), 
~n]Xln) (1) 

The distribution function of L'm which we denote hyF'n(x) = Pr(L^ 
£ x \, is desired under the assumption that the fiber strengths Xi,..., 
Xn are independent random variables with common distribution 
function F(x),xs:0. While no compact expression was found for F*n{x) 
for large n, Daniels showed that the bundle strength L'n is asympto­
tically normally distributed with known parameters. One verion of 
his result is as follows [13]: 

Theorem 2.1. Assume F(x), x g 0 is continuous with F(0) = 0 and 
Sox2dF(x) < ». Let 

M * = s u p { x [ l - F ( x ) ] : xgO), (2) 

that is, fi* is the maximum value achieved by the function x[l — F(x)] 
as x £ 0 is increased indefinitely. Also, let x* be the value of x where 
this maximum is attained, and assume x* is unique and positive. Fi­
nally, let 

a* = x*[F(x*)(l - F(x*))] 1/2 (3) 

Then for all real z 

F'n(n* + n~1/2a*z) ~* $(z) (4) 

as n - • a> where $(z) = (27r)~1/2J"L„ exp (~t2/2)dt is the standard 
normal distribution function with mean zero and variance one. 

Thus the bundle strength L* is asymptotically normally distributed 
with mean n* and standard deviation o*/\/~n. The asymptotic mean 
H* is easily appreciated upon considering a very large bundle. If the 
load in each surviving fiber is x, the fraction of surviving fibers is 1 
— F(x), and thus, the applied load L is approximately x[l — F(x)]. 
Maximizing x [1 — F(x)] by varying x a 0 will approximately yield the 
bundle strength L'n, since the standard deviation cr*/y/n is small for 
large n. Later, we will see that the convergence implied by (4) is in­
sufficient for our purposes. 

2.2 The Time to Failure of Single Bundles. The model of the 

76 / VOL. 48, MARCH 1981 Transactions of the ASME 

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



previous section is appropriate only when fiber fatigue does not occur 
to any appreciable extent. In this section, we discuss the time to failure 
of single bundles where the fibers fatigue under load. To do this, some 
mathematical model is needed for the probability distribution for 
failure of a single fiber under an arbitrary load history l(t), t gO. We 
concentrate on a class of models proposed by Coleman [6-9]; these 
have shown remarkable agreement with the experimental behavior 
of a variety of materials. 

In the simplest model [7, 8], the probability that a surviving fiber 
under current load / fails in the next infinitesimal time interval of 
length bt is given by n(l)&t + o(St) where the function K(X), the so-
called breakdown rule, is some positive and increasing function of x 
g 0. Then, the distribution for the failure time T of a single fiber 
subjected to the load history l(t), t g 0 is given by 

P\T £ t\ = 1 - e x p - C K(l(s))dt t g O . (5) 

The simplicity of this model stems from the fact that the hazard rate 
for the fiber at time t is simply «(£(£)), and does not depend on the load 
history prior to time t. In fact, under the constant load / > 0, the 
foregoing distribution function reduces to the exponential distribution 
with constant hazard rate K(1). These facts simplify the analysis for 
bundles because of this "memoryless property." 

Consider now a single bundle of n fibers subjected to the constant 
load L > 0 (total load X = nL). At first, each fiber bears the load L, 
but after j — 1 fibers have failed, the load on each survivor has in­
creased to nLI(n - j + 1) according to the equal load-sharing rule. 
Thus the hazard rate for the time Ynj, which is the time between the 
(j — l)th and the j t h failure, is simply the number of surviving fibers 
multiplied by the hazard rate for one fiber, that is, 

Kj =(n-j + l)K(nL/(n -j+ 1)). (6) 

Consequently, the distribution of Ynj is given by the exponential 
distribution 

P[YnJ£t\= 1 - e x p \-\n,jt\, t i O (7) 

for 1 £ j £ n, and moreover, the random variables Yn,i, Yn,% . . . , Ynjl 

are independent because of the memoryless feature. The time to 
failure Tn of the bundle is simply the sum 

* n ~ I- *n,j-
j ' = i 

(8) 

The function n(x) is often taken to be the power law breakdown 
rule 

K(X) = (xllaY, (9) 

where lo and p are positive constants, and p g 1 is assumed. Not only 
are the fatigue features realistic under this rule, but the analysis for 
bundles under time-varying loads is simplified greatly, as we see 
shortly. 

Under this power law breakdown rule (9), we have Xnj = (L/loYn/'in 
— j + l ) - p + 1 . Since Ynj follows the exponential distribution (7), it has 
mean \~j and variance X~3, so that the mean and variance of Tn are, 
respectively, 

E[Tn] = £ Kb 
J = l 

= ( L / W - " M - 1 £ i(n-j+ DAi] ' - 1 

y=i 

•{L/IQ)-" \ x"~ldx (as rc->-<») 
Jo 

p-Hlo/L)", (10) 

and 

n Var [T„] = n £ X ^ 

= ( L / y - ^ n - 1 £ [(n -j + D/re]2"-2 
(11) 

(2p - 1 ) - W L ) 2 ' . 

2dx (as n —- °°) 

(11) 
(Cont.) 

Because the bundle failure time Tn is the sum of the independent 
random variables Y n , i , . . . , Yn,n, we may apply the Liapunov form 
of the Central Limit theorem for sums of independent, nonidentically 
distributed random variables (Chung [16, page 200]) to obtain the 
asymptotic distribution of Tn. The result is that (T„ — 
E[Tn])/y/Vax [Tn] converges in distribution to a normal random 
variable with mean zero and variance one. Alternatively, Tn is 
asymptotically normally distributed with mean p~l(lolL)f and 
standard deviation {l0/L)"n-1/2(2p - 1)-1 / 2 . 

While (5) has permitted straightforward analysis, the implication 
of exponentially distributed life for a fiber under constant load is not 
realistic in most situations. To alleviate this difficulty, Coleman [9] 
proposed the more general model for the time to failure of a single 
fiber 

P\Tst] = G f /c(Ks))ds, (>0 . (12) 

where G(y), y g 0 is an arbitrary probability distribution function 
satisfying G(0) = 0. Thus, under constant load I, any distribution for 
fiber life is possible; (5) is the special case G(y) = 1 - e~y, y g 0. The 
difficulty is that under this model, the times Y„ , i , . . . , Yni„ between 
fiber failures in the bundle are no longer independent, and the fore­
going arguments do not hold; however, under very general assump­
tions, Phoenix [10] has recently demonstrated the asymptotic nor­
mality of Tn in this case too, and has discussed extensively the com­
putation of the asymptotic mean and variance. These results also 
apply to time-dependent load histories L ( ( ) , t s 0 (for instance, lin­
early increasing or cyclic loads) provided the power law breakdown 
rule (9) is assumed. 

We state some of these asymptotic results for bundles under the 
more general form (12) for single fibers. We make some further 
technical assumptions which are somewhat more restrictive than in 
Phoenix [10] but which are required later: 

(Al) G(x), x a 0 is a continuous distribution function with G(0) 
= 0 and J"o ezxdG(x) < <*> for some z > 0. 

(A2) K(X), x a 0 is continuous, increasing and unbounded with 
K{X) > 0 for all x > 0. Furthermore, for each fixed X > 0, the func­
tion 

¥ ( * ; X ) •• 
1/K(X/(1 - x)), 0 £ x < 1 

0, x = l 
(13) 

has a bounded, continuous second derivative on [0,1]. 
(A3) The bundle load program L(t), t g 0 is a continuously dif­

ferentiate function of t, and satisfiesL{t) > 0 for t > 0 and SoLitYdt 
= + <» for fixed p > 0. 

For the loading of the bundle, we consider two cases: 

Case 1: Constant load program L(t) = L > 0. 
Case 2: Arbitrary load program L(t) in conjunction with the 

power law breakdown rule K(X) = (xlloY, l0 > 0 and p g 2, and with 
L(t) satisfying Assumption (A3). 

Next, letg(£),0 s K l be the right-continuous inverse of the dis­
tribution function G(y), y g 0, that is g(t) = inf \y:G(y) > t}. (Es­
sentially, g(t) is the valueg satisfying G(g) = t. For example, the in­
verse of Giy) = 1 - e~y, y g 0 isg(t) = log [1/(1 - t)].) For X > 0 de­
fine 

M#(X) = - C V'(t;\)g(t)dt, 
Jo 

and 

<r#(X) = 2 J ^ 1 j"s(l - tW(s;\)W(f,\)dg(s)dg(t) 

where * ' = dV/dt. Finally, let 

(14) 

1/2 
(15) 
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F{(t) = Pr \Tn s t | (16) 

be the distribution function for the time to bundle failure Tn given 
the load program L(t), ( 2 0. Our result is as follows: 

Theorem 2.2 For Case 1 let tb = n*(L) and ab = a*(L). For Case 
2, define tb and ob by f'0

bL(s)Pds = ^t*(l) and ab = L(tb)~"aHXi, re­
spectively. Then, for all real z 

F{(tb + n-U*abz) - $(z) (17) 

as n —- °° where $(z) is the standard normal distribution function 
with mean zero and variance one. 

Thus the bundle time to failure Tn is asymptotically normally 
distributed with mean tb and standard deviation ab/yfn, a result 
which parallels Theorem 2.1 for the static case. The formulas for tb 

and crb are in a slightly different form from those in Phoenix [10], but 
are equivalent nevertheless. See Phoenix [17] for further applications 
of the above asymptotic results. In particular, for linearly increasing 
loads L(t) = Lot, £ = 0 where L0 > 0 is the loading rate, an asymptotic 
normal distribution is again found for bundle strength L*n but the 
asymptotic mean and variance now depend on the loading rate LQ. 
We point out that Daniels' static model is not a special case. 

We have obtained asymptotic normality for the strength and failure 
time of single bundles. The key question is "How close are the as­
ymptotic and exact distributions as n increases?" For single bundles, 
such error bounds are useful. But when considering asymptotic results 
for long chains of bundles, an error analysis is crucial particularly in 
the lower tails of the respective asymptotic and exact distribu­
tions. 

3 P r o x i m i t y of E x a c t and A s y m p t o t i c D i s t r i b u t i o n s 
for B u n d l e F a i l u r e 

We begin by considering some ramifications of the Central Limit 
theorem. This theorem states that if S„ = (Xi + . . . + Xn)/n where 
X\, X2,... are independent and identically distributed random 
variables with common mean fi and variance a2, then cfn = -\Zn~(Sn 

— ix)/a has an asymptotic normal distribution as n -* °°, with mean 
zero and variance one. Symbolically, if Fn(x) = P\Sn i i ) , i s 0 de­
notes the distribution function of Sn, then this result may be written 
as 

Fn(fi + n-
1/2az) — *(z) as n — <» (18) 

for any real number z. (Notice the similarity with Theorems 2.1 and 
2.2. The quantity Sn is analogous to L'n and to Tn.) 

This theorem is of great practical importance because it allows one 
to obtain a quick and accurate approximation of the distribution 
function Fn(x), x a 0 whenever n is reasonably large. The exact 
computation of Fn (x) is typically laborious, however the Central Limit 
theorem suggests the approximation 

Fn(x) = $(^Jn~(x-iL)/cr) (19) 

which is easily used since tables for the normal function $(x) are 
widely available. 

We now discuss two problems associated with the approximation 
(19). The first concerns the rate of convergence in an absolute sense. 
We know that the error is small when n is large, but how fast does the 
error approach zero as n —- °°? How large must n be for the approxi­
mation to reach a desired level of accuracy? These questions are an­
swered by the Berry-Esseen theorem which we now state. 

Berry-Esseen Theorem. Suppose, in addition to the afore­
mentioned assumptions for the Central Limit theorem, we have p = 
E [ | X . - - / t | 3 ] < » . Then 

\Fn(fi + n-Ui<rz) - $ (z) | < Zpo-tn-1'2 (20) 

for all n and real z. 
A proof is given in Feller [12, page 542]. 
Thus the Berry-Esseen theorem gives an explicit upper bound on 

the difference between the exact distribution function and its normal 
approximation uniformly in all z. It turns out that the explicit formula 
(20) is not often used in practice because it tends to overestimate the 
actual error considerably. But the most important feature of the result 

is that, as n —* «>, the error decreases to zero at the rate n~1/2. The 
key question is: "Will a similar rate of decrease occur for the normal 
approximations to the distribution functions for the failure of single 
bundles?" In practice, the normal approximation is widely used for 
n as small as 30 or 40, though of course, this depends on the use to 
which the approximation is to be put as we now see. 

The second kind of problem associated with the approximation (19) 
is not resolved by the Berry-Esseen theorem. This problem concerns 
events of very small probability. In such situations; the knowledge 
that the absolute error is small may be of little use. As an example, 
consider a chain consisting of k links. Let Y i , . . . , Yk be the strengths 
of the links, and assume these to be independent and identically 
distributed random variables with common distribution function 
G(y), y a 0. The strength of the chain is Mk = min ( Y i , . . . , Yjt), and 
has the distribution function 

Gfc(y) = l - [ 1 - G ( y ) ] * , y i= 0. (21) 

Now suppose we want the median strength of the chain, that is, the 
load m* for which Gk{m*) = 1/2. According to (21), this reduces to 
wanting the load m* for which G(m*) = 1 - (i)1/h *i 0.693/& when 
k is large. If k = 10,000, m* must solve G(m*) = 0.0000693, the 
right-hand side of which is a very small number. Now, if we only have 
an approximation for G{y), say G(y), and we know |G(y) - G(y)| 
< 0.001 for all y, this is not useful when k = 10,000 because the relative 
error in estimating G(y) is 0.001/0.0000693 = 14.4 which is very high; 
we would be prone to making large errors in estimating the median 
strength m* when using G(y). But for one link (k = 1) the relative 
error is 0.001/(1/2) = 0.002, and an estimate of the median strength 
m* of one link is likely to be quite accurate. Obviously the situation 
worsens as k increases, and thus, accuracy further into the lower tail 
of G (y) is required. In this example, which is at the heart of the matter 
in this paper, the Berry-Esseen theorem is of no help because it only 
deals with absolute error while we are really concerned with relative 
error. 

Cramer-Petrov Theorem. The analytical tool for studying rel­
ative error in situations where the normal distribution approximates 
the true distribution, is the large deviations theory developed by 
Cramer and Petrov. A convenient formulation of the problem is as 
follows: Given a sequence z\, z% ... ,zn,... of positive numbers 
(which we denote by \zn}), under what conditions is it true that 

Fn(n - n - i « « „ ) / # ( - « B ) - 1 (22) 

as n —• 00? For (z„| bounded there is no problem, but if z„ -» °° (and 
thus - z „ - • — 00) then both the numerator and denominator in (22) 
tend to zero. 

In the case of the Central Limit theorem, the main result is as fol­
lows. Assume that Cramer's condition holds, that is, that the moment 
generating function of Xi, E[exp (sXi)], is finite for all s in some in­
terval (—A, A), where A > 0. (This assumption implies that all mo­
ments of X( are finite, so it is a much stronger assumption than those 
made previously.) Then (22) holds if n~1/6zn -* 0. For a proof see 
Feller [12, page 548]. 

In terms of the approximation (19), this implies that when n is large, 
the relative error in the approximation is small, provided that | (^/n(x 
— n)/a)\ is small compared to n1/e. It turns out that Cramer's con­
dition is important. Although it can be relaxed in some instances, some 
condition is required guaranteeing that the tails of the distribution 
function F(x) for the X; decay exponentially fast. Indeed, if the tails 
of F(x) decrease only polynomially fast, then the same is true of Fn (x), 
and (22) will be false for any sequence z„ which increases as fast as 
any positive power of n. This happens, for instance, whenever Xi has 
only finitely, many moments. 

3.1 Error Bounds for the Asymptotic Distribution for Bundle 
Strength. According to Theorem 2.1, we have asymptotic normality 
for the strength of a single Daniels' bundle. In light of the foregoing 
discussion, it is meaningful to ask whether analogues of the Berry-
Esseen theorem and the Cramer-Petrov theorem on large deviations 
hold for the strength of a single Daniels' bundle. The answer is affir­
mative, and we now present the results. 
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Let q(t), O s K l denote the right-continuous inverse of F(x), x 
gO, that is, q(t) = inf \x:F(x) > t). Let/i(t) = q(t)(l - t) and assume 
fi{t) attains its maximum at a unique point t* as t is increased from 
zero to one. Evidently, fi(t*) = n* as defined by (2) and t* = F(x*). 
We assume 

(Bl) q(t) is nondecreasing on [0, 1), <j(0) = 0 and S\q2(t)dt 
< «>. 

(B2) There exist points to<t* < t\ such that fi(t) is strictly in­
creasing on [to, t*], strictly decreasing on [t*, ti] and its supremum 
over all t not in [to, ti] is strictly less than fi*. 

(B3) ;u(t) is three times, continuously differentiable on a neigh­
borhood of t*, and ix"(t*) is strictly negative. 

These assumptions differ slightly from those for Theorem.2.1. If 
/t"(t*) = 0 in (B3) but some higher derivative of n(t) is negative at t 
= t*, the results we give later are false, but analogous results do exist. 
We do not consider this case since (B3) (and the other assumptions) 
are almost always satisfied in practice. 

Under assumptions (B1)-(B3), we have the following results: 

Theorem 3.1 There exists a constant K > 0 such that 

\F'n(n* + n- 1 / 2 a*z) - $(z) | < Kn-V* (23) 

where all quantities are as in Theorem 2.1. 
The constant K depends on the distribution function F(x), x a 0 

for fiber strength, but is independent of n and z. 
Theorem 3.2 Assume \zn, n a 1| is a sequence of positive numbers 

such that z„ -» <», and n~1/6zn -* 0. Then 

F-n(n* - n - 1 / 2 (7*2„) /* ( -zJ -* 1 (24) 

a s n - * 1 " ' where all quantities are as in Theorem 2.1. 
The proofs of these results are given in Smith [13]. 
Notice that Theorem 3.1 is analogous to the Berry-Esseen theorem 

discussed earlier except that the rate of convergence is only n~1,B 

rather than n~1 /2 . This happens to be the best rate possible, that is, 
(23) would be false if n~l/6 were replaced by any function of n tending 
to zero faster than n~1/e. This slow rate of convergence has been 
confirmed by some exact calculations using a recursive formula (See 
Pig. 4.1 in Harlow and Phoenix [1]), and will be seen also in an example 
that we discuss later. However, the proof of Theorem 3.1 suggests an 
improved approximation which leads to a considerable reduction in 
error as compared with the normal approximation of Theorem 2.1. 
Using this approximation, it is possible to compute F'n(x) within ac­
ceptable error bounds for n only moderately large. Further details are 
given in Smith [13]. 

Theorem 3.2 is analogous to the Cramer-Petrov theorem discussed 
earlier, though we have not needed Cramer's condition. We mention 
that analogous theorems for the upper tails of Fn (x) and F'n(x) exist 
where for example (1 — F'n(fi* + n_1 /2(j*2„))/(l — $(zr t)) ~* 1 as n 
—* oo. In this case Cramer's condition is needed. 

3.2 Error Bounds for the Asymptotic Distribution for Time 
to Bundle Failure. According to Theorem 2.2, we have asymptotic 
normality for the time to failure of a bundle under Coleman's as­
sumptions. We have an analog for the Cramer-Petrov theorem, this 
being crucial in the chain-of-bundles setting. The theorem is as fol­
lows: 

Theorem 3.3. Let |zn, n £ 1) be a sequence of positive numbers 
satisfying z„ —<- <= and n~1/e+tzn - • 0 for some e > 0. Under the as­
sumptions of Theorem 2.2 

Fi(tb - n - i / W J / S C - z J "* 1 (25) 

a s n ~<• 0°. 

For a proof see Smith [14]. 
As for an analog to the Berry-Esseen theorem, Spencer [18] has 

obtained a result, under assumptions similar to ours, which indicates 
that the rate of convergence in this time-dependence case is 0(n _1/2) 
rather than 0 ( n - 1 ' 6 ) as in Theorem 3.1 for the static case. This can 
only improve the accuracy of our later results. 

Having now obtained the key theorems (Theorems 3.2 and 3.3), we 

now proceed with a discussion of extreme value theory to introduce 
key concepts that will be used in obtaining asymptotic results for a 
long chain of bundles. 

4 T h e Po i s son Limit L a w and the M a i n E x t r e m e 
V a l u e D i s t r i b u t i o n 

Suppose in the static case we have 800 bundles in a long chain, each 
one of which has a probability p = 0.001 of failing under given load 
L, independently of all the others. (In our earlier notation, F'n(L) = 
p = 0.001 and k = 800.) What is the probability that the chain-of-
bundles will support L, that is, that there are no bundles which fail 
under load L? What is the probability that there are at most two 
bundles with strength less than L? 

This kind of problem is commonly handled using the Poisson Limit 
theorem which, after the Central Limit theorem, is probably the 
best-known limit theorem. Now the mean number of bundles that fail 
under L is kp = 0.8, and the distribution of the number of such bun­
dles N is approximately the Poisson distribution 

P\N = j } = ^ ^ , j = 0,1,2,... (26) 

with mean X = kp = 0.8. Hence, the answers to the previous two 
questions are approximately e - 0 - 8 = 0.4493 and e~°-8(l + 0.8 + 
(0.8)2/2) = 0.9526, respectively, so that rare failure for a single bundle 
turns into a substantial chance of failure for the chain. 

Poisson Limit Theorem. If one has k independent experiments, 
each resulting in "failure" with probability p and success otherwise, 
and if k -* °o and p —• 0 in such a way that pk —- X for some fixed 0 
< X < oo, then the distribution of the number of failures converges to 
the Poisson distribution with mean X. 

In particular, the probability that there is at least one failure (which 
corresponds to the failure of our chain-of-bundles) converges to 1 — 
e~\ The proof of this theorem can be found in any introductory 
textbook on probability. 

The Poisson Limit theorem is used in studying the asymptotic 
distribution of extreme values. Suppose X\, X2, X3,... are inde­
pendent and identically distributed random variables with common 
distribution function F(x), and let Mk = min [Xi,. .., Xu). (This is 
the situation of the chain model associated with (21).) We seek the 
limit distribution of M^; that is, we seek constants a.k > 0, bk real and 
a limit distribution function H(z) such that 

P\Mk £akz + bk}~+ H(z) as k — »o (27) 

for each real z. • 
Suppose we can find constants a^, bk, and a function V(z) such 

that 

kF(akz + bk)^V(z) as k — <». (28) 

Now if we define "failure on the ith experiment" as the event \Xi £ 
akZ + bk} for 1 s (' s k, then the conditions of the Poisson Limit the­
orem hold, and the distribution of the number of "failures" converges 
to the Poisson distribution with mean V(z). In particular 

P{Mk £akz + bk}=l-e-v^. (29) 

Thus, in the foregoing chain-of-bundles example, the role of X is 
played by V(z) (forz fixed), a n d p is F'n(ahZ + bk) which diminishes 
to satisfy pk - • X as k - • 00 if ak > 0 and bk are properly selected. But 
the new aspect is that the same a& > 0 and bk must work for all z. 

Here are two examples with important ramifications in the strength 
of materials. 

1 Suppose the distribution function F(x), i i 0 satisfies F(0) = 
0 and F(x) ~ cxp as x -* 0 from above, where c > 0 and p > 0. Take 
bk = 0 and a.k = (fec)~1/p. Then, for any z > 0, we have kF(akZ + bk) 
—• zp as k -* 00 while for z g 0, we automatically have F{auz + bk) = 
0. Hence (28) holds with 

z". z > 0 
V(z) = * ' " (30) 

l0, z £ 0, 

and (27) holds with 
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The distribution function (31) is known as the Weibull distribution. 
For example, the strength of a single fiber may be viewed as the 
strength of the weakest of a large number of short segments of the 
fiber. For this reason, the strength of single fibers is often successfully 
modeled using a two parameter Weibull distribution. 

2 LetF(x), —0° <x < oo be the normal distribution function $(x), 
— oo < x < oo, and define 

ak = (2 log fe)-1/2 ' (32) 

and 

ft, = (log log k + log (4ir))(8 log k)'1'2 - (2 log k)1'2. (33) 

Then we have the following important result. 
Theorem 4.1. For each real z, 

k$(akz + Pk) ^ ez as k ~* °°, (34) 

where au and ft, are given by (32) and (33), respectively. Thus P\Mk 
£ a-kZ + ft,] ~* H(z) where 

H(z) = 1 - exp ( -expz) , - o ° < z < ° ° , (35) 

The proof of this theorem is given in Galambos [19, pages 65-67], 
and hinges on the lower tail result 

*(*) = (-V^x)-1 exp (-x2/2)(l + r(x)) 

for the normal distribution function where r{x) -^* 0 as x —• — <*>. This 
example is very important for the later developments. Many other 
aspects of extreme value theory, including Gnedenko's character­
ization of all possible extreme value distributions, are discussed in 
the recent book by Galambos [19]. 

5 Main Asymptotic Distributions for the 
Chain-of-Bundles 

On the one hand, we have asymptotic normal distributions for the 
strength and failure time of large, single bundles as stated in Theo­
rems 2.1 and 2.2, respectively. On the other hand, we have the extreme 
value distribution associated with the smallest of a large sample of 
independent and identically distributed normal random variables, 
as stated in Theorem 4.1. Since the failure of the chain-of-bundles 
occurs with the failure of the weakest bundle, we would have the de­
sired asymptotic distribution in Theorem 4.1 if the true distributions 
for bundle failure could be replaced by the asymptotic normal dis­
tributions, respectively. 

Intuitively, a simple replacement should work provided k, the chain 
length, does not increase too quickly as a function of n, the bundle size. 
But for our results to be useful in applications, we must have k in­
crease rapidly with respect to n. It turns out that the large deviations 
theory associated with the Cramer-Petrov theorem of Section 3 is 
crucial to the resolution of this problem. 

For definiteness, fix a sequence k(l), k(2),..., k(n),. . . of positive 
integers tending to infinity. We denote this sequence by \k(n)\, and 
seek the limiting distribution of the strength and time to failure of 
the chain of bundles as n -* oo. 

5.1 Asymptotic Results for Static Strength. Let L*1; 

L*n2,.. . , in* be the strengths of k independent bundles as described 
in Section 2.1. We seek the limit distribution o f M ^ y as n - • => where 
M*nk = min \L*nl, L*n2,. . . , L'nk). Thus n and k tend to infinity simul­
taneously following the sequence \k(n)}. In the light of the discussion 
of Section 4, it suffices to find constants a„ > 0, b*n real and a function 
V(z) such that 

k(n)F'n{a'nz + b'n)^V(z) (36) 

where F*n(x),x a 0 is recalled to be the distribution function for the 
strength of a single bundle. 

Combining the approximation 

F*n(x) * $(Vn"(x - fi*)/a*), * & 0 (37) 

(see (4)) with (34) suggests the following: Define a* = ak(,n)0*n~112 

and b*n = ix* + f3k(n)<J*n~1/2 where au(n) and fihin) are as in (32) and 
(33), respectively. Then we conjecture that (36) holds with V(z) = e2, 
— oo <z < oo. Upon comparing (36) with (34), we see that the necessary 
and sufficient condition for our conjecture to be verified is that as n 

*• GO 

F'n(a'nz + b'n)l$(akMz + pk(n)) — 1. (38) 

But (38) is just (24) of Theorem 3.2 with z„ = — (ctk(n)Z + &k(n))-
Since z„ is the same order of magnitude as (log k(n))1/2, and The­

orem 3.2 assumed n~1/ezn -* 0, it is sufficient that n~1/s logk(n) -»• 
0. Putting all the pieces together, we have the following result: 

Theorem 5.1. Assume conditions (B1)-(B3) hold and that n~1/a 

log k(n) -*• 0 as n ~* oo. Let 

a'n= a*(2nlogk(n))~1'2 (39) 

and 

b*n = n* + rc-i/V*[(log log k(n) + log (4ir))(8 log k(n))~1/2 

-(2 log kin))1'2], (40) 

where /x* and a* are defined by (2) and (3), respectively. Then, for all 
real z, the distribution function for the strength of the chain-of-
bundles, satisfies 

P\M'nkM £ a'nz + 6J) — 1 - exp (-exp (z)) (41) 

as n -» oo. 
Theorem 5.1 gives the limiting distribution for the strength of our 

series-parallel model of the fibrous material under a broad range of 
sequences \k(n)}. In particular, k may be increased as any power of 
n, and thus, will hold for long thin structures. Note that under the 
assumptions of Theorem 5.1, the strength of the fibrous material 
converges stochastically to the asymptotic mean strength n* of a single 
bundle as bundle size n increases. (Crudely speaking, the material 
strength approaches a constant as the variability in strength shrinks 
to zero.) On the other hand, if k(n) -* °= too rapidly, we would expect 
that the strength of the fibrous material would converge stochastically 
to zero. This has been shown by Harlow, Smith, and Taylor [20] who 
compute the limiting distributions as k —- «> for n fixed. The two re­
sults together represent extreme cases. 

5.2 Asymptotic Results for Time to Failure. Let Tn\, 
Tn2, . . ., Tnk be the failure times of k independent bundles as de­
scribed,in Section 2.2. We seek the limit distribution of M^(„) as n 
-* oo where Mf^ = min \T„i, Tn2, . . . , Tnk\. Thus n and k tend to 
infinity together simultaneously following the sequence \k(n)\. 

The analysis here is analogous to that in the previous section for 
static failure, with Fs

n(t) in place of F'n(x), ti,, and <Jb in place of n* and 
IT*, respectively, and Theorem 3.3 in place of Theorem 3.2. The only 
difference is n 1'®^ezn *• 0 for some c ̂ > 0 is assumed in Theorem 3.3 
so that re-i/3+2( l0gk(n) ~* 0 is sufficient. We thus have the following 
result: 

Theorem 5.2. Assume conditions (A1)-(A3) hold, and thai 
„-i/3+2£ i0g /;,(„) —• 0 as ra —• oo for some e > 0. Let 

a{= <rb(2n log k(n))~V2, (42) 

and 

b{ = tb + n-^atWoglogkin) + log (4ir))(8 log k(n))~1'2 

-(2logk(n))1'2], (43) 

where ij and at are as defined in Theorem 2.2. Then for all real z, the 
distribution function for the time to failure of a chain-of-bundles 
under load history i ( t ) , t i 0 satisfies 

P\M{kM £ a{z + b{) - 1 - exp (-exp(z)), (44) 

as n —• oo. 
Theorem 5.2 gives the limiting distribution for the failure time of 

the fibrous material under a variety of load histories i ( t ) , f i 0 and 
a broad range of sequences \k(n)\. In particular k may be increased 
as any power of n. Here, the failure time of the fibrous material con-
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verges stochastically to the asymptotic mean tb of a single bundle as 
n —* o°. But if k(n) —• <o too rapidly, we would expect the time to 
failure to converge stochastically to zero. This has been shown by 
Harlow, Smith, and Taylor [20] under the simplest model of Coleman 
(5). They compute limiting distributions as k —• <= for n fixed. Cor­
responding results under the more general model (12) are not yet 
available. The two results together would represent extreme cases. 

Recently, Borges [21] has studied the time to failure model in great 
detail under the simpler assumptions (5) for single fibers. By making 
corrections for the deviation from normality, his results extend those 
given here. In particular, he assumes n~l log k(n) so that the chain 
length k is permitted to grow even faster relative to bundle size n than 
in our case. Unfortunately, Borges results are quite difficult to use, 
and thus, we will not present them here. 

6 Comments on Applications 
In the static case, the distribution function for the strength of the 

fibrous material may be approximated as 

P\M'nk£x} = l - e x p [ - e x p [ ( x - b ; , ) / a * ] | , l i O , (45) 

where a*n and b*n are given by (39) and (40), respectively, and k(n) is 
just k, the number of bundles in the chain. (This amounts to a re­
statement of Theorem 5.1.) 

In earlier work, Coleman [22] argued that the strength of single fi­
bers is naturally modeled by the Weibull distribution 

F(x) = 1 - exp (-5U/x0)T), i ^ O (46) 

where 8 is the fiber length, and the positive constants xo and y are the 
scale (under 5 = 1) and shape parameters, respectively. He also ob­
tained fi* and a* of Theorem 1.1, and showed how the asymptotic 
mean strength n* for a single bundle diminishes as the variability in 
fiber strength increases (7 - • 0). At the same time, n* diminishes in 
proportion to &~x/"< as the fiber element length 6 increases. We have 
shown here that for large k and large n, the strength of the fibrous 
material is approximately n*. But the question arises: "How close is 
the asymptotic distribution (45) to the true distribution function for 
M^k, the strength of the fibrous material?" 

An Example. To answer the aforementioned question, we con­
sider a long fibrous cable under Coleman's framework, and let H'kn(x) 
be the distribution function for the cable strength. We let xs = xr>S~1/y 

so that x j is the true scale parameter of the Weibull distribution (46) 
for the fiber strength. The mean fiber strength is XiT(l + 1/7) which 
is numerically very close to xs for typical 7. In our example, we let the 
chain length k = 10,000, take n = 10 and 50, and assume 7 = 10. Thus 
the cable is very long and slender, and has fibers with a coefficient of 
variation of strength of about 12 percent. 

Now if the number of fibers n were very large, the strength of the 
cable would be /A* = xsy"1^ exp {—1/7) = 0.719 xs, or about 72 percent 
of the strength of the fiber elements. But for these fairly small values 
of n of 10 and 50, the exact cable distribution function H'kji(x) and 
its asymptotic approximation (45) appear as in Fig. 2 where the scaling 
is such that (45) plots as a straight line. The graphs of the exact dis­
tribution were obtained using a recursive formula for F*n(x) as origi­
nally developed by Daniels [5]. (See Harlow and Phoenix [1] for fur­
ther discussion. Numerical instabilities make it almost impossible 
to obtain results for n significantly larger than 50, thus underscoring 
the value of asymptotic results.) Notice that for n = 50 the true me­
dian strength of the cable is 0.635*s which is considerably less than 
fi*. The asymptotic formula (45) predicts the slightly lower value 0.593 
xs. Notice also the greatly reduced variability in cable strength for 
larger n. 

Fig. 2 indicates that n = 50 is still quite small for application of the 
asymptotic distribution (45); fortunately, the predictions are con­
servative. It turns out that the rather slow rate of convergence in in­
creasing n is tied to that of (23) in Theorem 3.1 where the error decays 
as n~1/e. Smith [13] has developed an improved approximation which 
uses new constants hn in place of b*n. These perform much better for 
moderate n, though they are much more difficult to calculate. 

We remark that changes in k by two orders of magnitude have little 
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Fig. 2 Comparison of exact and asymptotic distributions for the strength of 
a long fibrous cable; a Weibull distribution is assumed for fiber strength 

effect on the character of the results in Fig. 2, as our analysis would 
suggest. However, decreasing 7 does reduce the relative accuracy 
somewhat for these values of n. Giicer and Gurland [15] have graphed 
various estimates of the median strength in this setting as k, n, and 
7 change, and we urge the reader to consult their work for further 
insight in applications. 

In the time-dependent case, the distribution function for the time 
to failure of the fibrous material, under a given load history L(t), t g 
0, may be approximated as 

P\M{h £ t\ = 1 - exp j - exp [(t - b{)/a{]), t £ 0 (47) 

where a* and bf, are given by (42) and (43), respectively. (This 
amounts to a restatement of Theorem 5.2.) We would expect (47) to 
perform better in the time-dependent case than (45) did in the static 
case, as revealed in Fig. 2. 

For applications, we refer the reader to Phoenix [10,17] for useful 
formulas for computing ti, and Ob of Theorem 2.2. Otherwise, the 
general behavior is analogous to that for the static case above, and 
Giicer and Gurland's graphs [15] may be used with "time" in place 
of "strength." 

References 
1 Harlow, D. G., and Phoenix, S. L., "The Chain-of-Bundles Probability 

Model for the Strength of Fibrous Materials I: Analysis and Conjectures," 
Journal of Composite Materials, Vol. 12,1978, pp. 195-214. 

2 Harlow, D. G., and Phoenix, S. L., "The Chain-of-Bundles Probability 
Model for the Strength of Fibrous Materials II: A Numerical Study of Con­
vergence," Journal of Composite Materials, Vol. 12,1978, pp. 314-334. 

3 Harlow, D. G., and Phoenix, S. L., "Probability Distributions for the 
Strength of Composite Materials I: Two-Level Bounds" International Journal 
of Fracture, to appear. 

4 Harlow, D. G., and Phoenix, S. L., "Probability Distributions for the 
Strength of Composite Materials II: A Convergent Sequence of Tight Bounds," 
International Journal of Fracture, to appear. 

5 Daniels, H. E., "The Statistical Theory of Strength of Bundles of 
Threads," Proceedings of the Royal Society, London, Series A, Vol. 183,1945, 
pp. 405-435. 

6 Coleman, B. D., "Time-Dependence of Mechanical Breakdown Phe­
nomena," Journal of Applied Physics, Vol. 27,1956, pp. 862-866. 

7 Coleman, B. D., "A Stochastic Process Model for Mechanical Break­
down," Transactions of the Society of Rheology, Vol. 1,1957, pp. 153-168. 

8 Coleman, B. D., "Time-Dependence of Mechanical Breakdown in 
Bundles of Fibers III: The Power Law Breakdown Rule," Transactions of the 
Society of Rheology, Vol. 2,1958, pp. 195-218. 

9 Coleman, B. D., "Statistics and Time-Dependence of Mechanical 
Breakdown in Fibers, Journal of Applied Physics, Vol. 29, 1958, pp. 968-
983. 

10 Phoenix, S. L,, "The Asymptotic Time to Failure of aMechanical System 
of Parallel Members," SI AM Journal on Applied Mathematics, Vol. 34,1978, 
pp. 227-246. 

11 Phoenix, S. L., "The Asymptotic Distribution for the Time to Failure 
of a Fiber Bundle," Advances in Applied Probability, Vol. 11,1979, pp. 153-
187. 

12 Feller, W., An Introductions Probability Theory and Its Applications, 
Vol. 2, Wiley, New York, 1971. 

13 Smith, R. L, "The Asymptotic Distribution of the Strength of a Series-

Journal of Applied Mechanics MARCH 1981, VOL. 4 8 / 8 1 

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Parallel System With Equal Load-Sharing," Annals of Probability, to ap­
pear. 

14 Smith, R. L. "Limit Theorems for the Reliability of Series-Parallel 
Load-Sharing Systems," PhD thesis, May 1979, Cornell University, Ithaca, 
N.Y. 

15 Giicer, D. E., and Gurland, J., "Comparison of the Statistics of Two 
Fracture Modes," Journal of the Mechanics and Physics of Solids, Vol. 10, 
1962, pp. 365-373. 

16 Chung, K., A Course in Probability Theory, Academic Press, New York, 
1974. 

17 Phoenix, S. L., "Stochastic Strength and Fatigue of Fiber Bundles," 
International Journal of Fracture, Vol. 14, 1978, pp. 327-344. 

18 Spencer, F. W., "An Application of Weak Convergence Theory of the 

Study of the Stochastic Failures in Parallel Mechanical Systems," PhD thesis, 
Aug. 1978, Cornell University, Ithaca, N.Y. 

19 Galambos, J., The Asymptotic Theory of Extreme Order Statistics, 
Wiley, New York, 1978. 

20 Harlow, D. G., Smith, R. L., and Taylor, H. M., "The Asymptotic Dis­
tribution of Certain Long Composite Cables," Technical Report No. 384,1978, 
School of Operations Research and Industrial Engineering, Cornell University, 
Ithaca, N.Y. 

21 Borges, W. S., "Extreme Value Theory in Triangular Arrays With an 
Application to the Reliability of Fibrous Materials," PhD thesis, May 1978, 
Cornell University, Ithaca, N.Y. 

22 Coleman, B. D., "On the Strength of Classical Fibres and Fibre Bundles, 
Journal of the Mechanics and Physics of Solids Vol. 7,1958, pp. 60-70. 

CONFERENCE LISTING 
Worldwide Mechanics Meetings 

(Continued on Page 124) 

ITEMS FUR THIS CALENDAR SHUULU HE S t N l I U P R U F . MICHAEL W. H Y E H , D E P T . 
UF F N G I N I E R I N G SCIENCE £ M E C H A N I C S . V I R G I N I A 1 E C H , BLACKSHURG, V A . 2 * 0 6 1 
I T E M S SMUULO I N C L D D E NAML OF ORGAN 1 1 AT I U N , NAME. UF H E E T I N G . P L A C E , D A T E S , 
ANt> NAME t ADDRESS OF C U N T A C 1 . CUkKENT L l i T S ARE A V A I L A B L E UN REQUEST. 

DATE : MARCH 1 8 - 2 U , 1 9 8 1 L G L A I I U N i TAMPA. F L A . 

T I T L E : I 4 T H ANNUAL S I M U L A T I O N SYMPUSIUH 
S P U N S : ARMCU, I N C . C U N I A C T : P H I L I P N . ADAMS 

2 4 N U R I H M A I N S T , M I D D L E I U W N , UH 4 5 0 4 3 

DATE : MARCH 2 6 - 2 / , 191(1 L U C A T I U N : CULLLGE P A R K , MO. 
T I T L E : 1 9 8 1 ACM S l G M E I K I C S WURKSHUP/SYMPUSIUM UN SUFTWAHE Q U A L I T Y 
S P U N S : ACMM11CHEL S P I E G E L C O N T A C T : 

I N T f c R N A T I U N A L C O M i ' U l I N G , 4 1 3 0 EAST-WEST H I G H W A Y , fitTHESUA, NO 2 0 0 

DATE : A P R I L 6-ti, 1 9 « 1 LULATlUN: A T L A N T A . GEORGIA 
T I T L E : 2 2 N U S T R U C T J R E S , STRUCTURAL D Y N A M I C S , u M A T E R I A L S CONFERENCE 
SPGNS: A S M E . A S C E , A I A A , AHS C O N F A C I : BLN K . HADA 

t iLOG 1 5 / , \UA 5 0 7 , JET PHUP L A D , 4 8 0 0 UAK G R U V L , PASADENA.CA 9 1 1 0 3 

DATE : A P R I L 6 - 1 0 , 1 9 8 1 L U L A I I U N : S T . L O U I S , M I S S O U R I 
T I T L E : 2 N D . I N T . SYMP. ON F L U H : I T S MEASURE. L CONTROL I N S C I . t. I N D . 
SPONS: A S H E . I S A , NHS C U N I A C T : D R . GEORGE E . M A T T I N G L Y 

N A I . UUREAU OE S T A N D , , F L U I D ENGR. O I V . W A S H I N G T O N , DC 2 0 2 3 4 

DATE : APh. IL 8 - 1 0 , 1 9 8 1 L G C A T I u N : A T L A N T A , GEORGIA 
T I T L E : I N T E R N A T I O N A L SYMPUS1UM UN H Y i J k l O C F I N I T E ELEMENT METHODS 
SPONS: GEURGIA I N S T I T U T E UP TECHNULO C O N T A C T : P R O F . S . N . ATLUR1 

CENTER FJR A O V . O F COMP. M E C H . . C I V I L E N v i . , G . I . T . , A T L A N T A , G A . 3 0 3 3 2 

DATE s A P R I L 8 - 1 0 , 1 9 H 1 L O C A T I O N : P A R I S , FRANCE 
T I T L E " : SECOND I N T E R N A T I O N A L CONFERENCE ON D I S T R I B U T E D COMPUTING SYSTEMS 
SPONS: I N R I A C O N T A C T : I N R I A S E R V . U E S R E L A T I O N S 

DGMAINE C>£ V G L U C H E A U , 8 . P . 1 0 5 , F - 7 8 1 5 0 L E CHE SNA V / F R A N C F 

DATE : A P R I L H - 1 0 , 1 9 8 1 L C C A T I U N : A T L A N T A , G A . 
T I T L E : I N T N A T ' L SYMPOSIUM QN H Y G R I O t M I X E D F I N I T E ELEMENT METHODS 
SPONS: G I T C O N T A C T : P R U F . S . N . A T L U H I 

SCHOOL UF C I V . E N G R . , G . I . T . , A T L A N T A . o A . 3 0 3 3 2 

DATE : A P R I L 9 - 1 0 , 1 9 8 1 L O C A T I O N : A T L A N T A , GEORGIA 
T I T L E : A I A A ' S DYNAMICS S P E C I A L I S T S CONFERENCE 
S P O N S i A I A A C O N T A C T : HERMANN J . H A S S I G 

FLUTTER S O Y N . , T 6 - 1 2 , L u C K H E E U - C A . C O . , 8 U R B A N K , C A . 9 1 5 2 0 

DATE : A P R I L 1 3 - 1 5 , 1 9 8 1 L C C A T I U N : A B E R Y S T W Y T H , U . K . 
T I T L E : UNCONTROLLED BLASTS AND E X P L O S I O N S I N 1N0USTRY 

S P O N S : EUROMECH 1 3 9 C U N T A C T : D R . D . H . EDWARDS 
P H Y S I C S O E H T . . U . OF rfALES, ABERYSTWYTH SY23 3 B £ , U . K . 

DATE : 
T I T L t : 
S P U N S : 

DATE : 
T I T L E : 
SPUNS: 

OATE : 
T 1 T L F : 
SPONS: 

DATE : 
T I T L E : 
SPONS: 

DATE : 
T I T L E : 

SPONS: 

DATE : 
T I T L E : 
SPONS: 

DATE : 
T I T L E : 
SPONS: 

DATE : 
T I T L E : 
SPONS: 

DATE : 
T I T L E : 
SPONS: 

DATE : 
T I T L E : 

SPONS: 

DATE : 
T I T L E : 
SPONS: 

MAY ' t - t , 1 9 8 1 L U C A 1 I U N : HOUSTUN, I X 
U r r - i H I J M t U C H N U L u G Y C O H E R E N C E 

ASML C U N I A C I : A M . S O C . OF MECH. ENGR. 
U N I l t f l l . t l f . K . C F N T I K , 3 4 5 F . 4 / I H S T . , NEW YORK, NY 1 0 0 1 7 

MAY 6 - 9 , 1 9 R I L C C A T I U N : U O I N E , I T A L Y 
S O L U T I O N MElHOUS I N STRUCTURAL P L A S 1 I C I I Y 
F U R i l M L U l 1 4 0 C U N T A C T : P R O F . G . DEL P I E R O 
f A C U L I A U« I N G L G N E R 1 A , V I A L E UNGHfcRIA 4 5 , 3 3 1 0 0 U D I N E , I T A L Y 

MAY 6 - d , 19H1 L O C A T I O N : ANN ARHUK, M I C H I G A N 
W i n M I O H E S H R N MECHANICS CONFERENCE 

U N I V E R S I T Y OF M I C H I G A N C U N I A L I : P R O F . A . S . WlNEMAN 
MECH. L N G K . C A P . M L C H . , U . OF M I L H . , ANN ARBUR. M I 4 8 1 0 9 

MAY 1 2 - 1 5 , 19111 LOCATIONS P H O E N I X , ARIZONA 
6T ) ( UINf . OH COMPOS 11L M A T E R I A L S ; JES11HG L OkSIGN 
ASTM C U N I A C I : ASTM 
19 l b RACE S T . , P H I L A D E L P H I A , PA 1 9 1 0 3 

MAY l i - 1 5 , 19H1 L U C A T I U N S M A D I S O N , W I S C O N S I N 
SYMPUS1U.M UN 1 R A N S U N I C , SHUCK ANU M U L T I D I M E N S I O N A L FLOWS 
M A T H E M A T I C S RESEARCH CENTER CONTACT: M R S . GLADYS MORAN 

MA1HEMATICS RESEARCH C E N T E R , 6 1 0 WALNUT S T R E E T , M A D I S O N , H I 5 3 7 0 6 

MAY 1 8 - 2 2 , 1 9 B 1 L U C A T I U N J DEARBORN, M I 
M A T E R I A L S CONFERENCE 

AS-HE C O N T A C T : A M . SOC. OF MECH. E N G R . 
U N I T E D E N G K . C E N I E R , 3 4 5 E . 4 7 T H S T . , NEw YORK, NY 1 0 0 1 7 

*1AY l t i - 2 1 , 1 9 o l L O C A T I O N : G T I A K A , CANADA 
I N T . S Y M P . ON THE MECHANICAL BEHAVIOOR OF STRUCTURED M E D I A 

CARLE10.N U N I V E R S I T Y C U N T A C T : P R O F . A . P . S . S E L V A D O R A I 

C I V I L E N G R . , C A R L E T U N U . « OTTAWA, O N T A R I O KLS 5 8 6 , CANADA 

L O C A T I O N : STOCKHCLM, SWEDEN JUNE 1 - 3 . 1 9 8 1 
F A T I G U E THRESHOLDS 
AERO. RESEARCH I N S T . OF SWEDE C O N T A C T : JAN BACKLUND 

P . O . HUX 1 1 0 2 1 , S - 1 6 1 11 BR0MMA, SWEDEN 

HAY 3 1 - J U N E 5 , 1 9 8 1 L O C A T I O N : DEARBORN, MI 
S t S A S P R I N G M E E T I N G 

SESA C O N T A C T : M R . K . A . GAL IONE 
SESA B R I D G E S O . , PO BOX 2 7 7 SADGATUCK S T A . , WESTPQRT, CT 0 6 8 8 0 

J0NF_ 7 - 1 1 , 1 9 8 1 L O C A T I O N : S T . L O O I S , MO. 
T H E R M U P h Y S I C S , F L O I U S , PLASMA 6 HEAT TRANSFER CONFERENCE 

A I A A / A S M t C O N T A C T : A I A A 
S T . L O U I S , MG. 

JUNE 7 - 1 2 , 1 9 8 1 L O C A T I O N : MONCTON, NEW BRUNSWICK 
CANCAM 8 1 
CANCAM C U N T A C T : D R . N . K . S R I V A S T A V A 

D E P T . U F E N G . . U N I V E R S I T E DF M J N C T C N , W O N C T O N , N . B . , C A N A D A E1A 3 E 9 

82 / VOL. 48, MARCH 1981 Transactions of the ASME 

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

http://APh.IL


R. B. King 
Research Assistant. 

G. Herrmann 
Professor and Chairman. 

Fellow ASME 

Division of Applied Mechanics, 
Department of Mechanical Engineering, 

Stanford University, 
Stanford, Calif. 94305 

Nondestructive Evaluation of the J 
and M Integrals 
The usefulness of two conservation integrals, the so-called J and M integrals, in fracture 
mechanics is reviewed. A method for experimental evaluation of these quantities by direct 
determination of the values of their integrands at various points along a contour is pre­
sented, and contrasted with "compliance" methods which have been used to evaluate J. 
This technique has been applied to three different specimen configurations, and the ex­
perimental results compare favorably with theoretical predictions. 

Introduction 
The usefulness of the J integral in fracture mechanics is well known. 

Recently it has been pointed out by Freund [1] that another conser­
vation integral, the M integral, is also of practical importance. This 
paper deals with the experimental evaluation of the J and M integrals 
by direct measurement of the terms in their integrands. 

The definition and physical significance of the J and M integrals 
have been discussed elsewhere [1, 2] and will be summarized here. For 
a plane problem of an elastic solid containing a crack, the J integral 
is defined as 

J- i (Wm — tkUk,i)ds (1) 

where 

c = a contour surrounding the crack tip 
W = the strain-energy density 
Uh = the displacement vector 
tk = the traction vector defined by the outward normal 

to c 

tk = OyAly 

J is applicable to nonlinear elastic solids and to elastoplastic solids 
which can be treated as nonlinear elastic (deformation theory of 
plasticity) [2]. Another conservation integral, the M integral, is de­
fined as 

M = <p (WxiUt - tkiik,iXi)ds 

where c is now a closed curve. 

(2) 
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While it has been previously stated that M is restricted in appli­
cability to linear elastic solids [2], a more recent rederivation of M 
indicates it remains valid in nonlinear solids [3]. J and M are inter­
preted physically as energy release rates: if c encloses the tip of a crack 
oriented along the xi-axis, then J represents the energy release rate 
with respect to translation of the tip of the crack inthexi-direction; 
if c completely encloses a crack or other flaw in a solid, then M rep­
resents the energy release rate associated with self-similar expansion 
oftheflaw[2]. 

The J integral is useful in fracture mechanics because it can be 
shown to be equal to the crack extension force G\, and hence obeys 
Irwin's relationship (stated here for plane stress and Mode I defor­
mation) 

J = Gi 
E 

(Ki2) (3) 

Even in cases of general yielding, so long as no unloading occurs, 
comparison of the value of J determined in a body of a certain ma­
terial versus the critical value of J (Jic) for that material, is a useful 
fracture criterion [4]. The usefulness of the M integral in crack 
problems stems from the fact that M can be shown to be proportional 
to J by using path-independence arguments [1]. For instance, consider 
an interior crack in a body with origin of coordinates centered on the 
crack (Fig. 1). Since M is path-independent, its value around any path 
c 2 will be the same as that around c i. The straight segments of c i along 
the crack faces contribute nothing to M because they are radial seg­
ments (xini = 0) which are traction free. The remainder of ci is 
composed of vanishingly small arcs around the tips of the crack. For 
the small arc cr around the right tip, the contribution to M is 

1 (Wan-i — tkUk ia) ds = aJ 

The arc around the left tip made the same contribution, hence the 
total value of M is 

M= 2aJ 

Thus knowledge of M permits evaluation o(J. The M integral can be 
evaluated in cases where J is inconvenient or inapplicable (i.e., if there 
is loading on the crack faces). 
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X, 

- a -

Fig. 1 M integral contours for an interior crack 

Techniques for Experimentally Evaluating J and M 
The customary technique for measuring the J integral is the well-

known Begley and Landes compliance method which takes advantage 
of the physical interpretation of J as an energy release rate [4]. De­
noting the total mechanical energy of a specimen under load con­
taining a crack by E, if E is measured twice for the same load, once 
for a specimen with crack length a, and again for an identical specimen 
but with crack length a + Aa, then J is given by 

J--
-AE 

Aa 

which can be shown to be given by the area between the load versus 
displacement curves for the two crack lengths. Alternatively, if E is 
measured for several different crack lengths, J is given by the negative 
of the slope of aplot of E versusa. Recently it has been shown [5] that 
for certain specimen configurations the J integral can be determined 
from a load displacement curve for a single crack length. In contrast 
with the technique described in the foregoing this method could be 
called "nondestructive" because it requires only a single specimen 
of fixed crack length. 

An alternative nondestructive technique is presented here for 
evaluating both the J and M integrals. The method makes direct use 
of the definition of J (or M) as a contour integral and involves ex­
perimental evaluation of the integrand at various points along a 
contour.and then determination of the integral by numerical inte­
gration. In general, determination of the integrand of J or M involves 
knowledge of all the components in the X\ — x% plane of the stress and 
rotation tensors (or, equivalently, of the displacement gradient ten­
sor). Determination of all these quantities experimentally would be 
difficult. However, as will be shown below, in special cases with proper 
choice of the contour c, the integrands of J and M simplify consid­
erably, so that they can^be experimentally evaluated using strain gages 
and displacement transducers. The authors have successfully applied 
this technique on three specimen geometries. 

While the experimental results to be discussed have been restricted 
to Linear Elastic Fracture Mechanics, the method used should be 
applicable for evaluating J or M in nonlinear elastic and elastoplastic 
cases (subject to the restrictions on validity of J and M in such sit­
uations). If any yielding takes place along the contour c, the strain 
gages employed must be capable of tracing the plastic deforma­
tion. 

Examples 
The first configuration considered was an edge-cracked panel, a 

schematic of which is shown in Fig. 2. The value of the J integral for 
such a specimen when subjected to remote uniaxial tension was de­
termined experimentally. The contour chosen for evaluation of the 
J integral followed the vertical edges of the specimen and then pro­
ceeded horizontally adjacent to the shoulders. Because of symmetry, 
the value of the J integral for the entire contour is equal to twice the 
value of J along path ABCD. Along the traction-free vertical edges, 

o 

strain „ 
gages^ 

A 

Ic" 

a = 5mm 

OS* 

I 
— b=60mm — ^ 

f i ve r | LVDT' 

/ 

, strain 
"gages n= 

75mm 

lOmm 

VA 
o 
T 

Fig. 2 Schematic of edge cracked panel used for J integral experiment 

the second term in the integrand vanishes and the only nonzero 
component of stress is (722- Hence the strain-energy density W is given 
by 

W = \ Ee22
2 (in plane stress1) (6) 

and denoting by J0 the contribution to J of the vertical edges, 

J '>>E r°E 

- C22/X1.6 d x 2 — I - e22/xi—b dx2 
o 2 Jh 2 

Assuming the value of ayy along the horizontal paths is constant and 
equal to the far-field stress <r, and denoting by Jh the contribution 
of one of the horizontal portions of the contour, leads to 

(7) 

Jh' I (o-12fll'+ <JU2,l)dXl (8) 

Assuming the shear stress near the shoulder to be sufficiently small, 
such that the first term may be neglected, we can write 

Jh — J." Ui\dx\ au2] (9) 

The J integral is given by J = 2(Jh + Ju). 
The specimen used in this experiment was made of Aluminum 

6061-T6, and the dimensions are shown in Fig. 2. Five strain gages 
were placed along each of the vertical edges AB and DC, and the 
displacement between points E and F and G and H was measured 
using two linear variable differential transformers (LVDT's). The 
specimen was placed in a hydraulic testing machine using pin grips, 
and a tensile load of 42000 N was applied. The measured value of J 
was 1.54 N/mm (JH contributed 90 percent of this). Using the 
handbook value of the stress-intensity factor for this configuration 
[6], and relation (3) leads to the theoretical value J = 1.49 f}/mm. The 
experimentally determined value of J agrees with this within 3 per­
cent. 

A second experiment involved evaluation of the M integral for a 
specimen containing an edge crack into which a wedge was forced. A 
schematic of the specimen is shown in Fig. 3. For the case of an edge 
crack in an infinite body, the M integral was evaluated for such a 

1 A plane state of stress will be assumed here in evaluating the integrand of 
J or M because thin specimens are used. It is known, of course, that, in the 
immediate vicinity of the crack tip, the state of stress is triaxial and if anything 
is closer to plane strain. This leads to a paradox in applying the Irwin relation, 
which is discussed in reference [6]. 
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Fig. 3 Schematic of specimen with wedged open crack used for M integral 
experiment 

loading arrangement by Freund [1], and his reasoning is followed here. 
For the entire closed contour shown in Fig. 3, the conservation law 
M = 0 applies. The portions of the contour along the crack face make 
no contribution to M: for small crack opening these are very nearly 
radial segments, and path EF is traction-free, while on path DE the 
tangential component of traction is zero and the normal component 
of displacement is zero. The factor %i in the integrand makes it 
nonsingular at the end of the wedge (point E), hence there is no con­
tribution from a vanishingly small arc at the origin. A small arc at F 
contributes —U. Denoting the contribution of the portion of the edges 
of the specimen by Mo, applying the conservation law M = 0 gives 

Mo - U = 0 (10) 

Experimental determination of Mo will thus permit evaluation of the 
J integral. Since the edges are traction-free Mo is given by 

M, J *h E pb-a+lft 

— e22
2{b-a + l)dx2 + I —(n2hdxi 

o 2 Ji-a 2 s. hE 
£222 (a - I) dx2 (11) 

For the case of an infinite body containing a semi-infinite crack 
which is forced open a distance B, Freund has determined the theo­
retical value of Mo to be (in plane stress) [1] 

EB2 

8TT 
M0 = (12) 

Mo for a finite body is approximated by adding a correction which is 
derived in Appendix 1. 

For the actual experiment a specimen of Aluminum 6061-T6 was 
used, Fig. 3. The specimen differed from the theoretical model used 
in that the crack was machined so that it was initially slightly open 
(to permit installation of the wedge) and was forced open further by 
the wedge. A steel wedge was used which was rammed in place using 
a hydraulic hand press. The difference, B, between the crack opening 
distances before and after insertion of the wedge was measured using 
a traveling microscope. A total of 10 strain gages were mounted along 
the edges ABCD. 

The value of M determined from the strain gage readings was 195.8 
Newtons. Applying the measured value of B(B = 0.00535 in.) to the 
theoretical solution for the infinite case and the finiteness correction, 
led to a theoretical value for M of 223.6 N, with which the experi­
mental value is in agreement within approximately 12 percent. The 
discrepancy is probably due to deviation of the specimen geometry 
from the theoretical model used, and the approximate nature of the 
finiteness correction. 

In the third specimen configuration considered, the M integral was 
evaluated for a center-cracked panel under uniaxial tension, a diagram 
of which is shown in Fig. 4. The contour chosen follows vertically along 
the edges of the specimen and horizontally a slight distance away from 

strain 
gages 

8 mm 

Fig. 4 Schematic of center cracked panel used for M integral experiment 

the shoulders. By symmetry it is only necessary to evaluate one 
quadrant. Thus 

M = 4 (MAB + MBC) (13) 

where MAB and MBC are the contributions to M of paths AB and B C, 
respectively. On the traction-free vertical edge BC, W = (E/2)e22

2 and 
Xitii = b, so 

bE nh. 
MBC = — I £22 dx2 

2 Jo 
(14) 

The contribution to M along the horizontal path AB is given by 

•b fl 
MAB = J ^ | i (<Tii2 - <T222 + 2(1 + v) <r12

2) h 

X\ 
+ ~ (Cl20"ll - V<S\2a22)

 _ 0 '12"1,2^ + *lO"22t*l,2 
E 

dXi (15) 

Since path AB is near the shoulder, ayy may be assumed constant, but 
it is not obvious whether any further simplifying assumptions are 
justified. Consequently the importance of the various terms in MAB 
was investigated by making use of the solution for an infinite cracked 
panel under remote uniaxial tension. The M integral was evaluated 
for a large rectangular path in the infinite plate, chosen to simulate 
the contour used in our finite specimen. This investigation is pre­
sented in Appendix 2, where it is shown that the contributions of 
terms containing a n and 012 are negligible, and if a quadratic variation 
with x is assumed for u2, the result for MAB is 

MAB = — + — [ui(b, h) - u2(0, h)] 
E 3 

(16) 

A specimen of Aluminum 6061-T6, the dimensions of which are 
shown in Fig. 4, was used for the experiment. Ten strain gages were 
mounted on the vertical edge BC and displacement transducers 
(LVDT's) were placed between points B, D and A, E as shown in Fig. 
4. The specimen was placed in a hydraulic testing machine and loaded 
in tension to 30000 N. The experimental value of the M integral was 
found to be 11.52 N. The theoretical value for M was found, using 

Ki2 

M=2aJ=2a , 
E 
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Fig. 5 Theoretical correction for finiteness of specimen with wedged open 
crack 

to be 11.23 N. The measured value agrees with the theoretical value 
within 3 percent. 

Conclusions 
It has been shown that for certain special specimen geometries, by 

convenient choice of contours, the J and M integrals simplify suffi­
ciently to permit experimental evaluation of the terms in their inte­
grands, although it has been seen that care must be exercised in 
making simplifying assumptions regarding the terms in the integrand 
(as was especially true for the center-cracked panel). Experimental 
values of J and M thus determined agree well with corresponding 
theoretical values, so this appears to be a viable technique for non­
destructive experimental evaluation of the J and M integrals. 
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APPENDIX 1 

Approximation for the M Integral for a Panel 
Containing an Edge Crack Into Which a Wedge Is 
Forced 

The state of stress in a finite body containing an edge crack may 
be obtained by adding to the stresses in the infinite body those due 
to a solution which removes the tractions along the rectangular con­
tour c (Fig. 5). If the distance / is sufficiently small, these tractions 
should be approximately the same as those caused in the infinite body 
by an edge dislocation of Burger's vector Be2 where e2 is a unit vector 
parallel to the %2 coordinate axis. The elasticity solution for such an 
edge dislocation is given in terms of the Airy's stress function <j> as 

-EB 

4TT 
- x i l n r [7] (17) 

where r is the radius measured from the end of the dislocation. It is 
desired to determine the effect of the tractions on c corresponding 
to <t> on k i and k\\. The normal component of traction can be expressed 
as the superposition of a symmetric part (tensile load), an antisym­
metric part (bending), and a self-equilibrating part. The effect of the 
latter will decay with distance from the edge according to Saint-
Venant's principle and hence should have little effect on k\. The 
former two are found by determining the force and moment to which 
the tractions are statically equivalent. The effect of the shear com­
ponent of traction on h\\ is estimated by determining a statically 
equivalent constant shear loading. Only the horizontal edges need be 
considered: the normal component of traction on the vertical edges 
is by symmetry statically equivalent to pure tensile loading, which 
does not contribute to h\ because it is parallel to the crack. For any 
two-dimensional curve c, statically equivalent forces and moments 
can be expressed as follows: 

F1= \ Tids' 

S. Tods = -

i>4> 

<>X2 

d0 

(18) 

M< -s. r X Ids •• 
d0 d<t> 

Ox, Or, 

(19) 

(20) 

where S and F denote the initial and terminal points of the curve c. 
Making use of (17)-(20), the result for the case at hand is 

EB 
Tensile load = F 2 = 

Air 
In 

V a 2 + h2 

iV(6 - a ) 2 + h2, 

+ 
(b-a)2 

Shear load = Fi = -
-EB 

a2 + h2 (b-a)2 + h2, 

ah (b — a)h 

4TT IVa2 + h2 V(& - a)2 + h2. 
EB 

Moment = M3 = (c + d) 
Air 

(21) 

(22) 

(23) 

Knowing these, k\ and kn can be determined from a handbook [6], 
and the correction to Mo is given by 

A M 0 = U •• (hi2 + kn2) (24) 

APPENDIX 2 

E v a l u a t i o n of t h e M I n t e g r a l for a L a r g e R e c t a n g u l a r 
P a t h in a n Inf in i te B o d y C o n t a i n i n g a Crack 

The solution for an infinite plate containing a crack under remote 
uniaxial tension will be employed in the form presented by Eftis, et 
al. [8]. For symmetric loadings the stresses and displacements are 
given by 

axx = 2 Re 4/(2) - 2y Im <f>"(z) + B 

uyy ' 2 Re 0'(z) + 1y Im <f"(z) -B 

oxy= -2Re<£"(z) • 

ux=— \(k - 1) Re <f>(z) - sy Im <f>'(z) + Bx) 
2/i 

2n 
\(k + 1) Im 0(2) - zy Re <p'(z) - By] 

where <j>(z) is a standard Kolosoff-Mushkelishvili potential function, 
5 is a real constant, and k = (3 — y)/(l — v) in plane stress and 3 — 4v 
in plane strain. The solution to uniaxial tension of an infinite cracked 
panel is given by 

< M z ) = - V z 2 - a 2 - - z , B= — 
2 4 z 

In order to apply this solution to determine M for a large rectangular 
contour, the solution is expanded for large values of r/a. Terms of 
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order a2/r2 must be kept or all information about the crack would be 
lost. The result for stresses, displacements, and displacement gradi­
ents is 

. i _ _ q v 2 v 2 
r6 \ 2 2 

3x2y2 

ff + £^(£ l_^ + t o V 

r 
J_ 
2/x 

J_ 
2/i 

r 6 2 

- (x3y - 3xy3) 

(ft - 3) - x + — - [(-k + 1) x3 + (-k + 5) xy2] 
4 4r4 

(k-l)-y+ — [(k~l) x2y + (k + 3)y3] 
4 4r4 

1 2 

2/n r" 

uy* = IT ̂ T tt~k + D*3y + (~fe + V)xy3] 4/t rb 

The M integral is given by 

M = 2(MAB + MBC) 

where paths AB and BC are shown in Fig. 6. Expanding the general 
experession for M, in plane stress 

.b i 
MAB =2 C -=(oxJ-<Tyy

2 + 2(Hv)<rxy
2)h 

*^o 2E 

+ ~ (.OxyVxX — VBxydyy) ~ 0XyUXiyh + XOyyllyj 
hi 

J
,h f l y 

r z (Oyy2 - Cxi2 + 2(1 - v) axy
2) b~- (TxyfTy 

o [Ah, h 
+ — OxyOxx ~ y<?XxUx,y — OaXyUx,y 

h 

dx 

•dy 

Fig. 6 Contour for theoretical evaluation of the M integral in infinite cracked 
panel 

If all terms which are negligible for large values of r/a are omitted, 
MAB becomes 

The following terms are of order higher than a2/r2 and may be ne­
glected: 

&xx > &xy j Gxy&xx> &xyUx,y> GxyUy,x 
and aXxUx,y 

Substituting the expanded expressions for stresses and displacements, 
and integrating to determine MAB + MBC, the only contribution to 
the final result is from 

MAB •• 
hba2 

-+ 2 •J. 
b I vx . 

xuy,x ~ — o"xy| dx 

Now 

and 

2 r=y^3SLdy = 

Jo E 

2 J o X(SyyU-

2aV 

E 

h b3/i + 26/i3 

^QJJ— 1 
b (b2 + h2)2 

j XUytX dX= XUy|o — i UydX 

- buy(b,h) — I u dx 

If it is assumed that uy and axy vary quadratically with x, then 

, 2<72a2 , b 
,dx = tan L — 

E h 
X 

b b 
Uydx s - (uy(b, h) + 2uy(0, h) 

o 

and 
It turns out that the term 

-2<T2a2 (b3h + 2bh® I b b2 

xaxydx = — (axy(b, h) + axy(0, h) 
4 

E \(b2 + h2)2 

is cancelled by other terms. Thus 

, . „ , . , ,„ v ^2a2 , ,h ,6V 27T(r2a2 

M = 2(MAB + MBc) = (tan"1 - + tan""1 - f = 
E b hi E 

which is equal to the correct value for M in plane stress, 

ki2 2a(ayf¥d)2 2-Ko2a2 

After substituting numerical valueSj the M integral was determined 
for the large rectangular path in an infinite plate using these ap­
proximations, and was found to agree within 1 percent of the exact 
value, so these appear to be good approximations. In addition it was 
found that the contribution of the axy term was negligible, and the 
result for MAB is 

M = 2aJ=2a-
E E E 

MAB '• 
-hba2 4ab , 

• + —[Uy(b,h)-Uy(0,h)] 
hi hi 
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An Embedded Elliptical Crack, in an 
Infinite Solid, Subject to Arbitrary 
Crack-Face Tractions 
In this paper, following a critical assessment of earlier work of Green and Sneddon, Seg-
edin, Kassir, and Sih (who obtained solutions for specific cases of normal loading on the 
crack face and the cases of constant and linear shear distribution on the crack face), Shah 
and Kobayashi (whose work is limited to the case of third-order polynomial distribution 
of normal loading on the crack face), and Smith and Sorensen (whose work is limited to 
the case of a third-order polynomial variation of shear loading on the crack face), a gener­
al solution is presented for the case of arbitrary normal as well as shear loading on the 
faces of an embedded elliptical crack in an infinite solid. The present solution is based 
on a generalization of the potential function representation used by Shah and Kobayashi. 
Expressions for stress-intensity factors near the flaw border, as well as for stresses in the 
far-field, for the foregoing general loadings, are given. 

1 Introduction 
The problem of a flat elliptical crack embedded in an infinite solid, 

of linear elastic material, has attracted much attention in the litera­
ture due to its fundamental role in the studies of fracture suscepti­
bility of (embedded or surface) flawed, three-dimensional, engineering 
structures. When the solid is subjected to uniform tension at infinity, 
perpendicular to the plane of the crack (or, equivalently, when the 
crack face is subjected to uniform pressure, in the complementary 
problem), Green and Sneddon [1] have solved the problem using the 
known gravitational potential for a uniform elliptical disk. The case 
of uniform shear loading along the crack face was treated by Kassir 
and Sih [2], who obtained an exact solution in terms of two harmonic 
functions which, as in the tension problem [1], are constant multiples 
of the aforementioned gravitational potential. Kassir and Sih [2] have 
also derived expressions for the stress field near the crack border as 
well as for the stress-intensity factors. 

Several investigations reported later v/ere primarily concerned with 
the generalization of the work in [1] for the cases of the crack surface 
subjected to various degrees of polynomial pressure distribution 
normal to the crack surface. The first such generalization was con­
tained in a procedure suggested by Segedin [3] who proposed the use 
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of certain type of ellipsoidal harmonics, and their partial derivatives, 
which satisfy the Laplace equation. These potential functions were 
later used by Kassir and Sih [4] in expressing solutions for both the 
problems of the crack surface (i) under normal load [4, equation 3.24, 
p. 80] and (ii) under shear loads [4, equation 3.50, p. 86]. However, the 
contributions of these potentials employed in [4] to each stress com­
ponent at the crack surface are not linearly independent polynomial 
functions and hence, one has to make a judicious choice of the po­
tential functions for each degree of polynomial loading individually. 
By making such judicious choices, without, however, indicating a 
general procedure for such choices, Kassir and Sih [4] have presented 
exact solutions for some higher-order homogeneous polynomial 
loadings normal to the crack face, but limited their analysis to a tor­
sional load in the case of shear loading on the crack face. 

Prior to the work of [4] (what appears to us) a more logical choice 
of the potentials as given in [3] was made by Shah and Kobayashi [5] 
in representing the solution for the problem of the crack surface under 
arbitrary normal load. Though not explicitly stated in [5], the choice 
in [5] can be seen to be such that the individual contributions of the 
potential functions to the normal stress component on the crack 
surface are linearly independent, and moreover, form a complete set 
of polynomials. Shah and Kobayashi [5] have limited their analysis 
to a third-degree polynomial pressure distribution normal to the crack 
face, stating that the work involved in deriving the appropriate ex­
pressions for the chosen potentials was exhorbitant. 

In the present paper, because of the previously stated linear inde­
pendency and completeness of the contributions to stress components, 
at the crack surface, of the potentials, and due to the analytical con­
venience they afford, the potentials chosen by Shah and Kobayashi 
[5] are used to represent solutions for both the problems of crack 
surface under arbitrary (i) normal and (ii) shear loading. It is 
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demonstrated to be possible to derive general solutions for arbitrary 
(normal as well as tangential) crack face tractions. Such general so­
lutions are obtained for stress-intensity factors along the crack pe­
riphery for both the cases of (i) arbitrary applied normal stress dis­
tribution; and (ii) arbitrary applied shear stress distribution, on the 
crack face. 

For the sake of completeness, the Trefftz's formulation [6] for a 
plane surface of discontinuity is first briefly sketched. This is followed 
by the treatment of the foregoing problem of an embedded elliptical 
crack in an infinite solid. The presentation of the algebraic details of 
the analysis is kept to a minimum in the interest of clarity as well as 
reasons of space. 

2 Tref f tz ' s F o r m u l a t i o n for a P l a n e S u r f a c e of 
D i s c o n t i n u i t y 

Let ua (a = 1,2,3) and <Jap(a$ = 1,2,3) denote displacements and 
stresses, respectively, in a homogeneous, isotropic linear elastic solid. 
The stress-displacement relations are, by Hooke's law, 

ffofl = G(uafi + uafi + 
2K 

' SafiUy,y) (1) 
1 - 2 J / 

where G and v are the shear modulus and Poisson's ratio to the ma­
terial, respectively. The Navier displacement equations of equilib­
rium in the absence of body forces are 

"A0a + (1 _ 2v)ua,0P = 0 (2) 

in rectangular Cartesian coordinates xa(a = 1,2,3). In the foregoing 
the notations, ( ),„ = d( )/dx„;and( )mg = d2( )/dxadxp have been 
employed. 

Let R be a region of discontinuity in the plane x3 = 0 such that, after 
deformation, the material inside R breaks up with free upper and 
lower surfaces, and remains continuous outside R. To deal with such 
a problem it is convenient to consider its complementary problem in 
which the surface of region of discontinuity is subjected to arbitrary 
transactions a^a. 

It is well known [7] that the solution for the aforementioned 
problem can be expressed in terms of four harmonic functions \j/ and 
<j>a(a = 1, 2, 3) in the form 

ua = K + *3^» 

so that the equations (2) are satisfied if 

K,a + (3 - 4 i # , 3 = 0 

The stress components in terms of K and \p are 

(3) 

(4) 

Cafl = G K,0 + 0ft<* + 5a3^.0 + 5(33 ,̂, 

+ 2X3^,0,8 + &a0 -
2v 

•2e 
(0T,T + \p,s) (5) 

The boundary conditions along the surface of the region of disconti­
nuity are given by 

2G 
[i/(<pi,i + 02,2) + (1 - i/)(<p3 + ^),a] (6a) 

(66) 

l - 2 i / 

<r!fi = G [0„,3 + (03 + 4>)J, « = 1.2 

inside the region R in the plane x^ = 0, wherein, the notation afjj is 
used for a prescribed quantity. 

The problem is further simplified by expressing \p and K in the 
form 

* - V . / = /„,„ (7) 

0X = (1 - 2</)(A,3 + /3,i) - (3 - 4J/)/I>3 (8a) 

02 = (1 - 2i/)(/2,3 + h$) - (3 - 4i/)/2,3 (86) 

and 

03 = " ( I " 2l/)(/i,i + /2,2) - 2(1 - I/)/3>3 (8c) 

Then, the governing equations, namely, 

tec = 0, Km = °. &<,« + (3 - 4 J # > 3 = 0 

for \p and K are satisfied in the three functions fa(a = 1, 2, 3) are 
harmonic. The stress components oap in terms oifa(a = 1, 2, 3) are 
given by 

<m = 2G[/3,n + 2i//3,22 - 2/1,31 - 2J//2,32 + *3(V./),ii] (9a) 

<r22 = 2G[/3,22 + 21//3.11 - 2/2,32 - 2y/i,3i + *3(V./),22] (96) 

<Ti2 = 2G[(1 - 2»)/3,12 - (1 - «0(A,32 + /2.13) + *3(V./),12] (9C) 

<T33 = 2G[-/3,33 + X3(V./),33] (9d) 

(T31 = 2 G [ - ( 1 - I/)/i,33 + J/(/i,n + /2,2l) + * 3(V./) , is] (9e) 

<JZ2 = 2 G [ - ( 1 - l/)/2,33 + «/(/l,12 + /2,22) + X3(V./),23] (9/) 

The boundary conditions (6) to be satisfied inside the region R in the 
plane x3 = 0 take the much simpler forms 

m ~2G/3,3; (10a) 

aSS = -2G[(1 - j/)/„,33 - «/(/i,i„ + /2,2«)], a = 1, 2 (106) 

in which the boundary condition for fs is uncoupled from /1 and /2 . 
It is to be noted that only the symmetric components of /„ with 

respect to the plane x?, = 0 need to be considered for satisfying the 
boundary conditions (10). If the solid is of infinite extent in all di­
rections and the stress components decay to zero as one moves toward 
infinity, then the solutions fa(a = 1, 2, 3) are harmonic functions 
symmetric in x%. In such a case, the problem governing f^ is inde­
pendent of the problem governing f\ and /2- Kassir and Sih [4] have 
denoted the former as a symmetric problem and the later one as a 
skew-symmetric problem. 

3 E m b e d d e d E l l ip t i ca l Crack in a n Inf in i te Sol id 
Let the region of discontinuity be bounded by an ellipse 

*1 x\ 2 2 

- r + - = l , a\>a\ (11) 

in the plane X3 = 0. The foregoing geometry of the crack surface is 
more conveniently described in an ellipsoidal coordinate system. The 
necessary ellipsoidal coordinates £a(a = 1, 2, 3) are the roots of the 
cubic equation 

«(f) = 0 

where 

«tt) = 1 - *l x\ x\ 

«i + € ««i + € £ 

(12) 

(13) 

They are connected to the Cartesian coordinates xa by the relations 
[8] 

al(al - a\)x\ = (of + fc)(of + &)(of + &) (14a) 

o|(ai - a\)xl = (ag + fc)(a| + &)(al + fo) (146) 

ahhl = {1&61 (14c) 

where 

-a? < £1 < - a | < £2 < 0 < | 3 < ' (14d) 

The expression for co(£) in equation (13) may be written in the alter­
nate form 

where 

«(f) = P(Q/(H& 

Qtf) = « f + aM + a\) 

(15) 

(16a) 

(166) 
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The partial derivatives of £„ with respect of xp required later are given2 

by 

<>&. 
2x„Q(U 

(17) 

in which, for /3 = 3,03 is zero. In the foregoing, the following notation 
is used: dp indicates the nth partial derivative w.r.t. xp and P' indicates 
the derivative of P w.r.t. £. 

The elliptic boundary (11) in the plane £3 = 0 corresponds to the 
curve £3 = 0, £2 = 0. The crack surface itself namely, the region inside 
ellipse (11) in the plane X3 = 0 is given in a simple manner by the 
surface £3 = 0. 

The boundary conditions (10) may also be expressed in ellipsoidal 
coordinates. From practical considerations, however, it is useful to 
describe the distribution of the applied loads tr^ in Cartesian coor­
dinates. Moreover, the potentials are required to be symmetric with 
respect to the plane xs = 0. It is obviously difficult to meet this re­
quirement in ellipsoidal coordinate system. 

From previous considerations, it is convenient to carry out the 
analysis by a judicious use of both Cartesian and ellipsoidal coordinate 
systems. 

Basic Potentials V„ (n= 1,2,...). Basic potentials useful for 
the analysis were suggested by Segedin [3]. They are of the form 

ds 
n = 1, 2 , . . . (18) 

'{3 " " VQ(s) 
(In fact, the function V„ is known to be harmonic for all real values 
of n > 0 [9]. It is symmetric in each xa since ai(s) and £3 are symmetric 
mxa.). 

To examine the suitability of the functions in equation (18) for the 
analysis of crack surface under arbitrary loading, we first consider the 
contribution of Vn to the stress components along the crack sur­
face. 

By direct differentiation of the expression for Vn with respect to 
xa, we have 

diV„ = ~ f"co"(s)-
dxa Jia '. . . . 

' (Mn(s) 

•• n I paxaii3
n~1 

in which 

pa = -2/(al + s), a = 1,2 

= -21 s, a = 3 (20) 

The second term on the right-hand side of equation (19) is zero since 
^(£3) = 0. Hence 

ds 
paxaa" n = 1, 2 , . . . (no sum on a) 

>H ' " VQ(«) 

Differentiating again with respect to xp we get from equation (21), 

dfolVn = n j pa[(n - l)ppxaxp + 5apu]wn 

PaXg 
s=«3 J& y/Q(s) 

n=l 

n>2 

(21) 

(22) 

Along the crack surface £3 = 0, i.e., the region inside the ellipse (11) 

in the plane X3 = 0, one obtains from equations (22), for a, ft = 1, 2, 
in view of equation (17), that 

[dJd!,Vn]fe_o = « ( i - 1) I PcPDXaxp[a"-2}X3=o~j== 

+ n8ap J pa[an 1]x3=o" 
ds 

-., n= 1 ,2 , . . . (« , /? = 1, 2) 

(23) 

In the case of the derivative d|Vn, the expressions (22) contain sin­
gular terms. In the limit £3 - • 0, however, it can be shown that 

Urn [d§V„] 
{3^0 

-[(a? + ai)v„]t,-0 (24) 

as it should be since Vn satisfies the Laplace equation. 
It can be seen that the expressions in equations (23) and (24) are 

polynomials in x\ and x^. However, since the functions 

M*3=o, n = 1, 2, 3 . . . • (25) 

are polynomials in x\ and x\, the aforementioned polynomials in 
equations (23) and (24) do not form a complete set to represent an 
arbitrary function of the varibles x\ and xi. Hence, if the functions 
/„ in the problem are represented as linear combinations of Vn (n = 
1, 2 , . . . <=), one cannot obtain arbitrary distributions of a$a (a = 1, 
2, 3) along the crack surface. That is, the functions V„(n = 1, 2,... 
00) do not form a complete set to represent solutions /„ for an arbitrary 
loading along the crack surface. 

Complete Set of Potentials FM (k,l= 0, 1, 2, ...). Let each 
component of the applied load o ^ be a polynomial of degree M in x 1 
and xi. Then the number of linearly independent terms in each 
component is \ (M + 1) (M + 2). Hence, to represent the solution for 
each fa, one has to find the same number of linearly independent 
harmonic functions of the type Vn such that a linear combination of 
their polynomial contributions to the tractions along the crack surface 
match with the given polynomial distributions of applied loads ex­
actly. For this purpose, we consider the functions of the type 

i>kid'2Vn •• 
bk+'Vn 

(26) 
dxid*2 

first suggested by Segedin [3] and later used by Shah and Kobayashi 
[5] and Kassir and Sih [4], and Smith and Sorensen [6]. It can be easily 
shown [3] that the aforementioned partial derivatives of Vn are har­
monic for k + I < n with polynomial contributions of degree 2n — k 
— I — 2 to the tractions along the crack surface. These functions would 
be suitable for the analysis if the integers, k, I, n are restricted by the 
relations 

2(k + I + 1) < 2n < M + k + I + 2 (27) 

However, the number of functions corresponding to the integers k, 
I, n satisfying the relations (27) are more than 5 (M + 1) (M + 2) for 
M > 2. As such, the aforegoing polynomial contributions of these 
functions are not linearly independent for M > 2. 

In the symmetric problem, wherein only fs is nonzero, Shah and 
Kobayashi [5] have chosen the required set of functions for repre­
senting/3 by taking n = k + I + 1 (<M + 1) and varying k + I from 
0 to M. They have, however, limited their work to M = 3 from prac­
tical considerations such as exhorbitant work involved in obtaining 
and using partial derivatives (26) in the analysis.3 Kassir and Sih [4] 
have considered some specific (incomplete) homogeneous polynomial 
loadings up to the degree M = 6; thus the results in [4] are inadequate 
for the solution of a problem of crack face pressure of an arbitrary 
polynomial variation even of degree 6. In retrospect it appears that 
for each loading Kassir and Sih [4] have chosen a suitable combination 

2 Note that 

dXa 
• ~2xe + \*0M a|« = 0 
4 + L [ a* U-uaxf 

and P(U = 0 

3 One of the reviewers has brought to our attention the efforts of Broekhoven 
in extending the results of [5] in the case of M = 4 in the symmetric problem. 
Upon further literature search the authors found reference [18], wherein 
Broekhoven mentions such effort, but no detailed results are given. 
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of ft, I, n satisfying conditions (27) but no general procedure for the 
choice was indicated in [4], 

In the case of shear loading, Kassir and Sih [2] have considered the 
problem of crack surface under constant shear for which the solutions 
for / i and fa, which only are nonzero, are constant multiples of Vj. 
Later [4], they have also obtained solutions for the problem of crack 
surface under torsional load. 

Smith and Sorensen [6] have considered a complete cubic-poly­
nomial load tangentical to the crack face leading to a (20 X 20) matrix 
equation. They have not, however, presented in [6] the expressions 
for the matrix elements. The problem of torsional load, as a special 
case of their analysis [6], was treated in detail and variation of the 
stress-intensity factors along the crack border were presented in 
graphical form in [6]. From the previous observations, it can be seen 
that, for high-order polynomial shear loadings, no solutions were re­
ported until now in the literature, even though the solutions for /i and 
fi can be obtained in terms of a suitable set of functions (26). 

In the present paper, Shah and Kobayashi's representation [5] for 
the solution is extended to the general case of arbitrary loading by 
expressing the solutions /„ (a = 1, 2, 3) in the form 

= 0, however, both F° and F1 terms are singular at £3 = 0 but it can 
be shown that their sum remains finite, as stated by Shah and Ko-
bayashi [5] and tends to the regular (finite) component of F^l33 as £3 
tends to zero, i.e., 

[d3d3Ffcj]j3=o = finite component of Mm [F\m] (37) 

Alternatively, we have 

so that 

i>MFki= -[<>iai + dld\]Fkl 

{dldlFklha=o = -[Fhn + Flm]i3=0 (38) 

which is finite for each ft and /. The foregoing expression (38) was used 
earlier by Kassir and Sih [4]. 

Substituting the series (28) in equations (10) and using equations 
(35) and (37) or (38), one obtains 

ffffil + 2G £ £ CSAj[dldjF«]e,.o = 0 
h I 

(39a) 

where, by definition, 

k 1 

Fu = dkid'2Vk+i+1 

(28) and 

(29) 

and Ca,k,i are unknown constants to be determined from the anal­
ysis. 

Partial Derivatives of FkJ 

By successive differentiation, it can be shown that, since co(£3) 
= 0, 

ds 
^?^f,a)'^-,-,-,-1-

'«s 

and 

ds 
didld-ico'"-"-1-

' {3 

Fki> 
J is 

$Fki= j~Z>1J>Wi<» a = 1, 2, 3 

(30) 

(31) 

Differentiating both sides of equation (31) with respect to xp, we 
obtain the second-order partial derivatives of Fu required for the 
evaluation of stress components along the crack face in the form 

i>\i^ki = FlVa + Fl
mc, (a, 13 = 1,2, 3) (32) 

in which 

Fiva = - [a iaJa^+ '+vVW-t , *& 

(k + i + i)\ ,h
 xi'^f » , [pV2P«P/*VQm={3 (33) 

(& - &)(& - fc) 
and 

n klBa • r 
J S3 

l f t l ? l * ? l ' , . , * + ( + ! . dfiidma 
ds 

(34) 

In the foregoing ( )! denotes the factorial of the respective quantity. 
The derivation of expression (33) is given in Appendix of the pre­
sented paper. 

Expressions for Boundary Errors. To satisfy boundary con­
ditions (10), it is necessary to evaluate only the derivatives 

dldlFki,a,P = 1,2; and d\dlFki 

along the crack surface £3 = 0. The former three derivatives along the 
crack surface are given by 

[aiajFwlb-o = [FlUb-o a, p = 1,2 (35) 

[fW«3=o = 0, a,/3 = l ,2 (36) 

In the evaluation of the derivative d\dlFki along the crack surface £3 

"IS + 2 G E I [ ( 1 + v)dli>\FklCaAl 
h I 

- v(CwFllla + C2,kiiF{,2a)]H=o, a-i,2 (39b) 

The left-hand side expressions of the foregoing equations may be 
considered as expressions for boundary errors. Applying any known 
principle of nullification of errors such as least squares, collocation, 
power series expansion, Fourier series expansion, it is in principle 
possible to obtain a sufficient number of linear algebraic equations 
for the determination of the parameters Caikj-

Polynomial Load Distributions. If the distribution of applied 
loads afa(a = 1, 2, 3) along the crack surface are finite-order poly­
nomials in xi and x% it is possible to obtain exact solutions by using 
power series expansion of the boundary errors and equating the 
coefficient of each power term of the series of zero. For this purpose, 
one needs the polynomial series expansion of the derivatives Fui in 
equations (39). Such expansions are available, until now, for the first 
few values oik + l only [3-6] as discussed earlier. Here, the necessary 
expansions for a general value oik + l are derived and they are given 
in the following (however, for the sake of clarity and conciseness, the 
tedious algebraic details are omitted): 

(i) 0,(8 = 1,2: 

K K i ; , _* + ' + 1 f , , . r (fe + 1+1)1 (2p -2q) \ (2g)! 
P=PO 9-00 (.k + l + l-p)l (p-q)l q\ P=P0 ? = <?0 

x2p-2q-k' r2q-V 

(2p - 2q 

in which 

- ft')! (2<? - /')! Jo (a\ + 

p)! (p-qY- q 
ds 

S)P-?(O| + s)vVQ(s) 
(40) 

and 

ft' = k + 5i„ + 8ip, I' = I + 52o + &2p 

po = integer value of (ft' + (' + l)/2 

(jo = integer value of (/' + l)/2 

The integral in equation (40) can be evaluated in terms of complete 
elliptic integrals of the first and second kinds. 

(ii) a = @=3: 
The expression for [dli>\ Fki](3=o may be obtained from equations 

(38) and (40). If equation (37) is used, it takes the following form: 

[djd| Fki](3=o = finite component of lim F\m 

* + ' + 1 P - I „ „ (fe +1+1)1 (2p - 2 - 2g)l (2q)\ 

= E £ (-Dp, --, : r. ~ (41) p = p o q=qo (ft + Z + l - p ) ! ( p - 1 - 9 ) ! 
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x2p-2-2q-k X$ 
2 g - l 

(2p - 2 - 2q - k)\ (2g - l)\ 
(41) 

(Cont.) 

in which 

po = 1 + integer value of (k + I + l)/2 

<jo = integer value of (I + l ) /2 

and 

finite part of lim i -— 
f3—o -'S3 s(a( + i 

2ds 
(42) 

•sV-1-'i(al + s)iy/Q^) 

Crack Surface Under Normal Load. Let the normal load <r(§ 
along the crack surface in the symmetric problem be expressed in the 
form 

1 1 M m 

• E E E E 
i=0 ; '=0 m=0 n=0 

E E E E A£i>_„,„s2
1

m-2n+'xln+'' (43) 

so that the values of i, j specify the symmetries of the load with respect 
to the axes of the ellipse. 

The solution for the function f$ in terms of the potentials Fmn IS 
assumed in the form 

1 1 M k 

fz = E E E E Cf^LuF2k-2i+i,2i+j 
i=0j=0k=0l=0 

(44) 

In the foregoing, for purposes of clarity, a potential such a s r mn IS 
represented as F2k-2i+i,2i+j: thus it is to be understood that m and 
n take the values (2k — 21 + i) and (21 + j), respectively. 

The aforementioned expressions for 0$ and fa are substituted in 
the boundary condition (10a). The polynomial expansion of the sec­
ond-order derivative of each of the potentials F's is obtained from 
equation (41). The coefficients of like power terms on both sides of 
equation (10a) are equated to each other leading to the following set 
of linear algebraic equations for the determination of the parameters 
C's: 

( _ l ) m + i + ; 

(2m -2n + i)\(2n + j)\ k=m 1=0 

M k 

E E(-l)*/P«7PC&" ,-u 

%G)A^-n,r 
m = 0 ,1 , 2 . . . M 

n = 0 ,1 , 2 . . . m 

in which 

,.y) _ (2k + i+j+ 1)! [2(k -l + m-n + i)]\ [2(n + I + ; ) ] ! 
J P = -

and 

(k - m)\ (k-l + m-n + i)\ (n+l+j)\ 

(45) 

(46) 

j J J ' ' = finite part of lim 
fs->o 

X 2 ds_ 

{» s(al + s)k-,+m-n+i(al + s)l+n+j^/Q(/j 
(47) 

The foregoing equations (45) may be solved in successive steps as 
outlined as follows: 

(i) From the M + 1 equations corresponding to m = M, n = 0 ,1 , 
2 , . . . M, solve for the M + 1 coefficients 

CB-1,1. Z = 0 , 1 , 2 , . . . M 

(ii) Substitute the values of coefficients obtained in step (i), in 
the M equations corresponding to m = M — 1, n = 0 , 1 , 2 , . . . M — 1. 
Solve these M equations for the M coefficients 

CJtfl-i- / = 0 ,1 , 2 , . . . M - 1 

(iii) Continue the process solving, at the (M + 1 — r)th step, the 
r + 1 equations corresponding to m = r, n = 0 ,1 , 2 , . . . r for the r + 
1 coefficients 

C$jL,,b I = 0 , 1 , 2 , . . . r 

and taking values of r = M — 2, M - 3 , . . . 1,0 in succession. 

It may be mentioned here that Shah and Kobayashi [5] have con­
fined their work to M = 1 in each of the symmetric groups (i, j) = (0, 
0) (0,1), and (1,0) and to M = 0 in the case of doubly antisymmetric 
loading corresponding to (i, j) = (1,1). Kassir and Sih [4] have con­
sidered homogeneous polynomial loadings corresponding to M = 1, 
2, 3 in the doubly symmetric group (i, j) = (0,0) and to M = 1 in the 
two groups (i, j) = (0,1), (1,0). Solutions in [4] were obtained, how­
ever, by using combinations of Fu different from those given in 
equation (44) except in the case of M = 1 in the (0,0) group. 

Crack Surface Under Shear Load. As in the symmetric prob­
lems, the applied shear load components afl (a = 1, 2) in the skew-
symmetric problem may be taken in the form 

•*82 = E E E E A^n,nx\m-^+ixf+i 
i=0 j=0 m=0 n=0 

and the solutions for fa may be assumed in the form 

1 1 M k 

E E E E Ci;iLi:iF2k-2i+i,2i+j 
i=0j=0k=0 1=0 

(48) 

(49) 

in which the upper value for k is dependent on a, i, j , and M. 
Due to the skew-symmetric nature, the problem decomposes into 

the following two problems denoted by P\(a, ft M) and P2(a, |8, M), 
a 7^18: 

(j) Problem Pi(a, ft M): afl is symmetric and 0$ is antisym­
metric in both x\ and x<i-

(ii) Problem Pi(a, (5, M): af^ is symmetric in xi and antisym­
metric in %2\ ffj$ is antisymmetric in x\ and symmetric in X2. 

In each of the just mentioned two problems, the expressions taken 
for the load components, the series assumed for the solutions, and the 
derived linear algebraic equations governing the coefficients C's are 
given as follows: 

(i) Problem P^a, ft M): 

M m 

E E 
m=0 n = 0 

riO) : E V 4(0,0) v 2 m - 2 n v 2 n 

2-, na,m-n,nx\ * 2 

where 

<r$ = xiX2MZ E A^Ln,nx\">-inx\n 

m=0 n=0 

r(0) = , 

M k 

/gw> = E E c5° i u i^_ 2 W ( 
k=01=0 

•(50) 

(51) 

_ L | A <°'°> 
2GJ "•m-"'n 

, , M - l k 

fe=o ;=o 
i-l,lF2k-2l+l,2l+l 

$ • " = 0 for M = 0 

(-Dm 

(2m - 2n)\(2n)\ 

M k 

E E (-D1U 
k=ml=0 

(52) 

(53) 

(54) 

(55) 

r(0,0) 

M— 1 k 

A = m - 1 1=0 

X Cgi",., 
•• 0 , 1 , 2 . .M 

0 ,1 , 2 . . . m 

t2GJA^lnj 
( -1)" 

( 2 m - 2 r a + l)!(2re + 1)! 

m 
n •• 

M-i k 

E E (-«* (d - ") 
,h=m 1=0 

M 

(56a) 

/ P J P - W^»JP | Cg&,( - * E E ("I)*"1 

A=m+1 (=0 

x/»'Vises?!,,, 
m = 0 ,1 , 2 . . . M - 1 

n = 0 , 1 , 2, 3 . . . m 
(56b) 

in which 

(2k + i+j+ l)![2(fe-
/ C J ) = . ! + m — n + i + 8ia)]\ 

(k-m)\ (k-l + m-n + i + <$i„)! 

[2(n + I + j + 82a)]l 
X 

(n + l + j+82aV. 
(a = 1, 2) (57a) 
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m = 

J(' 

(2k + i+j + 1)! [2(k -l + m-n+l)]l [2(1 + n+ 1)]! 

(k-m + i+j-1)1 (k-l + m-n + l)\ (l + n+l)\ 

(576) 

1 ds 

s ) f e - (+ m - n +i+J i„ ( a 2 + s)(+n+;+82«-v /Q( s) 

(a = 1, 2) (58a) 

1 d S (58b) 

U,i) = P " 
" Jo (a? + 

Jo (a? + . s)A-(+m-n+l( a | + s)H-„+l ^Qfo) 

In the particular case of M = 0, we have 

/ r ^ C ^ F o o , / ^ u ) = 0, a * 0 - 1 , 2 (59) 

The equations (56) reduce to 

2G[(1 - „)irW0) ~ v I ^ J T \ C ^ = A% (60) 

so that, in the case of constant shear, the solutions /J,0,0) (a = 1,2) are 
constant multiples of Foo. 

As in the symmetric problem equations (56) may be solved in suc­
cessive steps by solving first for the (2M + 1) coefficients 

and 

CfflBI-u, Z = 0 , 1 , 2 . . . M 

Cgtf-1-i.i, ' = 0 ,1 , 2 . . . M - 1 

from the (2M + 1) equations consisting of M + 1 equations of (56a) 
for m = M, n = 0 ,1 , 2 . . . M and M equations of (566) for m = M — 
l,n = 0 ,1 , 2 . . . M - 1 . 

(li) Problem P2(a, ft M): 

U'0^-

«r£J = *2 E E Agw,'-,,,^?-^!" 
m=0r>=0 

<H8l = *i E E 4!ff-»^2.m-2^I" 
m=0n=0 

/L0'1' = E E C^llAF2k-2l,2l+1 

M k 

/ r ) = E E C^luF2k-2l+l,2l 
k=0 1=0 

(61) 

(62) 

(63a) 

(636) 

\2Gj"a,m "•" (2m - 2n)\(2n + 1)\ 

M k 

x E E ( - i ) * | [ ( l - # ) 4 M - . / W » ] 
k=m 1=0 

XC^-.AVV^C&oLu) (64a) 
m A a o , (-i)"-"1 

\2GJ ftm "'" (2m - 2n + l)!(2rc)! 

x E z(-Dki[(i - *) nmAm - >>i$-o)4m] 
k=m (=0 

x c & ^ - . / r ^ C ^ L u ! 
m = 0,1,2.. M 

n = 0,1,2.. .m 

As in the previous problem, equations (64) may be solved in suc­
cessive steps by solving first for the 2(M + 1) coefficients 

CfiB-,,i, C<$-u> I = 0,1,2... M 

from the 2(M + 1) equations corresponding to m = M, n = 0 , 1 , 2 . . . 
M. 

It is to be noted that, in the case of arbitrary polynomial loading, 
the integer M in the summation in equation (48) can assume different 
values M(ct, i, j) for different combinations of a, i, and j . In such a 
case, we define, for a ^ fi = 1, 2, 

and 

Mia = max [M(a, 0, 0), M(ft 1,1) + 1], 

M2a = max [M(a, 0,1), M(ft 1, 0)] (65) 

Then the solution of the skew-symmetric problem for arbitrary 
polynomial loading is given by a linear sum of the solutions of the four 
problems 

P i K f t M i J , P2(a,P,M2a), a ^ = l , 2 (66) 

Stress-Intensity Factors ka (a = 1,2,3). Kassir and Sih [2] have 
shown that in the vicinity of the periphery of an elliptical crack on the 
plane x% = 0, the ellipsoidal coordinates become 

£i = - ( a ? s i n 2 0 + a!cos20) 

£2 = 0 

£3 - 2a1a2r(a1
2 sin2 8 + a\ cos2 B)'1'2 

(67a) 

(67b) 

(67c) 

where r is the radial distance normal to the crack border in the plane 
X3 = 0, and 8 is the angle in the parametric equations of the ellipse 

*i = a t c o s 0 and X2 = O2sin0 (68) 

The normal and tangential components ans, ots near the border of 
the elliptical crack (where n and t are directions normal and tangential 
to the crack border in the plane xs = 0) in the plane 13 = 0 are given 
by the relations 

OnS = "31 COS /? + ff32 Sin |8 

ots = -az\ sin fi + "32 cos /? 

(69a) 

(696) 

where ft the angle between the outward normal of the crack border 
(in the plane xs = 0) and xi-axis, is related to 6 by the equations 

cos /3 = a2 cos 8ly[~R, sin j3 = a i sin 0/%/A 

A = a\ sin2 8 + a\ cos2 8 

The stress-intensity factors ka are defined as 

Jfi = lim [(27rr)1/2<r33]fe=o 
r—0 

and 

K2 = lim [(27rr)
1/2<Tn3]j2=o 

r—0 

K 3 = lim [(27rr)i/2<7t3]fe=o 
r-*0 

(70) 

(71) 

(72a) 

(726) 

(72c) 

From equations (67), (69)-(72), the expressions for Ka take the 
following forms: 

^ _ (_L_]1/2
A1/4 l i m [^v33]£2=0 

\a1a2; { 3 - 0 

\aia2/ 
a2 cos 8 lim [£3

/2<T3i]{2=o 
fe-o 

(64b) 

+ a i sin 0 lim [J3
/2o'32]{2=o 

fs-o 

(73a) 

(736) 

and 

K3 = 
- ) 

,0102/ 

1/2 
A - l / 4 a2 cos 0 lim [̂ 3

/2<732]f2=o 
fe-o 

• a i sin 0 lim [£3
/2o-3i]S2=o 

£3-0 

From equations (9d)-(9/), we have 

lim [?3
/2<T33]«2=o = - 2 G lim [£3

/2/3,33]?2=o 
{3-0 {3-0 

(73c) 

(74) 

and 
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lim [&/2<T3«]f2=o = ~2G l i m 

{3—0 ft—O 

X[Hl'2[{a->>)fa,M-(fa,aa + ffi,fia)\]h=o a *P = 1,2 (75) 

Since the solutions for /„ are linear combinations of potentials Fhi, 
one needs the following quantities for evaluating the right-hand side 
expressions in equations (74) and (75). 

GU = Mm Rl*a§F;w]b-o 
ta-o 

•• lim m/2(Flm + Flm)]^o 
£3-0 

-(-2)k+l+2(k+l+l)\- _*+i_m 0.1 02 
(76) 

G%= lim [eMdlFkih^ 
f8-0 

= lim [ M M ] f 2 = o 
{3-0 

= ( I ) ( - 2 ) - ^ + .+ l)!^lf^gf. \AI a\ 0 2 a„a/3 

a,/8 = 1,2 (77) 

where xaxp are given by equation (68). 
By using equations (74), (75), series solutions obtained for /„, and 

the equations (76) and (77), the stress-intensity factors Ka are eval­
uated from equations (73). The expressions for Ka thus obtained are 
given next. 

(i) Symmetric Problem. Prom equations (44), (73a), (74), and 
(76), the expression for the stress-intensity factor Ki is obtained as 

/ •% \ l / 2 1 1 M h , 

Kx = -2G A1'4 E E E E G%-8'+,'2'+'C(M>-, 1 
\oia2/ £=0 j=o k=o 1=0 

j K U/2 , 1 1 M k 
= 8G A1'4 E E E E (-2p+i+;'(2fe + i + j + 1)! 

\aia2/ i=oj=ok=oi=o 

xJ_(£»«»-««/Jsi|«.+ycKLii (78) 
aia2^ ai / \ a2 ; ' 

(ii) Skew-Symmetric Problem. The solutions for /1 and f2 

in this problem are linear sums of the solutions of the problems Pi and 
P% which take the form 

1 1 , . . , 1 1 M h 

h = E E f['j) = E E E E CH\iF2k-*M,n+j 

j=0j=0 i=0;=0 k=0 1=0 

and 

1 1 1 1 M k , . . 
/ 2=E E/ i 1 H W > =£ E E I C g r V ^ - w w ^ i - ; (79) 

i=o y=o i-o j'=o *=o (=0 
The stress-intensity factors K2 and K3 corresponding to the fore­

going series solutions (79) are given by 

/ 7T W2 , 1 
K2 = 8G A"1'4 [Hia2 cos 0 + H2ai sin 8], (8O0) 

\aia2/ aia2 

K3 = 8G ( T ^ - ) 1 ^ - 1 ^ ! - P) T V [H202 cos 0 - Hiai sin 0] 

(806) 
\oia2/ 0102 

in which 

1 1 M k / r n o fl\2ft-2!+; 
ffi = E E .E E (-2P+i+/(2fe + i +7 + l)! — 

!=0j'=0fe=0(=0 

: ( — ] CfejL,,, (81) 

and 

1 1 M fc /cos 0\2*-2J+l-i 
H» = E E E E (-2)2*+2-,-J(2ft + 3 - » - j)! 

i=oj=ok=oi=o \ ai I 

* ( ^ " + W < W (82) 

4 Concluding Remarks 
In the foregoing we have presented a general solution for the 

problem of an infinite linear elastic solid containing a flat elliptical 
crack, whose faces are subjected to an arbitrary polynomial variation 
of normal as well as tangential tractions. This represents a general­
ization of the cited earlier works of other authors [1-6]. The expres­
sions for the three-modes of stress-intensity factors, K\, K2, and K3 
along the flaw border, for the considered general loading, are given. 
The expressions for the stresses in the far-field for the considered 
problem of arbitrary loading on the crack face, are given in Appendix 
of the present paper. 

One of the most pressing needs in applied fracture mechanics is the 
accurate and cost-effective evaluation of stress-intensity factors along 
the border of embedded or surface flaws in complex structural 
geometries such as aircraft attachment lugs, nuclear reactor pres­
sure-vessel-nozzle junctions, etc. The shapes of these flaws are often 
assumed, to a first approximation, as elliptical or part-elliptical. In 
solving these complex practical problems, several approaches such 
as, the Schwartz-Neuman alternating technique [10, 11], the 
boundary-integral equation technique [12], and singularity-finite-
element methods [13,14] have been reported in literature. It is gen­
erally recognized [15] that even though the alternating technique may 
be the simplest and most cost-effective technique, the results obtained 
so far through this technique are not as accurate as those obtained 
through the finite element and boundary-integral-equation ap­
proaches. 

In the alternating technique, as applied to the problem of cracks 
in finite solids, two solutions are needed, generally. One of these so­
lutions is for stresses in the uncracked finite body at the location of 
the considered crack, and the other solution is for the problem of an 
infinite body with a crack whose faces are subject to arbitrary normal 
as well as shear traction components. For cracks in complex finite 
bodies, such as described earlier, the first solution previously men­
tioned, would in general lead to a rather complex stress-field at the 
location of the considered crack. Because of the limitation of the 
available analytical results for the second solution discussed in the 
foregoing [1-6], the stress-fields of the aforementioned first problem 
were always approximated by polynomials of order <3 in the use of 
the alternating technique [10, 11]. Since this limitation has been 
overcome in the present paper, the results of the present paper may 
effectively be employed in devising a more accurate and cost-effective 
alternating-solution technique for analyzing complex, flawed, 
structural geometries. The results ofour efforts in this direction will 
be reported shortly. 
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APPENDIX 
We consider here evaluation of potentials Fki and their partial 

derivatives required for calculating displacements and stress com­
ponents at a point away from the crack surface. 

Earlier, Shah and Kobayashi [5] have derived, for values oik + 1 
up to 3 expressions for Fki and their partial derivatives up to sec­
ond-order in terms of incomplete elliptic integrals and Jacobian el­
liptic functions. In a subsequent investigation [16], they have also 
obtained expressions for some third-order partial derivatives of Fki 
required in the evaluation of stress components a<ii, o-\% and 0-23 in 
the symmetric problem. It appears that, in deriving the aforemen­
tioned expressions, they have expressed the power term u>k+i+1 as a 
polynomial in x\ (a = 1, 2, 3) and carried out necessary differentia­
tions. Kassir and Sih [4] have, however, adopted the chain rule of 
differentiation involving total derivatives with respect fo co and ob­
tained expressions in a slightly different form for their potentials and 
partial derivatives up to second-order in the analyses of both sym­
metric and skew-symmetric problems. 

In the present paper, we derive the necessary expressions for a 
general potential Fki and its partial derivatives by both the afore­
mentioned procedures. For this purpose, it is convenient to consider 
the required partial derivatives of Fki as a sum (Ho + Hi) of an inte­
grated component Ho and an integral Hi of the form 

Jit 
^ 'd^d f ' o aW ,k+i+i. ds 

(83) 
'fa ' " " VQ(s) 

Then the component H0 and the form of Hi in Fki and its partial de­
rivatives are as listed as follows: 
(i) Fkl: 

HQ=0 

and 

ki = k, mi = 0 in Hi (84) 

(ii) i>\Fkl: 

H 0 = 0 

and 

ki = k + <5i„, h = I + 82c mi = 8sa in Hi (85) 

(iii) HldlFk,: 

• kWcc 

d1
ai>

h
1d'2a>k+l+1 -

/Q(s)Js=f3 

kl = k + Sic + £>l(3, h = I + &2a + <S20 

mi = 53a + 83/3 in Hi 

i>Us (86) 

(iv) d^diFki: 

dx~, 
• ktpa d£d;,d?dV+m-

1 

and 

'Q(s)U=t: 

ki = k + &ia + dip + 8iy 

ll = I + 8ia + §2/3 + 8iy 

mi = <53a + (S30 + <53T in Hi 

atf T«3 

(87) 

(88) 

(89) 

The integrand in equation (83) may be evaluated in two ways 
mentioned earlier. In the first procedure, the power term y*+'+1 is 
expanded in terms of x\(a = 1,2,3) and term-by-term differentiations 
are carried out. Then, we get 

, , k+1+1 p Q 

d?1d2
1d3"1co*+(+1 = (k + I + 1)! £ £ Z 

( - 1 ) ' 
p=0 q=0 r=0 (k + I + 1 - p ) ! 

(2p - 2q)\ (2q - 2r)\ (2r)\ x2ip-2"-kl v 2 ? - 2 r - d 
•*-2 

(P - 9)! (q • •r)\ r! (2p - 2<j - fei)! (2<? - 2r - h)\ 
v2r-mi 1 
X3 1 

(2r - mi)! (a? + s)P-«(a | + s)i~rsr (90) 

Substitution of the foregoing expression in equation (83) leads to an 
expression for Hi containing integrals of the type 

ds r 1— 
J to (a? + s)P-?(ol + i 

(91) 
3)1-rSry/Q(s) 

The aforementioned integrals can be evaluated in terms of incomplete 
elliptic integrals of the first and second kinds and Jacobian elliptic 
functions. 

The expression in (90) can also be used in (86) and (88) for the 
evaluation of the integrated parts Ho- However, much simpler ex­
pressions for these integrated parts are derived from the second 
procedure described in the following. 

In adopting the second procedure involving chain rule of differ­
entiation, we note that 

/ d'~Pak+l+1 

p=o da' p 

(k + l+l)\ D A^p'-Px1-2" 
CO * + ( + l + 2 p - i 

p = 0 (k + I + 1 + 2p-i)\ 

in which Ap
l) are integer constants and 

/ = I(i/2) = integer value of i/2 

(92) 

(93) 

The previous form for a partial derivative of the power term was 
recognized earlier by Quinlan [17]. The integer constants Ap

l) (p = 
1,2, . . . / ) for values of i up to 10 were also obtained by him by carrying 
out successive differentiations. By differentiating both sides of 
equation (92) with respect to xm however, we obtain the following 
recurrence relations among the coefficients Ap^: 

Ag» = l, Ag+1>-Ajf> 

Ap
i+1» = Af + (i - 2p + 2)A«i1, p •• 1 , 2 , . . . / (94) 
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and 

ABi 1 ' = Aj*> when / [ — ) = / ( - ) + 1 (94) 
\ 2 / \2i (Com.) 

Using the form for a partial derivative of the power term, we get 

dkMlWluk+l+1 = (k + I + 1)! £ £ f. A*11 A™ 
p=0q=0r=0 

X Aiml)pk
l
1-pp^Pr~rxi1~2pxl21~2qxf1-2r-- (95) 

where 

N=k + l+l + p + q + r-ki-h-mi. (96) 

By substituting the foregoing expression (95) in equation (83), one 
gets an alternate expression for Hi involving integrals of the type 

J= f" S?l_ 
J«a (a? + S ) * I - P ( O | + f 

ds 
(97) 

. s ) i l - g s m i - r A / Q ( s ) 

which are relatively complicated in comparison with the integrals in 
equation (91). 

However, in view of the property a)(£a) = 0, the form (95) is con­
venient for finding the integrated components Ho in equations (86) 

and (88). The contributions of terms in (95) to Ho are from terms 
corresponding to N = 0. Hence, we get the following simple expres­
sions for the integrated components in the second and third-order 
partial derivatives of FkV 

1 kWa • {k + l + l)\-
k I 

(& - f l)(& - &) 

The expression for Ho in (88) is obtained as 

d 

[PlP2/>«P/5VQ(s)]s={3 <98) 

Ho = ~FlWa 
Z>Xy 

Xxi'x'ixPx, 

(k +1+1)1 . 
+ —" VWIa) Pi Pi Pi.Pi 

(fei - l)fei (h~ l ) i i (mi - l )mi 

2j0i*f 2,02*1 2/03*1 (99) 

in which AJI, / I , and mi are given by equations (87). 
The partial derivative of F ^ in (99) may be obtained from the 

expression (98) by treating £a (a = 1, 2,3) as functions of xa (a = 1, 
2,3). 

Substituting the foregoing second and third-order partial deriva­
tives ofFki appropriately into equations (9o)-(9/), the expression for 
each of the six stress components in the far-field can easily be written 
down. These lengthy expressions are omitted here for the sake of 
conciseness and clarity. 
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A Dislocation Model for Fatigue 
Crack Initiation 
The slip band formed in a grain on the material surface is a preferential site for crack ini­
tiation during low strain fatigue of polycrystalline metals. The forward and reverse plas­
tic flow within the slip band is modeled in the present study by dislocations with different 
signs moving on two closely located layers, and it is assumed that their movement is irre­
versible. Based on the model, the monotonic buildup of dislocation dipoles piled up at the 
grain boundary is systematically derived using the theory of continuously distributed dis­
locations. This buildup is associated with the progress of extrusion or intrusion. The num­
ber of stress cycles up to the initiation of a crack of the grain size order is defined as the 
cycle when the stored strain energy of accumulated dislocations reaches a critical value. 
The relation between the initiation life and the plastic strain range derived theoretically 
is in agreement with a Coffin-Manson type law, and that between the fatigue strength and 
the grain size is expressed in an equation of the Fetch type. 

Introduction 
The initiation of fatigue cracks is one of the most important stages 

in the fatigue fracture processes of metals. A large number of metal-
lographic observations has been carried out to elucidate the micro-
mechanisms responsible for crack initiation. The state of the art is 
described in two recent excellent review articles by Grosskreutz [1] 
and Laird and Duquette [2]. The site of crack initiation varies de­
pending on the microstructures of the material involved and types 
of applied stresses. Among possible sites of crack initiation, the slip 
band is preferential one for pure, single-phase metals and some 
polyphase metals under a low strain cycling [1, 2]. The cyclic strain 
is concentrated along the slip band and the extrusion or intrusion is 
accompanied with it. 

Most of the models proposed to account for the formation of ex­
trusions or intrusions are based on Mott's assumption [3] that dislo­
cations move along different paths in the slip bands under forward 
and reverse loadings. These models, however, are rather qualitative 
and fail to yield any systematic, quantitative way to evaluate the 
monotonic buildup or ratcheting of plastic deformation by a cyclic 
loading. One exception is the model proposed by Lin and Ito [4]. They 
considered two thin slices closely located in a grain on the specimen 
surface, with one part sliding during forward loading and the other 
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part sliding during reverse loading. To make this mode of deformation 
possible, they assumed a special field for the internal stress. Such an 
initial stress is not always expected in reality. 

In the present paper, a more reasonable model for early fatigue 
damage is proposed. The plastic deformation within the slip band is 
modeled by two adjacent layers of dislocation pileups. Bach layer has 
a different sign. A systematic buildup of accumulation of dislocation 
dipoles is derived under the assumption of the irreversible dislocation 
motion. The model can also yield a Coffin-Manson type law for crack 
initiation and the Petch-type equation for the grain size dependency 
of fatigue strength. 

Model and Analysis 
Model of Damage Accumulation. In the fatigue of smooth 

specimens of polycrystalline materials, a slip band crack is expected 
to nucleate in a grain on the surface which has a high value of cyclic 
shear stress resolved from the applied stress on the slip plane in the 
slip direction. Under a uniaxial stress, the resolved shear stress be­
comes maximum when the normal of the slip plane and the slip di­
rection are inclined at 45 deg to the stress axis. Figs. 1 and 2 illustrate 
two extreme cases of the most favorably oriented grains located on 
the surface. Fig. 1 is the section perpendicular to the specimen surface. 
The slip plane is perpendicular to the sheet face and the slip direction 
is in it. Fig. 2 is a picture of the section parallel to the surface inside 
the specimen. The slip plane is perpendicular to the specimen surface 
and the slip direction is on the specimen surface. In the following 
discussion, the former case is denoted as the case of orientation A and 
the latter one as that of orientation B. 

The dislocations generated in a most favorably oriented grain under 
the tensile stress are piled up against the grain boundary. In Figs. 1 
and 2, the dislocation pileups on layer I are made under tension. The 
dislocations in Fig. 1 are created at the surface of the specimen and 
moved to the interior of a grain. The dislocations in Fig. 2 are created 
inside a grain and move to the grain boundary. The back stress caused 
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(a) Extrusion 

(b) Intrusion 

(c) Extrusion 
Intrusion 
Pair 

Vacancy Dipole 

Interstitial 
Dipole 

Tripole 

Grain Boundary 

Fig. 1 Dislocation motion in a most favorably oriented grain (Case A or­
ientation) and the formation of extrusion and Intrusion by dislocation accu­
mulation 

Grain Boundary 

Fig. 2 Dislocation motion in a most favorably oriented grain (Case B or­
ientation) 

2n-l 2n*l 

Fig. 3 Applied shear stress pattern 

by pileup dislocations is negative in the vicinity of pileup layer I. 
Therefore, the reverse plastic flow is expected to take place near the 
layer during subsequent reverse loading. 

If the dislocations piled up on layer I move in the opposite direction 
under reverse loading, there is no accumulation of dislocations, so no 
fatigue fracture takes place. In the following model, it is assumed that 
the dislocations formed by previous forward loading are irreversible 
and that the reverse plastic flow is taken up by the motion of dislo­
cations with the opposite sign on the other slip plane which is located 
very close to the previous one. The basis for the assumption of irre­
versible dislocation motion as an extreme case will be discussed later. 
The dislocation pileups made under reverse loading are those on layer 
II shown in Figs. 1 and 2. The pileups of negative dislocations on layer 
II cause a positive back stress on layer I. This back stress enhances 
the pileup of positive dislocations during the next stage of forward 
loading. In this way, the accumulation of dislocation dipoles is am­
plified with the number of stress cycles. In the case of orientation A, 
extrusion, intrusion, or an extrusion-intrusion pair is monotinically 
built up as illustrated in Fig. 1. For a general case, the dislocation 
accumulation is accompanied by surface roughening because the slip 
direction is not parallel to the specimen surface. In the case of orien­
tation B, the specimen surface is not roughened by dislocation accu­
mulation. 

In the following sections, the progress of dislocation accumulation 
will be calculated by using the theory of continuously distributed 
dislocations. The calculation is carried out in two-dimensional cases 
and the material is assumed to be isotropic. By considering long-life 
fatigue, the slip band is isolated and the distance between two 
neighboring layers is negligible compared with the length of pileup 
layers. 

Dislocation Accumulation for the Case of Double Pileup. The 
cyclic shear stress on the primary slip plane in a most favorably ori­
ented grain is shown in Fig. 3, where TI is the maximum stress and T2 
is the minimum stress in one cycle. The calculation will first be made 
for Case B shown in Fig. 2. The Cartesian coordinates x, y are used 
as indicated in the figure. The grain size is la. 

Under the first loading of stress r\ greater than the frictional stress 

k, the dislocation distribution with density D\(x) is produced on layer 
I. By assuming k to be constant, the equilibrium condition of dislo­
cations inside layer I is expressed as 

T I D + T I - k = 0, (1) 

where TID is the dislocation stress (back stress) given by 

Tl
D = A ^" D1(x')dx'l(x-x'). (2) 

MJ -a 

The domain of the dislocation distribution is — a < x < a and 

A = G6/2TT(1 - v), (3) 

where 6 is the Burgers vector, G the shear modulus, and v Poisson's 
ratio. 

Equation (1) can be solved with the use of the inversion formula 
of Muskhehshvili under the condition of the unbounded density at 
two tips of the pileup x = ±a [5], The dislocation density Di(x) is 

Dl(x) = -T7f 2 \nn C W-x'^-^dx' •K1A (a2 - xl)xu J-a x - x' 

= (Tl - k)x/rA(a2 - x2)1'2. (4) 

The total number of dislocations between x = 0 and a is 

Ni= C" Di(x)dx = (Ti-k)aJirA. (5) 

The plastic displacement <f>(x) caused by the motion of dislocations 
generated at x = 0 is 

<«*)= J" bD(x')dx' 

where <M±a) = 0. 
The total plastic displacement 71 in —a < x < a is 

7 1 = P ° <t>(x)dx= C" bD1(x)xdx = (Tl - k)ba2/2A. 
+s — a <J — a 

(5a) 

(6) 
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The multiplication of the number of pileup layers in a unit area by 
the 71 value yields the macroscopic plastic strain. For simplicity, 71 
is called the plastic strain. The stored energy of dislocations per unit 
thickness of the specimen is 

Ui - i f TID 4>(x)dx 

-s: TID bDi(x)xdx/2 = 7 i ( n - k)/2. (7) 

According to the present model, the reverse loading from the stress 
TI to T2 causes the dislocations with a negative sign piling up on layer 
II, instead of the dislocations moving in the reverse direction on layer 
I. By denoting the density of dislocation piled up on layer II as D2(x) 
and the back stress due to D2(x) by T2D, the equilibrium condition in 
layer II is expressed as 

T2
D + T l D + T2 + fe = 0 , (8) 

where the friction stress k is acting on the motion of netative dislo­
cations. The distance between layers I and II is assumed to be very 
small compared with the pileup length. Then, n D on layer II can be 
regarded as the same as on Layer I. Substitution of equation (1) into 
equation (8) yields 

T2
D - (AT - 2k) = 0, (9) 

where AT = T\ — T2. Only when AT is larger than 2k can the disloca­
tions on layer II be generated from * = 0 and pile up at x - ±<z. The 
dislocation density D2(x), the total number of dislocations N2 between 
x = 0 and o, and the plastic strain 72 are obtained from equation (9) 
in a similar way. These are 

D2(x) = - ( A T - 2k)x/irA(a2 - x2)1'2} 

N2 -(AT-2k)a/xA (10) 

72 = - ( A T - 2k)ba2/2A. 

The values of ̂ 2 and 72 are negative. The stored energy of disloca­
tions D2{x) is the positive value 

U2 = - 7 2 ( A T - 2fe)/2. (11) 

The pileup of negative dislocations on layer II causes a positive back 
stress on layer I. This back stress enhances the pileup of dislocations 
on layer II during the subsequent reverse loading. 

The increment of dislocation Du(x), the dislocation number N^, 
the plastic strain increment yk, the back stress increment TkD, and 
the stored energy Uk at the &th step of the forward and reverse loading 
processes are obtained in a similar manner. They are 

Dk(x) = (-l)h+l AD(x), Nk = ( -1)* + 1 AN, yk = (-l)k+1 Ay 

rk
D = ( -1 )* + 1 (2k - A T ) , Uk = AU (12) 

where 

A T = T I — T2 

AD(x) = (AT - 2k)x/TrA(a2 - x2)1'2 

AN = (AT-2k)a/TrA (13) 

A7 = (AT - 2k)ba2/2A 

AU= Ay (AT-2h) 12. 

The index k takes 2n at the minimum stress after n -cycles and 2n 
+ 1 at the maximum stress after ra-cycles. 

Stress Distribution and Strain Energy at the Maximum Stress 
After 11-Cycles. The total density of dislocations D\(x) piled up on 
layer I, their number A^ and stored strain energy U\ are given as the 
sum of the increments of the corresponding values made during each 
loading stage. They are 

Di(x) = Z D2n+1(x) = DAx) + nAD(x) (14) 

rW 

-a 
%TT 

( 

y 

y\J 1 1 

T » 

W 
p \ 

ft, ^ — 
a 

Fig. 4 Dislocation distribution on layer I and Its stress distribution for the case 
of double pileup 

Ni= T, N2n+1 = Ni + nAN 
n=0 

Ui = L U2n+i = l/i + nAU. 
n=0 

(14) 
(Cont.) 

The corresponding values for dislocation pileup on layer II are 

Du(x)= £ D2n(x) = -nAD(x) 
n=l 

N„ = EN2n= -nAN 
n = l 

(15) 

Un = Z U2n 
n=l 

nAU. 

The stress field after n-cycles can be given as the sum of three 
components: the applied stress, the internal stresses due to the dis­
location pileups on layers I and II. From equations (4), (13), and (14), 
the dislocation density Di(x) is given as 

where 

Di(*) = T,x/irA(a2 - x2)1'2 

Ti = T!~k + n(Ar - 2k). 

(16) 

(17) 

The aforementioned dislocation distribution is the same as the dis­
tribution of crack dislocations for a crack with length 2a subjected 
to the shear stress Ti [6]. The stress field due to the pileup dislocation 
density D\(x) is identical to that due to the crack. Fig. 4 shows the 
shear stress distribution on y - 0, together with the dislocation dis­
tribution. The stress intensification takes place only near the tips of 
the pileup. The singular terms of the stress field in the vicinity of the 
right-hand tip of the pileup are expressed as [6, 7] 

. D i = • 
K i . 0i / 0x 30x\ 

— sin — 2 + cos — cos — 
(2-wn)1'2 2\ 2 2] 

,.D' = 

„ D i = 

T I A 

# 1 0! 01 301 
sin — cos — sin — 

(27rri)1/2 2 2 2 
(18) 

Ki 

•? ( ' • 
. 0i . 30j\ 

sin — sin — I 
2 2 (27IT!)!/2 

where K\ is the stress-intensity factor given by 

Ki = TiVlfa = [(TI -k) + n(AT - 2k)]V^a~. (19) 

The stress field due to the dislocation pileup on layer II is identical 
to that caused by a crack under the negative shear stress 

Tu = - H ( A T • 

The stress-intensity factor is 

2k). (20) 
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Kn = Tn-vAra = - n ( A r - 2k)y (21) 

In low-strain, long-life fatigue, the values of T\ and K\ are nearly 
equal to the negative values of Tn and Kn, because the term TI — k 

. becomes negligible compared with the term n(Ar — 2k) near crack 
initiation. 

Dislocation Accumulation for the Cases of Single Pileups. If 
the dislocation source is at the grain boundary in Case B shown in Pig. 
2, only positive dislocations are generated on layer I under forward 
loading and negative ones on layer II under reverse loading. The 
equilibrium equation (1) is now solved under the condition that the 
density is bounded at x = — a and unbounded at x = a. The density 
Di(x) is 

D\(x) = (TI - k)(a + x)1'VirA(a - x)1'2. (22) 

The total number of dislocations is given by 

Nt = (TI - k)a/A. (23) 

This is equal to the ledge of the grain boundary formed in dislocation 
generation, when it is multipled by the Burgers vector. Since the 
dislocation source is at x = —a, the plastic strain 71 is calculated as 

7 ! = f ° bD(x)(x + a)dx = 3 ( T I - k)ba2/2A. (24) 

Equation (22) can be rewritten as 

Di(x) = (TI - k)xlirA(a2 - x2)1'2 + (n - k)alivA(a2 - x2)^2. 

(25) 

The first term is equal to equation (4) and the second term is the 
distribution for unstressed pileup of positive dislocations with the 
number N\. The stored energy of the latter distribution is given by 
Hirth and Lothe [8] as (JV12 b/2A) In (2R/a), where R is the outer 
cutoff radius of the dislocation stress field. Therefore, the stored strain 
energy is 

where 

U^Cydn-kW 

C = l/3[l + 21n(2R/o)]. 

(26) 

(27) 

The dislocation accumulation in the subsequent stages is expressed 
by equations (12) with the following substitution: 

AD(x) = (AT - 2k)(a + x)1/2/irA(a - x)1'2, 

AN = (AT - 2k)a/A 

Ay = (AT - 2k)3ba2/2A, AU = CAy(AT - 2ft)/2. (28) 

Equations (14) and (15) can be used as expressions for the dislocation 
accumulation after n.-cycles. The dislocation density on layer I is 

Di(x) = T,(a + x)1/2/wA(a - x)1'2 (29) 

where T\ is given by equation (17). The stresses, axx
Dl, °yyDl> and 

oXyDl — TID, due to D\(x), can be calculated by adding the stresses 
caused by each dislocation. The stresses are calculated to be 

Ti 
Oxx Dl: 

Vn 
ay (3fli + 6t\ r- . 

:cos I : 1 + 2\/ri sin 
T\ Vri 

D i •• 
Ti / qy__ 

Vn ViVri 

39i + 02' (30) 

Dl = . T2 COS 
ay , /30i + 82 

:sin 
riVK 

where (ri, 0i) and (r^, 62) are the coordinates shown in Pig. 4. By ex­
panding the foregoing equation near the right-hand tip of the pileup, 
it can be seen that this stress field also has a singularity similar to the 
shear crack stress field. The stress-intensity factor is given by 

Similarly, the stress-intensity factor for the stress field due to the 
pileup dislocations on layer II is 

Kn 2TnV™ = -2n(Ar - 2k)y/ira. (32) 

The analysis of Case A, of single pileup from the surface, shown in 
Fig. 1 is complicated because of the image force of the free surface. 
The exact solution cannot be obtained in a closed form. Two ap­
proximations will be considered. 

The solutions for Case B of double pileup could be used by re­
garding one half of the pipeup as imaginary. In this approximation, 
the right-hand side of the double pileup in Pig. 2 corresponds to a 
vacancy dipole pileup with the extrusion shown in Fig. 1(a), while the 
left-hand side corresponds to an interstitial dipole pileup with the 
intrusion shown in Fig. 1(6). The amounts of intrusion and extrusion 
are obtained by multiplying the total number of dislocations with the 
Burgers vector. A second approximation can be given by regarding 
the length of a single pileup in an infinite plate as the length of the 
slip band emanated from the surface. The former approximation is 
expected to yield the lower bound of the solution and the latter, its 
upper bound.2 The extrusion-intrusion pair can be formed when the 
negative dislocation motion takes place on two layers adjacent to layer 
I as shown in Pig. 1(c). 

Crack Initiation. There are three ways for an embryonic crack 
to be formed in dislocation pileup accumulated under cyclic stress. 
A large tensile stress built up between two layers at the top of the 
pileups of vacancy dipoles shown in Pigs. 1 and 2 could become large 
enough to create the nucleus of a crack. Since the densities of pileup 
dislocation on two layers are about the same for long-life fatigue, ex­
cept for the sign, the tensile stress axx at x = a and at half the distance 
between two layers is given as follows using equations (18), (19), and 
(21): 

<rxx
Dl + <rxx

Du = 3 V ^ " ( A T - 2k)/V2h (33) 

where h is the distance between two layers. The number of stress 
cycles for the formation of a crack embryo is given from the afore­
mentioned equation by assuming that the crack is nucleated when 
axx becomes the theoretical strength. For Case A shown in Fig. 1, 
embryonic cracks are formed inside the material at the grain boundary 
of the surface grain where the vacancy dipoles are piled up. The site 
of crack nucleation is on the surface at the grain boundary in Case B 
in Fig. 2. 

Formation of intrusion causes the stress concentration under the 
applied stress, and it can also be regarded as the crack embryo. The 
depth of intrusion equals the total number of accumulated disloca­
tions, N\ = 2Vn = nAN, multiplied by the Burgers vector. It increases 
in each cycle and is n bAN after re-cycles. Equation (13) or (28) can 
be used as an approximation for AiV in the case of orientation A. The 
third possible site is the ledge left at the grain boundary when the 
dislocation source is at the grain boundary in the case of orientation 
B. The size of the ledge is equal to n bAN where AN is given by 
equation (28). In the previous two cases, it is rather difficult to de­
termine the define length of time for the formation of an embryonic 
crack. 

The following growth of a crack embryo will take place along the 
slip bands. Fig. 5 illustrates two types of initiation and growth of 
cracks. The condition of the growth of the crack embryo will be treated 
from the viewpoint of energy balance. If the stored strain energy due 
to dislocations accumulated after n -cycles becomes equal to the 
surface energy, the layers of dislocation dipoles can be transformed 
into a free surface. The life of the crack initiation nc is now defined 
as the number of stress cycles when the following energy condition 
is satisfied: 

U=Ui+ Un = 2ncAU= 4< (34) 

Ki = 2TiVw = 2 [ n - k + n(Ar • (31) 

2 The stress-intensity factor for the surface crack with length a under shear 
stress T is 1.12 ry/tra [7]. The first approximation yields T^/TTU as the stress-
intensity factor, while the second approximation yields 1.41 TyJ-na. 
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(i) Crack Embryo (ii) Subsequent Growth 

(a) Crack initiation from vacancy dipoles or extrusion 

T t 1 

( i ) Crack Embryo (ii) Subsequent Growth 

(b) Crack initiation from intrusion 

Fig. 5 Two types of crack Initiation; (a) Crack initiation from vacancy dipoles 
or extrusion, (/) crack embryo, (//) subsequent growth; (b) Crack initiation 
from Intrusion, (/) crack embryo, (//) subsequent growth 

,2n+l 

Fig. 6 Stress-strain hysteresis loop 

for Case B with the pileup length 2a. The value of ws is the specific 
fracture energy for a unit area. The right-hand side of the equation 
is 2 aws for Case A. For a double pileup case, nc is 

nc = 4 aws/(Ar - 2&)A7 

= 2bu)sa
3M(A7)2 

= 8 Aws/ba(AT - 2k)2 

(35) 

(36) 

where equation (13) is used in the derivation. For the case of a single 
pileup of orientation A, ws is substituted by ws/C in the foregoing 
equations. For general cases, including the single pileup for orientation 
B, the previous equations are applicable with a minor change of the 
coefficient. 

Discussion 
A most striking advantage of the present model is that the progress 

of the ratcheting of a plastic deformation in the slip band can be cal­
culated in each forward and reverse loading. The irreversibility of 
dislocation motion in two neighboring layers as assumed in the model 
can be realized if the friction stress against the dislocation motion is 
higher in the reverse direction than in the forward direction by a small 
amount. Only when the dislocation sources are located very close to 
each other, the dislocation accumulation can take place as calculated 
in the previous chapter. For the case of an isolated dislocation source, 
the dislocation motion on a single plane becomes reversible because 
no positive back stress is produced by the dislocations on a secondary 
layer. In the real situation, the motion of dislocations will be irre­
versible or reversible depending on a statistical distribution of dis­
location sources. 

Two neighboring layers considered in the model can be regarded 
as the zone of strain localization such as the persistent slip bands 
found in low strain fatigue. Several experiments have been reported 
on the slip movement under cyclic stress and most of them indicated 
a certain irreversibility of plastic deformation. Keith and Gilman [9] 
observed in their etch pit study in lithium fluoride crystals that dis­
location movements were irreversible under cyclic stressing except 
for the small motion of dislocation loops. More macroscopically, 
Charsley and Desvaux [10, 11] found that a partial reversal of the 
tensile slip steps and extrusion-type or intrusion-type slip steps oc­
curred during compression, but no total reversal was seen in single 
crystals with wavy and planar slip modes. Their observations sub­
stantiate partly the assumption of the present model. 

The slip step within the persistent slip bands in copper single 
crystals was observed by Finney and Laird [12] with the interfero-

metric technique. In their observations, the macroscopic strain carried 
out by the persistent slip bands was reversible; only at the finest 
distribution of slip within the band was the deformation not strictly 
reversible. The macroscopic behavior of the cyclic stress-strain hys­
teresis of the slip band derived from the present model is shown in 
Fig. 6. In the first forward loading up to T\, the material hardens lin­
early with the plastic strain according to equation (6) or (24). During 
the next reverse loading, the stress-strain relation follows the ABC 
path shown in the figure. The amount of plastic strain range A7 is a 
linear function of the stress range subtracted by twice the friction 
stress as given by equation (13) or (28). The subsequent forward and 
reverse loadings result in the closed hysteresis loop CD ABC of stress 
and strain. The hysteresis loop is macroscopically reversible, which 
agrees with the finding by Finney and Laird [12] or more generally 
with the hysteresis loop found at the saturation stage of the fatigue 
process. 

Although the irreversibility of dislocation motion as assumed in 
the present model has not yet been fully rationalized, either experi­
mentally or theoretically, the success in evaluating the ratcheting 
deformation and the reasonable estimate of crack initiation life given 
as follows will make the irreversibility assumption acceptable as an 
extreme case. Obviously, further studies are required on the dislo­
cation motion under cyclic stressing. 

The energy criterion for crack initiation gives a direct correspon­
dence to the Coffin-Manson relation. From equation (35), we have 

MC(AY)2 = 2bwsa
s/A. (37) 

The right-hand term is a material parameter which is independent 
of the applied stress. Coffin [13] and Manson [14] originally found the 
life law for complete fracture of smooth specimens under high strain 
cycling. Later, a similar law was confirmed to be valid for low-strain 
and long-life fatigue [15]. The life up to the initiation of the crack on 
the grain size order was about 50 percent of the total life without re­
spect to the stress amplitude in long-life fatigue [16], Therefore, the 
Coffin-Manson relation seems to be valid for the initiation of crack 
in long-life fatigue, with which the present model is concerned. The 
strain energy of dislocations is accumulated in the same amount in 
each forward and reverse loading except the first loading. The amount 
of stored energy does not correspond to the total area of the hysteresis 
loop, but only to the shaded area shown in Fig. 6. The energy corre­
sponding to the remaining area of the loop is the dissipated work 
against the friction stress. Martin [17] derived the Coffin-Manson 
relation about 20 years ago by regarding the segment of the plastic 
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Fig. 7 Grain boundary crack Initiated by stacked pileups of vacancy dlpoles; 
(a) crack embryo, (b) subsequent growth 

work associated with work hardening as accumulating damage. The 
present model gives a clear interpretation of his accumulating damage 
as the dislocation strain energy stored in the material by the irre­
versible motion of dislocations. 

The initiation life expressed by equation (36) in terms of stresss can 
be rewritten as 

AT = 2k + (8 Awjbnc)
1/2a-ll\ (38) 

Since the length 2a is the grain size, the previous equation is of the 
Petch type for constant initiation life. The Petch-type relation has 
been reported for the long-life fatigue of several metals [16,18]. 

The value of ws consists of the surface energy and the plastic frac­
ture work. Because no reliable data have been reported on the Cof-
fin-Manson type and the Petch-type equations for crack initiation, 
the exact estimate of ws is difficult. The following equation of the 
Petch type is reported by Taira and others [16] for the endurance limit 
for low carbon steel: 

oe = 114 + 0.329/Vd (39) 

where ae (MPa) is the stress amplitude of the endurance limit and 
d (meters) is the grain size. By using E = 2.1 X 105 MPa, v = 0.3, nc 

= 106 and d = 2a, the value of ws estimated from equations (38) and 
((39) is 3.8 X 10B N/m. This is much larger than the surface energy of 
iron, so the plastic fracture work is predominant. 

Among the three possible sites for the formation of an embryonic 
crack, which site to operate is greatly dependent upon the material 
involved. The relaxation zone which may occur at the pileup tip in the 
vicinity of grain boundaries reduces the stress concentration and 
prolongs the time of embryonic crack formation in the cases of or­
ientation A and B. This concurs with the fact that internal cracks are 
rarely observed beneath the extrusions [1,2]. For general cases, screw 
dislocation movement is superimposed on the edge dislocation motion 
and the intrusion and extrusion are formed in the slip band, short­
ening the initiation life of a crack embryo. In the fatigue of a copper 
single crystal, Ebner and Backofen [19] observed the difficulty of crack 
initiation when the primary slip direction is parallel to the specimen 
surface such as in the grain with orientation B. However, such an 
observation has not been reported with respect to polycrystalline 
materials. 

If the materials contain inclusions, the slip motion can be blocked 
by the inclusions and the crack can be initiated at the inclusions [1]. 
This type of crack initiation can also be analyzed using the present 
model of dislocation accumulation combined with a proper fracture 
criterion. 

When the applied stress or strain is relatively high, the slip defor­
mation is rather uniform within a grain, and the grain boundary be­
comes a preferential site for crack initiation. The stacking of slip bands 
which contain the pileups of dislocation dipoles can give an expla­
nation of the grain boundary cracking. Fig. 7 illustrates the situation. 
Several embryonic cracks are made along the grain boundary by the 

stacking of pileups of vacancy dipoles, and are connected to a 
boundary crack under the action of the tensile stress normal to the 
bounary. Under even higher strain, the deformation is almost uniform 
within a grain and then a single slip band or its stacking may no longer 
be appropriate for expressing the deformation in a grain. The cubical 
dependence of the right-hand term of the Coffin-Manson type 
equation (37) on the grain size will disappear. The micromechanics 
of inclusions will be a tool in treating the deformation of a single grain 
in the plastically deformed polycrystalline matrix [20]. Nonetheless, 
in this case the model of monotonic builtup plastic deformation under 
cyclic stress will play an essential role as an elementary process. 

An application of the present model and its refinement will be made 
in the future in each particular case of materials and testing condi­
tions. 

A phenomenological approach by Zarka, et al., [21] can also derive 
conditions for the cyclic ratcheting. 

C o n c l u s i o n s 
With regard to the plastic flow within the slip band in a most fa­

vorably oriented grain in low strain fatigue, the assumption of the 
irreversibility of dislocation motion yields a systematic increase in 
the amount of pileups of dislocation dipoles under cyclic loading. 
Forward loading causes a pileup of dislocations with a positive sign 
on one layer; the reverse flow is taken up by the dislocations with a 
negative sign moving on subsequent layers which are located very close 
to the first layer. The ratcheting deformation takes place with the help 
of the back stress due to dislocations made in a previous loading stage. 
While the macroscopic stress-strain hysteresis follows the saturated 
closed loop, the pileup of dislocation dipoles and the surface rough­
ening are monotonically increased in quantity. The theoretical 
analysis of the model for two-dimensional cases, using the contin­
uously distributed dislocation theory, yielded an exact assessment 
of the accumulation of dislocations together with the cyclic stress-
strain behavior. 

Several possible sites for the formation of the crack embryo were 
examined based on the stress distribution of accumulated dislocations 
and on the geometrical irregularities of the surface and the grain 
boundary. The sites are at the tip of the pileup of vacancy dipoles, the 
intrusion, and the ledge of the grain boundary. The material prop­
erties were expected to affect which site to operate. The time of the 
initiation of a crack of the grain size order was determined as the time 
when the stored energy of accumulated dislocations reaches a critical 
value. The relation between the initiation life thus determined and 
the plastic strain range is in agreement with the Coffin-Manson law, 
and that between the grain size and the fatigue strength is expressed 
in the functional form of the Petch type. Finally, several possible 
applications of the present model were suggested in relation to the 
other modes of fatigue crack initiation. 
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The Contact Problem for a Rigid 
Inclusion Pressed Between Two 
Dissimilar Elastic Half Planes 
Paper concerns the plane-strain problem of a rigid, thin, rounded inclusion pressed be­
tween two isotropic elastic half planes with different elastic constants. Required to find 
the extents of the contact regions between each plane and the inclusion, and the contact 
stress distributions. The governing integral equations are solved approximately by using 
Chebyshev expansions. Numerical results are presented. 

I n t r o d u c t i o n 
The plane-strain problem which will be studied is shown in Fig. 1. 

Two elastic half planes with shear moduli and Poisson's ratios ti„ vi 
(i = 1, 2), respectively, are pressed together by a pressure which at 
infinity is given by Tyy = —po. A rigid obstacle, symmetrical in x but 
not necessarily in y, lies between the two half planes. It is assumed 
that the contacts between the two half planes, and between the ob­
stacle and each half plane, are all frictionless. It is required to find 
the extents of the contact regions and the displacement and stress 
fields. 

The problem for two identical half planes was solved in closed form 
by Alblas [1]. The corresponding problem for two identical layers was 
solved by Alblas [2]; both problems were solved by Gladwell [3,4] by 
using Chebyshev polynomial representations. 

F o r m u l a t i o n 
Boundary values of displacements, stresses, etc., for y ~ 0± will be 

labeled 1, 2, respectively. The profiles of the obstacle for y = Oi may 
then be taken as y = ±/; (*) where, for infinitesimal elasticity theory, 
there is no loss of generality if one assumes that 

Ifp;(*) = 
written 

fi(x) = dt - xV(2n). 

-Tyy (x, 0), the boundary conditions on y 

-co < x < =>, T $ (x, 0) = 0, i = 1, 2, 

ci<\x\ <l, pt(x) = 0, i = 1,2,1 

\x\>l, Pi(*)=p2(*), 1 
|* | < a, Vi(x) = (-y-ifi(x), i = 1,2, 

|* | >l, vi(x) = v2(x) 

(1) 

= 0 may be 

(2) 

(3) 

(4) 
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Fig. 1 A rigid obstacle is pressed between two dissimilar half planes 

In addition there are the conditions at infinity 

Txl(x,y) = 0 = T^y(x,y), rfy(y,y) = -p0 as (*2 + y2) — °°, 

(5) 

the equilibrium conditions on the obstacle 

P= f'1pi(*)d*= r2p2(x)dx, (6) 
•J— e l *J—C2 

and the condition of compression in the contact regions, namely, 

- o o < x < o o , Pi(x)>0, J = 1,2. (7) 

The solution for each half plane may be obtained as the superpo­
sition of two fields. The first corresponds to a uniform stress field in 
the y-direction, namely, Tyy (x, y) = —po, for which 

2fiiUi(x, y) = vipax, 2ju£-o,-(x, y) = - ( 1 - i>i)poy. (8) 

The second may be expressed in terms of Fourier cosine transforms. 
Thus, if vi(x), pi(x) are the combined fields then (Sneddon [5, p. 457]) 
on the*-axis 
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vi(.x) = (-y-^iyclt
1Pi(0;x] 

Pi(x)-Po=3c[PdO;x] 

(9) 

(10) 

(12) 

where t>; = (1 — i>,)/w- It is convenient to work with displacement 
derivatives; then 

wife)-(-)''!>,• sr,[P/(f);*] (11) 

and equations (4) may be replaced by 

|* | <ci,u'i(x) = (-y-1f'i(x), 1 = 1,2, 

|* | >l, v\(x) = v'2(x), 

provided that the compatibility equation 

u i ( 0 = / i ( c i ) + f i ) ' , ( # = - / 2 W + C v'2(x)dx = v2(l) (13) 

is satisfied. 
If the common contact pressure for \x\ > lis denoted by q(x), then 

equations (3) and (10) yield 

q(x) = p o d - t 2 ) 1 / 2 + pot( l - i 2 ) 1 / 2 £ bnU2n~i(t), (21) 
n = l 

where t = //*. The integrals involving q(x) in (17) may then be 
transformed into those of type (19), leading to 

v\(x) = (-y-^ipo Ri(t) + t £ bnR2n(t) 

• £ af Rtn-lWCi) 
n = l 

(22) 

9c[Pi(&;x] 

Pi(*)-P0, \x\ <Ci, 

-po , \a\<\x\<l, 

q(x)-p0, |* | >l. 

But (Lowengrub [6]) if 

3c[F(0;x]=f(x), - » < * < « = 

then 

• f(t)dt 

•K J-°> t — X 

provided that f(x) is an even function of*. Thus 

,CiPi(&-Po 

IT «/-« 

) is an e 

?.[P,-«);*] = - - (""- , 
7T » / - c i 4 — * 

(14) 

(15) 

(16) 

Thus equations (12) become 

tfiP'o fli(t) + t £ W?2*(t) - £ af T2n-i(X/a)] = /U*), (23) 
I n = l n = l 

where i = 1, 2 and |* | < c;, and 

<>i \Ti(t) + t £ 6nr2n(*) - £ ai,» Rzn-iix/a) 
[ n = l n = l 

= -t?2 |T i ( t ) + t £ ftnTunW ~ £ 4 2 ) R2n-i(x/c2) (24) 
I n=l n = l 

where |* | > I, i.e., | t | < 1. 
The functions fli(t), t^2n(0 in (23), and the functions 

t~1R2n-i(x/ci) in equation (24) are well behaved in the intervals |* | 
< ci and |* | > I, respectively, and may therefore be represented in 
their respective intervals by Chebyshev polynomial series. In (23) 
write * = CIT, then t = Ux = l/(ft;-r) where ft; = cjl, and we use the 
approximations 

Ri(t) = Ri[ll(kiTJ\ = E etf T2 m_1(r) (25) 

'•dk 

+ i rpodi_i f^illzPo^ (17) 
7T */£; £ — * V JL £ — * 

where Lj = (—I, —c;) u (c;, I) andL = (—<=, — I) u (£, «>). This repre­
sentation for 3s[Pi(ljy, x], when linked to equations (12), yields three 
integral equations of Cauchy type, one on each of (—c,-, c;) and one on 
L. In principle it is possible to solve for either q or pi , p 2 in terms of 
Pi . P2 or q, respectively, but not only are the integral equations so 
obtained extremely complicated but also it is still necessary to satisfy 
the side conditions (6), (7), and (13). An approximate solution seems 
preferable. 

C h e b y s h e v P o l y n o m i a l So lu t ion 
An appropriate representation for p;(*), an even function of * with 

(c2 — * 2 ) 1 / 2 behavior at ±c;, is 

Pi(x) = po(l - *2/c?)i/2 £ o£> U2n-2(x/a) (18) 
n=\ 

where £/„(*) is the Chebyshev polynomial of the second kind. The 
integrals in (17) involving p; (£) may be evaluated explicitly by using 
the result (Gladwell [3]) 

tRtn(t) = [l/(kiT)]R2n[l/(kiT)} = E dg]2n r 2 m _! ( r ) (26)' 
m = l 

so that, on equating the coefficients of T2m-i(r) on each side of (23) 
we find 

«S?+ E <2n6„-a« )=-5,-5m,1, (27) 

where i = 1, 2; m = 1, 2 , . . . N and 

fi(x)l(dip0) = -xl(ndm) = -StT, Si = CiKrrfipo). (28) 

Equation (24) is treated in the same way; now x/a = //(c,t) = l/(fe,-t) 
and 

(l/t)fl2„-l(*/Ci) = [fei/(feft)]i?2„_i(l/(fe»t)) 

m = l 

%<*£ 

2m-2(«) 

N 
i « - i + E d S ' + w - i T t e f t ) . (29) 

m = l J 

The prime in the foregoing summation indicates that the first term 
is halved. The use of this approximation in (24) leads to 

l r1i 

T J-l T - t 

<h 2 - * i E d iVi*? ' 

n = l 

n = l 

E 
n = l 

= -t>2 2-A2 E 4 1 - i a® 

(19) 
\Tn(t), \t\<\, 

l [ t - 8 i g n ( t ) ( t 2 - l ) 1 « I » | t | > l , 

where Tn(t) is the Chebyshev polynomial of the first kind. Thus 

a p ;(f)df N 
^ T ^ - 2 = -Po E a « fish-ita/ci). (20) 

5 - * n=l 
The contact stress ?(*) is an even function of *, with (*2 — / 2 ) 1 / 2 

behavior near * = H- and with limiting value po as * ^* <». A suitable 
representation is 

-^\bm~k2 E dSU*.-^® 
I n = X 

(30) 

(3D 

1 / ' c , 

7T J - C i 

for m = 1, 2 , . . . N. 
The solution procedure is now straightforward. We suppose that 

t?i, i?2, or sufficiently t?2/''i = T, and Ai, /z2 (satisfying 0 < ft; < 1) have 
been chosen. Equations (30) and (31) yield 

1 = V2 E IM1L-1 <*<« + M i l - i a«} 
n = l 

(32) 
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Fig. 2 Contours of T = "fn/y-, for given values of k-,, k2 
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Fig. 3 Contours of diPor/ for given values of fc1t k2 

bm= £ (Xi<i»)
+1,2„-ia(„1) + A2dg)

+li2rl_1a (2)1 
m+l,2n-l«n I (33) 

where X; = ft,-iV(<?i + t>2>- Multiply the first term in (27) by the 
right-hand side of (32) and substitute (33) for bm in the second term. 
The result is 2N equations for the 2N coefficients ofj', a(

n
2). Assuming 

(on physical grounds) that the homogeneous equations with S j = 0 
= Si have only the trivial solution, we may write the solution of the 
homogeneous equations in the form 

_(0 _ y- 4(>).,sf. (34) 

When p;(x) is given by (18), the equilibrium equation (6) becomes 

2P/(wlp0) = M " = k2af\ (35) 

Thus, on using (34), we find 

2 

ki Z A$ Sj = k2T. A?} Sj 
j-i ;=i 

(36) 

which, since k\, k2 are known, is an equation for Si/S2. Once S i / S 2 

is known, the values of Si and S2 separately may be found by substi­
tuting the expressions (34) for a J,1', af> in equation (32). At this stage 
all the coefficients a^\ a(„2), bn are known; after verifying that the 
contact pressures are compressive, there remains one final equation, 
the compatibility equation (13) which may be written 

C? Co fl , / " ' , 
dx + d2 =— + - j Vl(x)dx+ I v2(x)dx. (35) 

2f\ 2v2 *sc\ OC2 

This equation yields dx + d2 in terms of known quantities. 

N u m e r i c a l R e s u l t s 
For the case of two identical half planes, Alblas [1] found that 

I IT 
(36) 

where K, E are the complete elliptic integrals with arguments k = ki 
= k2, and 

2rd 
[E'(E-K) + k2KK']. (37) 

All the figures refer to the particular case in which the obstacle is 
symmetrical, so that r\ = r2. Fig. 2 shows the contours of Y for given 

0.9 
APPROXIMATE RESULTS 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

kl 
Fig. 4 Contours of r(d-, + d2)/P for given values of fci, k2 

values of k\, k2; Fig. 3 shows those of dipar/l and Fig. 4 shows those 
of r(di + d-^IV1. These results were computed as follows. Define T,-
= ki/Si = i?;pon/i. If n = r2 then T2/Tt = di/#i=T. For given values 
of k\,k% an arbitrary value of F = 7<0) was chosen, and T\, T2 were 
computed as described in the section, "Chebyshev Polynomial So­
lution." The value of T2/T\ = F ( 1 ) was computed and the calculation 
was repeated with T = T<-1\ It was found in practice that T2/Ti was 
most insensitive to the chosen value of T so that two steps of the it­
eration were always sufficient to yield the value of T appropriate to 
those ki, k2 and rx = r2. For ki = k2 the results were compared to those 
of equations (36) and (37). It was found that N = 5 was adequate for 
k < 0.5 and N = 9 was adequate for 0.6 < k < 0.9. 

Figs. 5 and 6 show the contact pressure and normal displacement 

106 / VOL 48, MARCH 1981 Transactions of the ASME 

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



x/c 

_L 

Fig. 5 The scaled contact pressure when t>i = t>2 
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Fig. 7 The scaled contact pressures on the obstacle when k, = 0.5 
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Fig. 6 The normal displacement on the free boundary when t?i = t>2 

on the free boundary when t?i == t?2- Figs. 7 and 8 show the corre­
sponding quantities when t?i 7^ $2-

Compar i son W i t h a F irs t A p p r o x i m a t i o n 
The numerical results show that for small ki, ki the contact pres­

sures are approximately given by the first terms in (18) and (21). Thus, 
to a first approximation, 

Pi(x) = p o o P d - x^c 2 ) 1 ' 2 , q(x) = po(l - J2/*2)1 '2 , (38) 

«)'(*) = (-) i-1tf;Po IfliW*) - a? ' iij^/c,-)]. (39) 

Now equations (23) and (24) give 

diP {RxWx) - a f (x/c,-)) = -xln, \x\< c,-, (40) 

t)i (//* - a^Rxix/c!)} = - i>2 I*/* - a f fli(x/c2)), |x | > (. (41) 

Now fli(t) = £ - (£2 — 1)1/2 a; l/(2t) to the first-order approximation, 
so that 

t>iPo(V2 - ai'Vfe;) = -Z/r,-, 

(t>i + i?2) = (^l^iai1 ' + tf2*2aP))/2: 

(42) 

(43) 

But equation (35) gives kia[^ = fe2oi2) so that kia[l) = 2 and equa­
tion (23) gives 

a° 
\ 0.5 -

2 .0 

Fig. 8 The scaled exterior contact pressure when k-i = 0.5 

(It 1 =0.5) 

i?iPoUV2-2/fef) = - l / n . (44) Fig. 9 The normal displacements on the free boundaries when ki = 0.5 
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If the obstacle is symmetrical then 

4 

*1. 
<?1 

k{ 
; - 1 

- ^ - 1 
4 

(45) 

The compatibility equation becomes 

' 2ri 
+ i5iPo •("f i-e! 

tix + d2 — I.KH 
+ t>2Po J1 \RI\-\ - ai2> Ri ( - l id* = 0, (46) 

which yields, when r i = r^, 

K&x + d2)r fef + fel 
/2 

2fej 

' 4 - f t ? 
T i -

where 

Tj = uj - ujl + In kj - 2 In it,-, uj = 1 + (1 - ftj) 1/2 

(47) 

(48) 

The results obtained from this approximation are shown on all the 
graphs and it is clear that they in general show excellent agreement 
with the computed results. The contact pressure is not particularly 
closely approximated but it is still very closely proportional to (1 — 
x2W2. 
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Exact Equations for the Large 
Inextensional Motion of Elastic 
Plates1 

The governing equations for plates that twist as they deform are reduced to 14 differential 
equations, first-order in a single space variable and second-order in time. Many of the 
equations are the same as for statics. Nevertheless, the extension to dynamics is nontrivi-
al because the natural coordinates to use to describe the deformed, developable midsur­
face are not Lagrangian. The plate is assumed to have two curved, stress-free edges, one 
built-in straight edge, and one free straight edge acted upon by a force and a couple. There 
are 7 boundary conditions at the built-in end and 7 at the free end. 

Introduction 
Helicopter blades, aircraft wings, and inflatable buildings are ex­

amples of thin-walled structures that undergo large elastic deflections. 
If shell theory is used to model the large motions of such structures, 
then, except for rubberlike materials, the midsurface deformation 
must be nearly inextensional. This is because the strains will be small 
compared to the rotations. The degree to which inextensionality ap­
proximates the actual kinematic state depends on the geometric 
boundary conditions, the nature of the external loads, and the distance 
along the midsurface to an edge. Fortunately, the error in an inex­
tensional solution can be assessed a posteriori and used, if need be, 
as an outer solution in a singular perturbation analysis of the original 
problem. Indeed, even if plastic flow occurs, it may be reasonable to 
assume that the major portion of the shell is in a state of elastic, 
inextensional deformation. 

The theory of large, inextensional motions of elastic shells is vir­
tually undeveloped. For example, it is only within the last year that 
exact static equations have been derived for simplest, nontrivial case 
imaginable, namely, the inextensional bending of an end-loaded 
cantilevered plate [1, 2]. 

Nowadays, large computer codes are used to solve special cases of 
the equations of motion of nonlinear shell theory. In developing new 
codes of greater generality, it would seem desirable to incorporate near 
inextensionality explicitly. Otherwise, most of the computational 

1 This work was supported by the National Science Foundation under Grant 
MOS-73-08659A02. 

Contributed by the Applied Mechanics Division for publication in the 
J O U R N A L O F A P P L I E D M E C H A N I C S . 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N. Y. 
10017, and will be accepted until June 1,1981. Readers who need more time to 
prepare a Discussion should request an extension from the Editorial Depart­
ment. Manuscript received by ASME Applied Mechanics Division, April, 
1980. 

effort may be consumed in generating displacement fields that pro­
duce small extensional strains. 

As a first step in this direction we derive herein exact equations of 
motion for an elastic, inextensional plate that twists as it deforms. The 
plate is assumed to be bounded by two straight edges and two curved 
ones. One straight edge is built-in and the other may be acted upon 
by a force and a couple. The curved edges are stress-free. Inertial and 
distributed external loads act over the deformed midplane of the 
plate. We shall use the notation of [1,2] and, for conciseness, refer to 
these two papers extensively.2 We introduce a slight change, however, 
to simplify the dynamic analysis: in what follows it is the left end of 
the plate that is built-in and the right end that is free. 

The deformed midplane of the plate is a moving developable surface 
and thus of the form [1] 

y(a,t),t) = x(a,t) + i}u(a,t). (1) 

Here a is the angle that the generators in the developed midplane 
make with the built-in edge, x is the position of the line 33 that bisects 
the built-in edge and is orthogonal to the generators, 7] is distance 
along a generator from 55, and u is a unit vector along a generator; see 
Figs. 1 and 2 of [1]. 

The dynamic extension of the static equations developed in [1, 2] 
is nontrivial because the natural set of coordinates to describe a de­
velopable surface, a and r\, are not material (Lagrangian) coordinates. 
Consequently, whereas 7 equation suffice for static problems, 14 are 
needed in dynamic ones. Seven boundary conditions are known at the 
built-in end (a = 0), and 7 at the free end (a = a). Numerical solutions 
of these equations will be considered in a later paper. 

2 We take this opportunity to correct a minor error in [2]: in equations (15) 
and (65) replace sin 7 by cos 7. 
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V e c t o r E q u a t i o n s of Mot ion 
The first step is to add inertial loads to the force and moment 

equilibrium equations in [1] and to switch from the independent 
variable £, that measures distance along S, to a. Primes and dots are 
used in [1, 2] to denote differentiation with respect to £ and a, re­
spectively. These two operations are related by p( )' = ( )', where 
p is the geodesic radius of S. Let y** denote the acceleration with 
respect to an inertial frame of a particle on the deformed midsurface. 
Equation (69) of [1] then implies the following equation of conser­
vation of linear momentum: 

F- + Q = pU), (2) 

where, from (67) of [1], 

Q = S(P - v)pdn (3) 

and 

p(i) = f(p _ v)my**dr]. (4) 

Here m is the mass/area of the undeformed midplane. We recall that 
S is short for / J i , where 17+ and -Q- denote the (unknown) distances 
along a generator to the curved edges; see Fig. 1 of [1]. 

For a plate that twists as it deforms, it seems best to take moments 
with respect to the point x + pu on the edge of regression of the de­
formed midplane. Thus, from equations (70) of [1] and (12) of [2], we 
obtain the following equation of conservation of angular mo­
mentum: 

M- + u X (p-F + P(2) - L) = O, (5) 

where 

L = S(p-v)2pdr, (6) 

and 

p(2) = j ( p _ v)
2my**dr). (7) 

A c c e l e r a t i o n and Iner t ia l Load V e c t o r s 
Let x and y denote the Cartesian coordinates of a particle in the 

undeformed (= developed) midplane. The position y of the particle 
during the motion may be regarded as a function of x, y, and t. By 
definition, 

y* = Yt(x,y,t), (8) 

where ( )( = d( )/dt. In the developed midplane we have, from Fig. 
1 of [2], the following relations between the coordinates (x,y) and 

x = p(a,t) cos a + r(a,t) sin a — r\ sin a (9) 

y = p(a,t) sin a - r(a,t) cos a + r) cos «. (10) 

Here p is the perpendicular distance in the developed midplane from 
the center of the built-in edge to the generator a = constant, and r 
is the distance along this generator from £ to the foot of the perpen­
dicular; see Fig. 1 and equation (95) of [2]. Thus a and 7] are functions 
of x, y, and t, even though we cannot express this dependence ex­
plicitly. From (1) and (8), 

y* = ya(a,r),t)at + y,(a,i?,t)'?( + yt(a,i),t) 

= at(rC + i)V) + 7j(U + xt + 77114. (11) 

But 

x- = pi, x(0,i) = O, (12) 

where \ is a unit tangent to 33, and from equations (3) and (4) of [2], 
f = u + Am and if = —I, where m = t X u and X is the torsion/curvature 
ratio of the edge of regression. Thus 

y* = at(p-rf)i + r)tu + xt + 7?u(. (13) 

We now express at and i]t in terms of pt and rt. Differentiating both 

sides of (9) and (10) with respect to t and noting from equations (54) 
and (55) of [2] that 

p- = p~r, p(0,t) = 0, r = p, r(0,t) = 0, (14,15) 

we have 

0 = [at(p -r))+ pt] cos a + (rt - Vt) sin a (16) 

0 = [at(p - r)) + pt] sin a - (rt - r)t) cos a. (17) 

Hence 

(p - ri)at = -pt, Vt = n, (18,19) 

and (13) reduces to 

y* = - p ( t + r tu + X( + 7)Ut. (20) 

Inextensionality implies that, in general, the geodesic curvature 
of $ does not vanish with the deformation, and, thus, neither do p 
or r. More precisely, from Fig. 1 of [2], we have 

f " p(ftt)T(/?)d(3 + r(a,t)U(a) - p(a,i)T(a) = O. (21) 
•Jo 

Here 

T(a) = i cos a + j sin a, U(a) = — i sin a + J cos a (22, 23) 

are unit vectors, tangent and normal, respectively, to 35 in the devel­
oped midplane, and I and j are fixed unit vectors, I pointing into the 
plate and tangent to S at the built-in edge and J lying along the 
built-in edge. 

To obtain well-conditioned differential equations, i.e., to avoid 
situations in which groups of relatively large terms must add to nearly 
zero, we introduce in place of x the new dependent variable 

z = x + ru - pt. (24) 

Clearly, in view of (21), z does vanish with the deformation. From (12), 
(14), (15) and equations (3) and (4) of [2], it follows that z satisfies the 
differential equation and boundary condition 

z- = -pXm, z(0,t) = O. (25) 

In terms of z, (20) reads 

y* = zt + p\t + (r; - r)ut. (26) 

Again using the chain rule, ( )* = ( )aat + ( ),?jt + ( )(, and 
noting the differential equations for I, u, p , r, and z, we obtain 

y** = X(p - v^pSm + ztt + pitt + (»? - r)u„. (27) 

Let 

In = S(p ~ n)nmdri, n = 0,1,2,3, (28) 

and assume, for simplicity, that m is constant. With the aid of equa­
tion (21) of [2] we have 

anda = mSn+1[(l + p.)n+1 - l]/(re + 1). (29) 

(The geometrical meaning of 5 and n may be found in Fig. 1 of [2]). 
Inserting (27) into (4) and (7), we obtain for the inertial terms that 
appear in (2) and (5), 

pW = /„-1Xp (
2m + /„(z„ + plM) + J„+1u ( ( , p = l,2, (30) 

where 

<J*+i = (p ~ r)Iv - /„+i = <?/„ - 7„+1, (31) 

the second form of J„+i coming from equations (52) and (95) of [2]. 

T h e D y n a m i c F i n i t e R o t a t i o n V e c t o r 
In [1], Libai and the author introduced a finite rotation vector r to 

describe the position of the triad (t,u,m) with respect to the triad (i,J,k), 
where k = i X j . In dynamic problems it is convenient to introduce the 
vector s that measures the rotation of (t,u,m) relative to the triad 

110 / VOL. 48, MARCH 1981 Transactions of the ASME 

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



(T,U,k). The reason is to obtain well-conditioned equations. Although 
the triad (T,U,k) rotates, recall that T and U depend on a only and k 
is constant. Thus, if the deformation is small, so will be s. 

For conciseness, set (t,u,m) = (111,112,113), (T,U,k) = (Ui,U2,U3), and (l,j,k) 
= (ei,e2,e3). Then in terms of s [3] 

u; = U, + [s X U; + J s X (s. X U;)]Q = SijUj, (32) 

where 

Q = ( l + l s . s ) - 1 . (33) 

In (32) i = 1,2,3, a repeated index is summed from 1 to 3, and the sy-
are elements of a proper orthogonal (rotation) matrix. Note thatSy-s,y 
= &ik, the Kronecker delta. As —s inverts the transformation that 
sends the triad (111,112,113) into (Ui,U2,U3), it follows that s has the rep­
resentations 

S = S;u; = s;U;. (34) 

Substituting (34) into (32), we obtain the well-known representation 

[3] 

Sy = (1 - J QskSk)Sij + (CijkSh + \ SiSj)Q 

= &u + tij, (35) 

where eijk is the permutation symbol. 
To derive differential equations for the components of s, consider 

first the Frenet equations for the u;'s. From (97) and (98) of [1] 

ur = pu> X u;, (36) 

where 

pu> = -Xu2 + 113. (37) 

On the other hand, from (32), 

ur = Sy-Uj+Sy-U/. (38) 

It follows from stjSkj = Sy and (32) that 

Sy'Uy = SifSkjUk = \ (sifSkj - SijSkf)uk. (39) 

But the coefficients of the u^'s in (39) are elements of a skew matrix. 
Hence there exists a vector pil such that 

Sy-Uf = pQ X u;. (40) 

Furthermore, from (22) and (23), 

s v u / = sHk X Uy = k X u;. (41) 

Inserting (40) and (41) into (38) and comparing the resulting equation 
with (36) we see that 

p<a = pil + k. (42) 

Now the relation between r and a), as expressed by equation (108) of 
[1], is precisely the same as that between s and Q, i.e., 

Si'ui = Q + ieXQ + i ( f t - s)s. (43) 

Adding initial conditions, setting ( )' = p( )•, replacing pQ by p<a 
— k, and noting from (32) that 

k = U3 = U3 + [u3Xs + i s X ( s X u 3 ) ] Q , (44) 

we obtain the following component form of (43): 

Sl = S2 + i Xs3 - I XS2S1, S i (0 , t )=0 (45) 

s2' = -X - si - J Xs2
2, s2(0,t) = 0 (46) 

s3- = - i X s i - J X s 2 S 3 , s3(0,t) = 0. (47) 

C o m p o n e n t s of the Iner t ia l Loads 
Let "V = d/dt. Then from (32) and (35) 

<V(u;) = <V(t;;)U; = skJ<V(tij)uk, (48) 

where "Vtty) is to be computed in terms of the s;'s from (35). Like­
wise, 

V2(ui) = SkjVHtijhk. (49) 

Further, let 

z = z;U,-. (50) 

Then 

<V2(Z) = <y2(2;)U; = sjiVHzduj. (51) 

Inserting (49) and (51) into (30), we obtain 

P w = fe/,-iA + SijlLBj + J„+i<V2(t2 ,)]k = P/WHJ, (52) 

where 

A = X[<V(p)]2, B;=<V2(z;)+p<V2(tiy). (53,54) 

C o m p o n e n t F o r m of (25) 
Insert (32) with i = 3 and (50) into (25) to obtain 

ZiUi = -z;Uc - pXs3;U;. (55) 

As noted in (41), U;" = k X U; which, since U3' = k- = O, is equivalent 
to the statement U„' = e^U)?, where eap is the two-dimensional per­
mutation symbol. Thus the component form of (25) is 

zi = 22 - pXs3i, 2i(0,t) = 0 (56) 

22' = -z\ - P^s32, z2(0,t) = 0 (57) 

z3=-p\s33, z3(0,£) = 0. (58) 

C o m p o n e n t F o r m of t h e Equat ions of Mot ion 

Set 

F = FiUi. (59) 

Then, with (52) and equations (3)-(5) of [2], (2) implies that 

Fi = F2 + \F3 + Pi ( 1 ) , Pi(0,t) = ? (60) 

F2- = Ft+ P2
( 1 ) , F2(0,t) = ? (61) 

F3 \Fi + P3
( 1 ) , F3(0,t) = ? (62) 

For simplicity, assume that there are no distributed external loads 
(p = 0). Insert (52) and (59) into (5) and, as in [2], set 

M = M ( t + Tuu + Mmm (63) 

to obtain the scalar equations 

Mt- -Tu-\Mm + p-Fs + P3<
2> = 0 (64) 

TV + Mt = 0 (65) 

Mm-+ \Mt - p-Fi - Pi<2' = 0. (66) 

It may be verified immediately that equations (16)-(49) of [2] are 
unchanged, save P cos <j> is to be replaced by F3 wherever it ap­
pears. 

N o n d i m e n s i o n a l i z a t i o n 
All variables that appear in both the static and dynamic equations 

are nondimensionalized by equations (59)-(63) of [2], The new vari­
ables that appear in the dynamic equations are scaled and nondi­
mensionalized as follows: 

(20,23) = tL(tza,z3), a = 1,2 (67) 

(FmPj»,F3,P3W) = (eD/L)(eTMePa,F3,P3), (68) 

(P a
( 2 \P3

( 2 )) = «D(<jy2),F3
(2>) (sa,s3) = t(sa,(s3), (69) 

(sa3,S3a) ~ (ta3,t3a) = e(S3a,Sa3), (t«fl,*33) = (HtcH.hs) CO) 

A = ((D/mL*)A, (Ba,B3) = (eD/mLs)(dBmB3) (71) 
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In,Jn = mL"+HIn,Jn), t = LHm/DV-in. (72) 

In these equations e = PL ID, where P is a measure of the vertical force 
at the built-in edge, L is a typical length of the plate, and D is the 
bending stiffness. 

If we drop overbars then of the equations needed in what follows, 
only (35), (45)-(47), (52) for i = 3, and (62) and (64) change form; 
(45)-(47), (62), and (64) are given by (82)-(84), (90), and (91), re­
spectively; (35) breaks down into 

Sa/3 = Safi + £2tap, S33 = 1 + £2 t3 3 

ta0 = [tapSS + 2SaSt) - \ (SySy + <E2S3
2)<5„(3]Q 

SaS = t„3 = (f/JaS/3 + i C2SaS3)Q 

S3a = t3a = UapSp + | (2SaSS)Q 

*33 = -is„SaQ, 

(73, 74) 

(75) 

(76) 

(77) 

(78) 

where 

Q = [l+ieHsasa + eW)]~1, (79) 

and (52) implies that P 3
W takes the form 

P 3
W = I,-lA + SsslhBs + «/„+lV2(t23)] 

+ e2sa3[IMa + ^+i£V2(t2«)]. (80) 

The Complete Set of Dimensionless, Dynamic 
Differential Equations 

Scattered throughout [2] and the present paper are differential 
equations for the unknowns l+, s = s;U;, z = z,U;, F = P,u,-, Mt, Mm, 
X, and fi. These are equivalent to a set of 14 scalar equations and are 
listed next together with the known or unknown values of the 14 de­
pendent variables at a = 0. These equations contain a number of 
auxiliary quantities that, ultimately, can be expressed in terms of a, 
the 14 dependent variables, or prescribed load and geometric pa­
rameters. To avoid too much rewriting, we have preceded each dif­
ferential equation with a pair of braces containing information giving, 
first, the source of the differential equation, and second, the equations 
that define the auxiliary variables. Thus, for example, 5(56)—(58); [(51), 
2], (74), (77)-(79)| means that the differential equations are (56)-(58) 
of the present paper and that the auxiliary variables on their right 
sides are defined by equation (51) of [2] and (74) and (77)-(79), of the 
present paper. Equations for the angles @± and y± can be found in 
terms of /+ once the equations y = f±(x) for the curved edges of the 
undeformed midplane have been specified. (For example, for a 
quadrilateral plate, these angles are constants with /3± = y±.) 

In these equations there are 7 unknown boundary conditions at the 
built-in edge a = 0. Six of these represent the unknown components 
of the force and moment vectors. The seventh, f*(0,£), represents a 
measure of the distance from the center of the built-in edge to the edge 
of regression. At the free end, a = a, there are also 7 boundary con­
ditions: the force and moment must be prescribed and 8fi must be 
equal to dimensionless length of the free edge. 

{[(41), 2]; [(33), 2][ 

1+ = 5 sec {a - /3+) cos (7+ - /?+), l+(0,t) = 0. (81) 

|(45)-(47)) 

si=s2 + ie2Ms3-hsis2), si(0,t) = 0 (82) 

s2- = - A - s i - i £ 2 S 2 2 , s2(0,t) = 0 (83) 

S3- = - | X s i - J e 2 S 2 * 3 , s3(0,t) = 0 (84) 

((56)-(58); [(51), 2], (74), (77)-(79)| 

zi- = z 2 - p X s 3 i , zi(0,t) = 0 (85) 

22" = -21 - pXs32, z2(0,t) = 0 (86) 

z3- = -p\s33, 23(0,0 = 0 (87) 

)(60)-(62); [(33), (51), 2], (29), (31), (52)-(54), (73)-(79)| 

Fi =F2 + \Fa + Pi(1), Fi(0,t) = ? (88) 

Fi = -Ft + P2
( 1 ) , ^2(0,t) = ? (89) 

Fs = -e2XFi + P3<», i?3(0,t) = ? (90) 

1(64), (66); [(26),.(33), (44), (49), (68), 2], (29), (31), (52)-(54), (73)-
(79)| 

Mt- = A[e2Mm - In (1 + »)] - p-Fz - P3<
2>, Mt(0,t) = ? (91) 

M m - = - X M ( + p - P i + P 1 < 2 > , Mm(0,t) = ? (92) 

|[(46),(66),2];[(48),(49),2]P 

X- = [(1 + ili)Mt + S(l + fi)F3 - \nA]/E, 

X(0,t) = -T u (0 , t ) / ln [1 + n(0,t)] = ? (93)4 

/»• = (1 + M)IKM - («A)(1 + H)F3] In (1 + n) 

-nMtl\}IE, ju(0,t) = ? (94) 

C o n c l u s i o n s 
Although we have ended with a relatively large number of equa­

tions, it must be emphasized that they involve only one spatial vari­
able. This is a consequence of incorporating explicitly the constraint 
of mextensionality. Also these equations apply to plates of essentially 
any planform. 

In a subsequent paper we intend to compute numerically the mo­
tion of a skewed quadrilateral plate that is subjected, at its free end, 
to a static dead load that is then released suddenly. 
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Some Considerations on Thermal 
Shock Problems in a Plate 
Manson has given a well-known conventional approach to thermal shock problems in a 
plate. In his investigation, however, the inertia term and the thermomechanical coupling 
term were neglected in the governing field equations. As a result, the treatment became 
quasi-static, and then it was inadequate to model thermal shock problems having a steep 
time-gradient in the thermal and mechanical fields. In the present paper, we examine a 
rigorous treatment to find the exact solution for thermal shock problems in a plate when 
the following two effects are taken into account: 

(a) Dynamic treatment due to the presence of an inertia term. 
(b) A coupled thermal stress problem in the presence of a thermoelastic coupling 

term. 

Thus we can determine the significance of these effects on the thermal stress distribution 
when a sudden change of temperature occurs. 

1 I n t r o d u c t i o n 
When thermal stresses are generated by a sudden change in tem­

perature, this is called a thermal shock problem. In Manson's well-
known approach [1] on this subject, the conventional treatise for 
thermal shock problems in a plate under an unsteady-state temper­
ature field, rests on the assumption that the inertia term may be ne­
glected in the governing equation of motion, and that the thermoe­
lastic coupling term may be neglected in the heat-conduction equa­
tion. This hypothesis, based on the quasi-static process, is known to 
yield useful results in practical engineering applications without 
significant errors. 

Strictly speaking, however, in a conventional analysis such as 
Manson's, time enters only as a parameter in transient thermal and 
mechanical problems. It is evident that the quality of approximation 
must depend both upon the size of the relevant intrinsic inertia or 
coupling parameter and on the nature of time variations inherent in 
the temperature distribution. In particular, if the temperature field 
exhibits sufficiently steep time-gradients, dynamic effects disregarded 
in the traditional treatment of the problem may become significant. 
When the inertia term is taken into account, the character of the 
problem is considerably altered. 

Moreover, if presence of a thermoelastic coupling is taken into ac-
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count, an exact analysis would require the simultaneous determina­
tion of stress and temperature distributions. 

In order to check Manson's theory, the present paper has consid­
ered both effects separately for the thermal shock problem in a plate, 
and we have learned which effect is most significant for determining 
thermal stress distribution. 

From an analytical point of view, the effect of the coupling term 
appears in the heat conduction equation, and the effect of the inertia 
term appears in the mechanical field equation. Therefore, it is an 
important and interesting problem that the treatments are individ­
ually pursued for the uncoupled dynamic problem and for the 
quasi-static coupled problem when the boundary and initial condi­
tions used in a plate are the same as those of Manson's problem. 

From our results, it seems more important to consider the coupling 
term rather than the inertia term for ordinary metals. 

2 D y n a m i c T h e r m a l S t r e s s e s in a P l a t e 
In this section, first we limit consideration to the uncoupled dy­

namic problem of thermoelasticity. 
The inertia term has been taken into account in several thermoe­

lastic investigations since the appearance of Danilovskaya's [2] and 
Mura's [3] original papers. Most papers deal with the problems of 
infinite or semi-infinite regions, and present only the first wave of the 
thermoelastic stresses. Only Singh and Puri's papers [4,5] deal with 
the dynamic thermal stresses in a plate with finite width. However, 
their investigations found solutions for cases having an infinitely large 
heat-transfer coefficient in a surrounding liquid, and obtained only 
the components of thermal stresses normal to the boundary (axx). As 
for thermal shock problems, the component of stress normal to the 
section (ayy) is greater and the solution for this stress component is 
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-I 

Fig. 1 Boundary conditions on a plate 

more important. Moreover, in Puri's work, numerical results were not 
given, so we cannot imagine any of the characteristic behavior of a 
thermal stress distribution due to the dynamic effect. 

As shown in Fig. 1, an infinitely long plate with width 11 is suddenly 
heated by liquid at the high temperature To. 

The uncoupled heat-conduction equation is given by 

KT.X (1) [ ,xx ~ i ,t 

in which the comma denotes partial differentiation with respect to 
a variable and T is the temperature change, K is the thermal diffu-
sivity, and t is time. 

For the sake of convenience, we introduce the following dimen-
sionless quantities: 

where u is the displacement component in the x -direction, v is Pois-
son's ratio, E is Young's modulus, p is the density, a is the linear 
thermal expansion coefficient, and 

up
2 = (1 - v)E/\(l + v)(l - 2v)p\ 

For the present problem, the stress components can be expressed in 
the dimensionless forms 

axx = 1(1 - v)li\ - 1v)\\uD,x + HCw + C2D)/(1 - v) - TD\ 

ffYY = ((I - „)/(i - 2v)MuDlX + C2D)/(1 -v) + Cw - TD) 

(12) 

azz = 1(1 - «)/(l - 2P)MUD,X + Cw)/(1 -v) + C2D - TD\ 

where 

uD = w|(l - v)l(l + v)laTQ] 

{Cw, C2p\ = 1(1 - iO/U + v)aT0)\Cl(t), c2(t)} (13) 

Wxx, "YY, azz\ = ((1 _ v)/EaTa)\a 

and ci(t) and c?.(t) are the normal strain in the y and z -directions, 
respectively, to be determined by the boundary conditions. It follows 
from equations (11) and (13) that 

UD,XX ~ V-2UD,tDtD = TD.X (14) 

where 

V = Vpl/K 

Now we assume that the initial conditions are given by 

uD(X, 0 ) = 0 , C I D ( 0 ) = C 2 B ( 0 ) = 0 (15) 

Applying the Laplace transform to equation (14) with conditions (15), 
it follows that 

"D.XX - (p2/V2)uD = TD,x (16) 

X = x/l, Y = y/l, Z = z/l, TD = T/T0, tD = Kt/l2, H = hi (2) Substituting equation (8) into (16), the solution of uD is therefore, 

where h is the relative surface heat-transfer coefficient. Upon sub­
stitution of these in equation (1), we have 

UD - A sinh + 
H sinh (VpX) 

TD.XX - To,t (3) 

The initial and the boundary conditions can be written in the non-
dimensional forms 

TD(X, 0) = 0 at tD=0 

TD,X ± H(TD - 1) = 0 at X = ±1 

VI (1 - p/V2)p V p (Vp sinh V P + H cosh V p ) 

(17) 

where A is an integral constant. 
Applying the Laplace transform to the first equation of (12) with 

the conditions of (15), we have 

(4) 

(5) 

1-v 
"xx '• 

Applying the Laplace transform over time, denoted by a bar, the 
system of the heat-conduction equations is reduced to 

TD.XX = pTo (6) 

TD,x±H(TD-p--L) = 0 at X = ±1 (7) 

where p is a parameter of the Laplace transform. 
It follows from equations (6) and (7) that 

H cosh (-y/pX) 

l - 2 v 

+ 

- ^ c o s h ^ 
V V 

H cosh VpX 

VHl - p/V2)(yfp~ sinh y/p + H cosh V p ) 

v 

\ - v 
(Cw + C2D) (18) 

For the traction-free surface, the normal stresses must vanish at the 
boundaries 

TD=- (8) 
p(\fp sinh V p + H cosh V p ) 

Inverting the Laplace transform, we obtain the temperature solu 
tion 

axx = 0 at X = ±1 . 

Substituting equation (18) into equation (19) we obtain 

P . , , ,»„ H cosh V p 
- A cosh (p/V) + = •^z -=r 
V V 2 ( l - p / V 2 ) ( V p sinh V p + H cosh V p ) 

(19) 

„ - „ ^, s ' n un cos (o)„X) ,. , ' 
To = 1 - 2 £ " e-u„HD (9) + - • (Cw + C2D) = 0 (20) 

n=i w„ + sin u)n cos C0i 

where o>n are the positive roots of the equation 

con tan un=H (10) 

The one-dimensional thermoelastic equilibrium equation with the 
inertia term can be expressed as 

The remaining boundary condition is given for the following three 
end conditions: 

(£) The displacements are not restrained in either the y and z-
directions 

vp-\tt = \(\ + v)l(\-v))aT.x ( ID 
f oyydX = C GzzdX = 0 (21) 
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(ii) The displacement is restrained in the z-direction (or y) 

only 

P ffyydX = 0, C2O = 0 (22) 

(Hi) The displacements are restrained in both directions 

ClD = C2 B = 0 (23) 

By using the foregoing conditions of equations (20)-(23), A, Cm, 
and CiD can be determined, and then the subsidiary solution of Tlo 
can be obtained. Thus, applying the Laplace inversion formulas with 
the theorem of residue, the final expression of UD can be expressed 
as 

» e -"" 2 ( D sin w„ 
UD - £,h*~ " i L 

n=l (1 + fi„V ^{dln + sin (0„ COS C0„) 

sin ojnX 
fin cos co„ >?* 

1 - 2 P . 

1 - c 
V+fi, 

\ sin q)n 

/ «>n . 

sinh finX 

co„2(l - 7)2^^11 * tanh fi„) cosh fi„ 

- 2H £ [(X*/A - L A G A ) cos (VpnktD) 
n=l 

+ (KAGA + LkIk) sin (Vpn A tD) | sin p„fcX (24) 

in which the subscripts k to ?? are used to indicate the foregoing 
boundary conditions of equations (21)-(23), and then r\u is taken as 
follows: 

T)i = 2v, r\i = vl(l - v), ?)3 = 0, (25) 

and 

fc = (1 - *)/(l + „), & = l - » , €3 = 1, 0 B - . « B * V - i , 

AA = otnkDk + H cos ffnfc, Bk = ankEk + H tanh ank sin anA, 

X* = (PnkAk V- 1 - fl»)[U + p„A2V-2) 

X(AA
2 + BA

2)|pnA
2-?72?7*(l - T/2>7*)! sin P „ A ] - 1 , 

Lfc = (A* + pn*B* V - ^ A / O J ^ A A V" 1 - Bfc), 

DA = tanh ank cos a„A - sin ank, 

h = PnkV-1 cos ank - blk/Zctnk^PnkEkV-1 

+ (1 - 2I/)Z>*/(1 - v)} 

Gk = -PnkV~x tanh ank sin «„A + (r)k/2ank) 

X\(l - 2v)Ekl(l - v) - pnkDkIV\, 

Ek = tanh a„A COS ank + sin anfc, ank = \/pnkV/2 (26) 

where pnk are the positive roots of the equation 

COS pnk - (V2Vk Sin Pn^Pnk'1 = 0 (27) 

In a similar way, after the inversions, coefficients Cm and C 2 D can 
be uniquely determined. 

Substituting the foregoing results into equation (12), the complete 
expressions for thermal stresses are 

"xx = 1-2 ) / „=i 

2sin(on-e-"«2 'D 

(1 + QnV
 1)(OJ„ + sin (o„ cos co„)|l - i72r?A tanh fi„/fin| 

cosh fi„ 1 - 2v fi„ ~lnX 1 sin (on 

fin J ^n 

+ (COS (On — COS (0„X) 

COsh fin 

ri2?iA t a n h fin 

V 

+ {cos oinX — (cosh fl„X cos <on)/cosh fi„jfinV l 

+ (KkGk + Lkh) sinp„fcV££,j 

X (0A COS pnk ~ COS PnkX)Pnk (28) 
(Corat.) 

1 — 1/ ™ 
o-yy - £ 

1 - 2v„=i 

2 sin (0„-e-""2 ( D 

(1 + fi„V 1)(o)„ + sin u>„ cos (0„){1 - (712)?* tanh fi„)fi„ *j 

X 
/ l - 2v + fi„\ 

\l~v V) 

cosh flnX 
V2Vk , _, " 0A 

cosh y n 

sin con + (0A cos (o„ - TJA cos (o„X)(j)2 tanh fi„)/V 

+ fi„V ^cos (o„X — v cosh (o„X cos o)n/(l - v) cosh Q„| 

+ 1(1 - 2J/) / (1 - i/))(l - 772T;A tanh fi„/fi„| cos (o„X 

+ 2H|(1 - j /) /( l - 2v)\m Y. Wkh - LhGk) cos PnkVtD 
n=l 

+ (KkGk + Lkh) sin p„kVtD\ X (<pk sin p„A - p„fc cos p„«X) 

+ (0* - 0i) (29) 

where 0i = 1, 02 = 1, 03 = 0. 
For the sake of brevity, the expression of crzz is omitted here. 
It is obvious from equations (28) and (29) that thermal stresses can 

be represented as the sum of the term decaying exponentially with 
time and the term oscillating as a pulse with time. 

Numerical Results 
Numerical calculations based upon the foregoing derivations were 

carried out for the first end Condition (i). In our computations we 
adopt the following values as material constants:1 

v = 1/3, H = 10, V = 100 

In evaluating the eigenvalues in equations (10) and (27), we found 
50 terms by Newton's approximation technique. The calculation of 
the stresses was truncated at 50 terms, and it was successful enough 
to obtain convergence. Figs. 2 and 3 show the variations in thermal 
stresses on the normal section with thickness for several dimensionless 
times. Figs. 4 and 5 show the variations in stresses at the middle sec­
tion and at the boundary surface with dimensionless time. 
Throughout the figures, the classical solutions are plotted as dotted 
lines. 

The maximum value of oxx occurs at the middle surface of the 
plate. However, since the maximum ayy or ozz is much larger than 
the maximum oxx, it is very important to find ayy and azz-

3 Coupled Thermal Stresses in a Plate 
Next, we consider only the effect of the coupling term for the same 

problem in a plate. 
For coupled thermal stress problems, there have been several ap­

proximate solutions for a short time period in the works of Hetnarski 
and others [6-8]. However, they only treated the problems for the 
infinite or semi-infinite region, and for limited time of heating. 
Therefore, there has been no rigorous solution for the plate with a 
finite thickness for the whole time period. 

As was noted earlier in this paper, in a precise analysis of thermal 
shock problems, the treatment requires simultaneous determination 
of temperature and deformation due to the possibility of a large 
coupling parameter or a large volumetric strain velocity. For the 
present case, the corrected heat-conduction equation can be written 
as 

TD.XX - Tu,tD = &(UD,X + Cw + C2D),( (30) 

+ 2 H | ( 1 - i / ) / ( l - 2(/)j E \(KkIk - LkGk) cos p„A VtD (28) 1 We use exaggerated value for V to find a particular behavior of the stress 
n= 1 propagation due to the dynamic effect; see Table 1. 
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Fig. 2 Dynamic thermal stress distribution of aXx in cross-sectional direction 
for very short time 

-0.4 

Fig. 3 Dynamic thermal stress distribution of <jYy in cross-sectional direc­
tion 

where 8 is the coupling parameter 

(1 + v)Ea2T* 
5 = -

(1 - iO(l - 2v)pc, 

The equation of equilibrium is given by 

U-D,XX = TD:X 

(31) 

0.4 

b" 

02 . ,u 
( 
1 
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Fig. 4 Propagation of dynamic thermal stresses <JYY in the middle plane of 
the plate 
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Fig. 5 Dynamic thermal stresses variation of <xyy on the surface with 
time 

Applying Laplace transforms to equations (30) and (32), we obtain 

UD,XX = TD,X (33) 

TD,xx - pTD = dp(uD,x + CW + C2D) (34) 

Solving the foregoing two equations simultaneously, we obtain 

TD = A cosh qX - (5/(1 + 5))(C1D + C~2D + D) (35) 

uD = (A sinh qx/q - 8X(C1D + U2 D)/(1 + 8) + DX/(1 + 8) (36) 

where A and D are integral constants, and q = \ / ( l + 8)p . 
Substituting the results of equations (35) and (36) into equations 

(12), we have 

axx = v\C~1D + C~2D + (1 - v)D/v\/(l - 2v) 

(1 - v + (2 - 3v)5\C~w aYy = — A cosh qX + 

azz = — A cosh qX + 

(1 - 2v)(l + 5) 

!" + ( ! • 
+ ; v)8\(C2D + D) 

(1 - 2i0(l + 8) 

\v+(l-v)8\(C1D + D) 

(37) 

(1 - 2;/)(l + v) 

(1 - J> + (2 - 3J>)5SU2D 

(1 - 2J>)(1 + i/) 

Unknown constants A, CID, C2D, and D can be determined by the 
(32) conditions of equations (7), (19), and (21)-(23). 
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Fig. 6 Coupled temperature variation In the cross-sectional direction for the Fig. 7 Coupled temperature variation in the cross-sectional direction for the 
Boundary Condition (/) Boundary Condition (III) 

It follows that the subsidiary solution can be expressed as 

T D = A (cosh qX - R sinh q/q) 

UD = A (sinh qX/q - PX sinh q/q) 

°xx = 0 (38) 

<7yy = A(— cosh qX + Q sinh q/q) 

ozz = A ( - cosh qX + S sinh q/q) 

where 

A = {H/p)(q sinh q+H cosh q-HR sinh q/q)-1 

P, Q, R, and S are to be taken for each boundary conditions of (t')-(m), 
respectively 

(0 P = 2\v + (1 - K)«)/{1 + K + 3(1 - i/)8), Q = 1, 

fl = 2 ( l - > W ( l + i/ + 3( l -K)5) , S = l, 

(H) P = |p + (1 - v)8)/{l + 2(1 - v)5\, Q = l, (39) 

fl = (1 - 2v)67(l + 2(1 - v)S}, S = P, 

(Hi) P=Q = R = S = 0 

Applying the theorem of residue and inverting the transforms, we 
obtain 

TD = 1 - £ B„|cos fonX) - (R sin co„)/o)„)e--»2(o/<1+s» (40) 
n = l 

uD = £X - £ S„|sin (<o„X)Ao„ - (Psin co„)X/co„!e-'"«2">/<1+<i) 

r > = l 

(41) 

<TXX= 0 

<ryy = - i j - £ B„(-cos <o„X + (Q sin w„)/wn!e-»»2^/(i+*) 
n = l 

o-zz = - f - £ B„(-cos <o„X + (S sin a)n)/wn|e-"»2t"/(i+«) 

(42) 

where <o„ are the n th positive roots of 

Hoin cos co„ - (a)„2 + HR) sin <o„ = 0, (43) 

and £„, J, ?;, and f are given by the forms as 
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Fig. 8 Coupled temperature variation with times 
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Fig. 9 Coupled thermal stress variations of OYY with time for Condllion(/) 

Bn-
2«„ sin wn 

(44) 
ii)„2 + <o„ sin u>n cos <o„ — 2fl sin 2o>„ 

£ = (1 - j/)/(l + v), r\ = f = 0, for Condition (i), 

' ' £ = 1 —v, T; = 0, $=l-v, for Condition (it), 

£ = J) = f = 1, for Condition (iii). 

Numerical Results 
The foregoing solutions will be illustrated numerically by the fol­

lowing values of material cpnstants: 
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Fig. 10 Coupled thermal stress variations of o~zz with time for Condl-
tion(//) 

v = 1/3, H = 10, 8 = 0.1 

The foregoing coupling parameter is representative of commercial 
alloys. For example, when T* = 293°K (20°C), typical values of the 
coupling parameter 8 are 

aluminum alloy = 0.031, lead = 0.079. 

Figs. 6-8 show temperature variations with thickness and dimen-
sionless time when 8 = 0.1,0.03, and 0 for the three boundary condi­
tions. Figs. 9 and 10 show the thermal stress variations with the di-
mensionless time and thickness for the Condition (i) and (ii). In all 
the figures, the dotted lines express the results of uncoupled cases. 
It is obvious that there is a distinct difference between the coupled 
and the uncoupled treatment. As is seen in Figs. 9 and 10, one observes 
that the maximum stress at the surface must be decreased in the first 
short period of heating when the coupling effect is taken into ac­
count. 

4 Conclusion 
There have been a lot of papers which have dealt with coupled 

dynamic thermoelasticity. However, most of the papers solved only 
pure one-dimensional problems for an infinite or a semi-infinite re­
gion, and only axx was obtained in their results. In engineering 
thermal shock problems, it is more important to consider the problem 
of a finite domain having moderate thickness, and to find the stress 
component <ryy or azz for the actual engineering problems, even if 
it is limited to one-dimensional treatment. Moreover, in industrial 
machine design, it is a truly important problem which effect is to be 
considered in calculation as well as being theoretically interesting. 

This paper is divided in two parts, dealing, respectively, with inertia 
effects and thermoelastic coupling effects. First, we reconsidered 
results of the dynamic problems discussed in Section 2. The present 
exact analytical stress solution, which vanishes at time t -» °°, j s valid 
for the whole time interval, while Singh's solution is valid only for the 
short-time interval. 

In general, the magnitude of this dynamic effect depends on the 
parameter V = UPI/K. In the case of V = 100, adopted in the present 
analysis, the dynamic effect is fairly large in stress distributions for 
°~xx, °-yy, and azz. However, if we take I = 1 cm in computing for an 
actual steel, then the value of V becomes very large, that is, V = 5.18 
X 106. For this value, therefore, in actual problems, the corrections 
introduced in the foregoing from the present calculations are so small 
that the dynamic thermal stresses may be approximated closely by 
a quasi-static solution. In other words, the ratio of dynamic to 

Table 1 A glance at dynamic and coupling parameters 

Parameter 

r 

s 

where 1 

Fundamental equation: 

(Dynamic) u ' x x " r u ' t t " T , X 

(Coup led) T > x x " T , t " 6 ' u > x + c 

M a t e r i a l s 

m i l d s t e e l 

3 . 7 4 x l 0 " 1 8 

0.0083 

aluminum 

5 . 9 5 * 1 0 " 1 7 

0.031 

»293°K, I -10cm 

( T - V " 2 ) 

l + c 2 > - t 

l ead 

7.23x10" 

0.079 

(14) 

(30) 

18 

quasi-static values of thermal stresses is unity for a large value of V, 
and hence the dynamic effects can be neglected in usual materials. 
Thus Manson's formula can be approximately justified when one 
considers the dynamic effect of thermal shock problems. 

Now, let us consider the thermal shock problems in a plate when 
considering coupling thermoelastic problems in the absence of an 
inertia term. It appears from Figs. 6-9 that coupled solutions exhibit 
explicit differences between the coupled theory and classical ones in 
temperature and thermal stresses, even if computation is carried out 
for practical engineering materials. For the temperature solutions, 
for example, the ratio of coupled to uncoupled values is about 5 per­
cent smaller for 8 = 0.03 and to = 0.4. This means that the coupling 
effect reduces temperature rise, and the thermal stresses are slightly 
relieved in the beginning of the thermal shock for the Boundary 
Conditions (i)-(iii). However, the thermal stresses become slightly 
larger than the uncoupled results after some time interval, due to the 
delay in temperature rise between the outer surface and the middle 
one. As a whole, the maximum thermal stress is larger in the case of 
the coupled theory. Therefore, it is necessary to modify Manson's 
uncoupled quasi-static formula. 

In summary, as illustrated in Table 1, it should be pointed out that 
the coupling parameter in a fundamental heat-conduction equation 
eventually appears in value to effect the temperature distribution. 
Hence, we can guess that the dynamic parameter gives very small 
effect. 

In conclusion, it is more important to consider the coupled effects 
than to consider the inertia effects for thermal shock problems be­
cause the coupling effects are much larger than the inertia effects for 
ordinary metals. In the usual case, inertia effects may disappear in 
pure thermal stress problems in contrast to the coupling effects which 
result in a small lag in the stress distribution. 
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Acoustoelastic Effect of Rayleigh 
Surface Wave in Isotropic Material 
The acoustoelastic effect is investigated for the Rayleigh surface wave propagating in a 
homogeneous isotropic material. The initial deformations considered are uniform and 
nonuniform only in the direction of depth. The formulas for the velocity change versus 
the change in the applied static stress are derived in the first-order approximation. The 
result for the uniform case, reducing to that of Hayes and Rivlin, exhibits no dispersion 
and the velocity change proportional to the principal strains. To be noted is the result 
that the Rayleigh wave becomes dispersive under the nonuniform stress state, depending 
roughly on the product of the wave number and the characteristic depth over which the 
stress varies. The dispersion is remarkable for the relatively low frequency and diminishes 
as the frequency increases. The analytical results are verified by measurements with 
mild-steel samples on the basis of the sing-around technique. 

1 Introduction 
The relationship between the stress in solids and the characteristics 

of elastic wave propagation has been studied through the years as a 
branch of the nondestructive evaluation (NDE) of materials. One 
hopes to provide a new and powerful technique for the stress mea­
surement by means of ultrasonics. The basis of study is the stress-
induced change in the propagation velocity, which is referred to as 
acoustoelastic effect [1-5]. The property of this effect depends on the 
material nonlinearity and the type of wave propagated, including the 
directions of propagation and polarization. Linear relationship for 
the velocity change and the change in the applied static stress has been 
confirmed experimentally within the elastic region of most materials 
[1, 3, 5]; an exception is copper [5]. 

Main part of the experimental work reported up to now has been 
confined to the usage of ultrasonic bulk waves, i.e., longitudinal and 
transverse waves. By the bulk wave acoustoelasticity, the applied or 
residual stress averaged over the total path-length can be measured, 
provided that the second and third-order elastic constants and initial 
anisotropy are given in advance, and vice versa. One of the short­
comings of current bulk-wave usage is the inability to detect the 
through-wall stress distribution, for example, the residual stress in 
cold-rolled plate. In some applications, moreover, the knowledge of 
the surface stress is only required. The acoustoelasticity of the Ray­
leigh wave [6] is hopeful for such possible applications, although it 
has been long untried. The Rayleigh wave travels the free surface of 
solid half space and the depth of penetration into the solid is ap-
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proximately one wavelength. Therefore, in the case of nonuniform 
stress state, the Rayleigh wave acoustoelasticity is expected to depend 
on the frequency. The main purpose of the present research is to verify 
this expectation by both analysis and experiment and discuss the 
property of this type of Rayleigh wave dispersion. 

The Rayleigh wave acoustoelasticity was first analyzed by Hayes 
and Rivlin [7], together with that of the Love wave. For aluminum 
alloys, Martin [8] investigated the relative effects of stress and pre­
ferred grain orientation. Also, Adler, et al. [9], utilized the Rayleigh 
wave velocity change to measure the residual stress of circumferential 
welds in pipe. These works, however, restricted themselves to the case 
of uniform deformation, so that the Rayleigh wave dispersion due to 
stress application was neither discussed nor observed. In this paper, 
we shall first analyze the Rayleigh wave acoustoelasticity in the uni­
form case and present the experimental data from the uniaxial tensile 
loading. The velocity change shows good agreement between analysis 
and experiment. The formula for the nonuniform case is next derived, 
which shows the Rayleigh wave dispersion as a function of the degree 
of stress variation within the penetration depth. The experiment with 
the simple bending of plates, where the stress varies linearly with 
depth, supports the analytical result. In the experimental work, the 
transit time variation of the Rayleigh wave in the megahertz range 
is measured by the sing-around technique. 

2 Basic Equations 
We are concerned with the Rayleigh wave propagation on the free 

surface of a semi-infinite homogeneous isotropic material which is 
initially under static deformation. The theoretical foundation of this 
problem has been established on the basis of the second-order elas­
ticity [4,10] and here we will only outline the important results. 

The infinitesimal displacement Wk superimposed on some given 
stress state is governed by [4] 

i>2wk 

' d t 2 ' 

d2Wk d / Z>wm 

<*lm " r • ;— \Sklmn "T 
dXldXm OXl\ OXn 

(1) 
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Sklmn = X6fc|5m„ + fl(8km&ln + &knhm) 

+ [ ( - X + y1)5fc;8mn + (-p. + Vii(hkmbin + 5fe„5;m)]e 
+ 2(X + v2)(ekiSmn + emnhi) 
+ 2(fl + Vs)(ekm8ln + ekn&lm + e|m5fc„ + einbkm), (2) 

where e = ekk, a Cartesian coordinate system x; (i = 1,2,3) specifies 
the position in the initial deformed state, p is the mass density, out 
the stress, and eki the strain in that state. There holds the generalized 
Hooke's law between aui and e*;. The second and third-order elastic 
constants are denoted by (X, p) and (v\, v2, vz), respectively. The latter 
characterizes the material nonlinearity in the first-order approxi­
mation. The fourth-order tensor S, which carries the slight anisotropy 
due to the stress, can be considered as the elasticity tensor for the 
prestressed isotropic material. Since the acoustoelastic effect is dis­
cussed to the first-order, higher-order terms in the initial deformation 
gradients have been ignored. Hereafter, we employ summation con­
vention for every repeated suffix unless otherwise mentioned. 

Let us consider a solid half space occupying the region x 2 a 0 and 
assume that the stress acting is uniform in the whole region or a 
function of the depth x2 only. Moreover we take the coordinate axes 
so as to coincide with the principal directions of stress. Then, from 
the equilibrium equation and boundary condition, we have a-y = 0 
for k ^ I and (722 = 0. When the Rayleigh wave propagates in the 
xi-direction, the problem degenerates to two-dimensional and the 
displacement associated with the Rayleigh wave has the form 

Wi = fi(x2) exp [ik(x1 - Vt)], (i = 1, 2) (3) 

and if 3 = 0 just as the classical treatment. The component w$ corre­
sponds to the SH mode which is also possible in the semi-infinite solid 
but now independent of the Rayleigh wave. In equation (3), k denotes 
the wave number, V the phase velocity, and /; (i = 1,2) the amplitudes 
that depend on the depth. 

One more assumption is that the path of the Rayleigh wave is along 
a straight line. Then, the boundary condition can be written in the 
following simple form [10]: 

o'kiU + akil'i = 0 a t x 2 = 0, (4) 

where 

and 

dwm . dwi dwk dwm 
<*kl=~0kl— r Okm- r aim- r &klmn~ , V>) 

Z>xm dxm dxm dxn 

,' _ l , , 1 ldw™ , du>n\ , Z>U>m . . . 
ll--Wmln\— + T ~ " ' m — — , (6) 

2 \ d * „ dxj <>Xl 

are the increments owing to the displacement Wk, respectively, in the 
stress and the unit normal to the boundary surface. Making use of the 
fact that I = [0, —1,0]T, wa = 0, and wi(i = 1,2) is independent of* 3, 
we find the relevant boundary condition in terms of /; 

Dh +ih = 0, 
S1122/1 + S2222Df2

 = 0,. 
at x2 = 0, (7) 

where D = d/d{kx2). Since the particle motion by the Rayleigh wave 
is confined to the vicinity of the free surface, the amplitudes should 
decay with depth 

Substitution of Wk into equation (1) leads to 

[D(SUi2D) - (o-n + Sim) + vVVVfth 
+ i[(Si2i2 + Sim)Z> + DSm2]f2 = 0, 

[D(S2222D) — (ffll + S1212) + 

+ ('[(S1212 + Su22)D + D S „ 2 2 ] / i = 0, (8) 

w h e r e Vy = fi/p. By se t t ing 

A = -t'[(Sm2 + Sm2)D + DSm2]F, 

h = \liVVVl- (an + Sun) + D(Si2i2D)]f, 
(9) 

equations (9) to the second of equations (8), we have the fourth-order 
differential equation for F; 

[nVyV2
T - (<T„ + S 1 U 1 ) + D(Sl212D)][nV2/V2

T - ( a n + S1212) 
+ D(S2222D)]F + [ (S I 2 i2 + Sll22)D + DS 1 1 2 2 ] 

X [(S1212 + SU22)D + DSl2i2]F = 0. (10) 

Equa t ion (10) and bounda ry condit ion (7) are t h e basic equa t ions for 
t h e following analysis . 

3 Uniform Deformation 
The acoustoelastic analysis for the uniform deformation and cor­

responding experimental data are to be presented in this section. The 
analytical result does not differ essentially from that of Hayes and 
Rivlin [7]. 

Analysis. When the initial deformation is uniform, equation (10) 
reduces to 

[nWV$ - (<rn + SU11) + Si2l2D*-][nVyV2
T - (ffll + S12i2) 

+ S2222D
2]F + (S1212 + S l m ) 2D 2F = 0. (11) 

The general solution to this equation is 

4 

F = E M exp (-mikx2), (12) 
; = i 

where A's are the constants and m's are the real roots of the charac­
teristic equation. Since F should tend zero as x2 tends infinity, the 
two of the A's with m < 0 must vanish. Thus we obtain 

F= £ Ai exp (-rriikx2), 
1 = 1 

(13) 

where rm > 0 (i = 1, 2). 
On substituting equation (13), the boundary condition (7) yields 

a set of linear homogeneous equations for A\ and A2. From the con­
dition that the solution be nontrivial, we have the frequency equa­
tion 

[S2222ia - (on + Sim)) + S1122
2](a - (on + S1212)) 

= Si2i2S2222(a - 0ii)2|a - (ffn + Sim)), (14) 

for a = pV2. In the derivation, the characteristic equation has been 
used to eliminate mi and m2, and a degenerate case m\ = m2 has been 
omitted. The possible degenerate cases were fully discussed in [7]. The 
frequency equation (14) determines the Rayleigh wave (phase) ve­
locity in uniformly deformed material as the function of the initial 
strains. 

Since <T22 = 0, only two of the principal strains are independent with 
each other and the following convenient expression is assumed: 

a = cto + aieu + a2e22- (15) 

the first of equations (8) is automatically satisfied. Then, applying 

Applying equation (15) to equation (14) and neglecting the higher-
order terms in the strains, the expressions for the constants a's can 
be deduced. The resultant a's are, of course, exactly the same as those 
given by Hayes and Rivlin [7] with the formal difference of definition 
of elastic constants. To save space, they are not presented here. The 
relative velocity change is then given by 

AV/Vo =(V- V0W0 = (ai/2a0)en + (a2/2a0 - M/X)e22, (16) 

where Vo is the Rayleigh wave velocity in the natural state, being 
defined by (ao//"o)1/2i Po is the density in the natural state or 

(.V0/VTO)6 ~ 8(V0/Vro)4 + 8[(3X + 4p) I (X + 2M)](VO/VTO)2 

- 16(X + n)/(\ + 2ju) = 0. (17) 

In view of equation (16), the Rayleigh wave in the uniformly deformed 
material undergoes no dispersion as in the stress-free case. This 
property might be foreseen, since all the quantities appeared in the 
nondimensional form in the starting equations (7) and (11). 

Determination of Elastic Constants. Throughout the present 
study, the specimens were machined from the rolled plate of mild steel 
(C; 0.17 percent, Si; 0.25 percent, Mn; 0.72 percent). They were tem-
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Fig. 2 Rayleigh wave signal produced by 2MHz strip-type transducers [ab­
scissa; 5 /lsec/dlv, ordinate; 0.5 Voilldiv)

. .
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toV/Vo = ell- toT/To,

•

THEORY
EXPERIMENT•o

2

1

AV/VO'

AT/To

The trigger level was fixed to 0.5 V in the present experiment. The
counter, having a reference frequency of lOMHz, displayed the av­
eraged period over 104 sing-around cycles. The oscilloscope and the
testing Jnachine completed the measurement system.

The Rayleigh wave was generated and received by a pair of thick­
ness-mode 2MHz PZT ceramic strips, of 14mm length and 0.75mm
width, attached in parallel on the specimen surface. The strip width
corresponds to a half wavelength of the Rayleigh wave to be generated.
Under this condition, optimum efficiency for Rayleigh wave excitation
and reception could be achieved. This type of Rayleigh wave trans­
ducer was found to be superior in resulting a sharplyrising signal to
the wedge and comb transducers [61. A disadvantage is the low tol­
erance of the ceramic strips to high loading, so that we set the load
limit to be 50MPa in the surface stress. Fig. 2 shows the Rayleigh wave
signal generated and received in this way.

In order to obtain the relative velocity change experimentally, the
relation

was used, ell being the surface strain in the propagation direction.
The relative change in the transit time (toT/To) was determined from
the change in the sing-around period T, while ell could be monitored
by the strain gauge method. The typical result of the tensile experi­
ment is shown in Fig. 3. The same specimens that were used to de­
termine the elastic constants were tested and the strip-type trans­
ducers were spaced about 100mm apart. The straight lines are drawn
according to the analytical result, i.e., toVIVo = -O.lleu and toT/To
= 1.lleu. Data taken during the loading sequence are designated by
solid circles and data during the unloading sequence by open circles.
Within the tested range of strain, the Rayleigh wave velocity appears
to vary linearly with the applied strain as predicted by the analysis
based on the second-order elastic theory. Taking the low rate of
change into account, the analytical and experimental results agree
well with each other.

Fig. 3 Relative variations of Rayleigh wave transit time and velocity versus
the uniaxial tensile strain

4 Nonuniform Deformation
The stress application to the material causes the slight change in

the elastic properties and then in the response to the elastic wave
propagation. As the consequence, the acoustoelastic phenomena do
occur. When the initial deformation has a distribution in the direction
of depth, the degree of change in the elastic properties also varies with
depth. In this sense, the material subjected to such a deformation is
qualitatively similar to the layered or stratified material, in which the
Rayleigh wave is known to be dispersive. This section is devoted to
the analytical and experimental verification of the natural expectation

(18)

SPECIMEN

to V/Vo = -0.31ell - 0.6ge22,

IFZ>-J-----===-----'......~ ACOUSTI C
ABSORBER

Measurement system based on the sing,around techniqueFig. 1

and Va = 3.00 X 103m/sec. In the following experiment, the Rayleigh
wave is propagated parallel to the direction of uniaxial tensile load.
In this situation, we have to VIVo = -O.Ilell by substituting e22 =
-<Tell, <T being Poisson's ratio (<T = 0.284). Since the rate ofthe Ray­
leigh wave velocity change is very small, i.e., about a tenth part of the
strain in the propagation direction, more care was required in the
acoustoelastic experiment for the Rayleigh wave than that for the bulk
waves. For comparison, the longitudinal and transverse waves pola­
rized parallel and normal to the direction of uniaxial load underwent
the relative velocity changes at the rates 0.32, 0.26, and -1.48, re­
spectively; all three propagated normal to the load direction.

Experimental Result. The electronic equipments used for the
Rayleigh wave acoustoelasticity is illustrated schematically in Fig.
1. An electronic pulse of 0.1 fJ.sec width was sent out from the sing­
around unit. The transmitting transducer converted it into the ul­
trasonic Rayleigh wave pulse. After traveling the sp~cimen surface,
the pulse reached the receiving transducer. Then, the Rayleigh wave
was transformed back into the electronic pulse and fed back to the
sing-around unit. This pulse was therein amplified to +1.5V from the
zero level through the auto-gain controller and after preseleCted delay
time retriggered the pulse generator, thus circulating the closed loop:

pered at 900°C for %hr and subsequently air-cooled. The surfaces
were finished by plane-grinding and mechanical-polishing.

To evaluate the coefficients of equation (16), five elastic constants
and the density should be known. For this, the acoustoelastic effect
of bulk waves was first measured on the 20mm-thickness tensile
specimens, employing 5 MHz PZT transducers and the sing-around
apparatus which will be explained in the following. The load was
uniaxial tension up to 150MPa in stress and the path of the ultrasonics
was taken to be normal to the load direction. The result of averaging
several measurements is as follows: A '" 10.74 X 104, fJ. = 8.19 X 104,
VI = -0.13 X 105, V2 = V3 = -2.0 X 105 (all in unit of MPa) and Po =
7.837 X 103 kg/m3.

With these values of elastic constants and density, the coefficients
a's are calculated to render
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that the Rayleigh wave will be dispersive in the nonuniformly de­
formed material. 

Analysis. As in the preceding section, the solution F is constructed 
so as to satisfy equation (10) and boundary condition (7) within the 
first-order approximation. Since the coefficients of equation (10) are 
no longer constant in this case, the calculation turns much compli­
cated. Based on the smallness of initial strain, which is in the order 
10~3 at most for mild steel, we shall seek the solution F in the per­
turbation scheme and assume the expansion 

F = F" + F1 (20) 

The zeroth-order solution F° corresponds to the classical one when 
the initial stress is absent, while the first-order solution F1 denotes 
the small perturbation from it due to the initial stress, reflecting the 
acoustoelastic effect. The order of magnitude of F1 relative to F° is 
that of the initial strain. 

Substituting equation (20) into equation (10) and collecting the 
terms with the same order, the respective equations for F° and F1 can 
be yielded. One for F° is 

\KD*+[(K + 1)V2
0/V

2
T0-2K]D2 

+ [VyV\a - K)(V2
0/V

2
T0 -1)\F° = 0, (21) 

from which we obtain 

where 

F° = D At exp (-mkx2), (22) 

ni = (1 - V2
0/V%)1/2, n2 = (1 - VI/KV2

T0)
1/2, (23) 

and K = (X + 2fi)ln. When the stress is removed, mi and m2 of equa­
tion (13) reduce to n\ and n2. On the other hand, the equation for F1 

is inhomogeneous one with homogeneous part identical to the left-
hand side of equation (21). By using the solution F° and then the in­
tegration, we have 

Fx = hkY. Ai[ri2enikx* C *Rie-<-ni+n^kx 'dx2 - me"*™ 
i=l J<° 

X X2 /*X2 

ft.e-lni+n2)kx2(iX2 - n2e-nikx2 I Rie-(ni-m)kx2 

J* X2 
Rie-("i-"2)kx2(ix2]! (24) 

o 
where h = [2Knin2(n

2 — ref)]-1. The explicit expression of Ri(i = 1, 
2) is presented in the Appendix. 

The solution F thus constructed obeys the restriction that / i and 
/2 should tend zero as x2 tends infinity, irrespective of the external 
stress acting. Applying F = F° + F1 to boundary condition (7), we 
obtain after tedious but straightforward computation 

£ [-/ere! - U - Dra? + z + £/{}> e~Ti + U[feT2 + Vj}» DeTi 
j = i 

+ V{fDe22+W{))D2en+W{fD2e22 ' 

+ h(K - l)n2\(l + n2)In - 2n1n2J
r£2iK- = 0, 

£ [-{(it - 1)(K - 2) - K2n\ + Knf + Kz\ni + U® 7Ti 
i = l 

+ C/2?» e22 + Vg» D e n + V2f De22 + W g ' D ^ n + W2?D2e22 

+ h(K - X)mn2{2In - (1 + nl)Ii2\]Ai = 0, (25) 

where 

z = 2AVVQ/Vi
T0, (26) 

Iii= C kRie-{-n^n')kx^dx2 
Jo 

= [nf - nf + n(n2 - n2)](ni + n,j)~lz 

+ £ {-MP w + \Ul) + lm + nj)MP]E§l (27) 

ooc) 
x3 

Fig. 4 Configuration of coordinate system for simple bending of plate; 
Rayleigh wave is propagated along xraxis 

£('•' C keue-<-ni+n>)kx2dx2 (not summed on 0 (28) 
Jo 

The bar over the strains and their derivatives indicates the values at 
the free surface x2 = 0. Here recall that 0-22 = 0 and e n and e22 are 
independent with each other. For U's, V's, and W's, see the Ap­
pendix. 

With the aid of equation (27), equations (25) can be written in the 
matrix form 

(Gij + atjz + bij)Aj = 0, (29) 

where 

- ( 1 + n\) - 2 « 1 

2m n2(l + n\), 

<*ij = 

1 + (K - 1)[(1 + nbmm)2 1 + (« - 1)[1 - (1 + nf)/ 

- n2/(ni + n2)\, ni(«i + « 2 ) ] / 2 K 

— Kni + (K — 1)[1 - (1 + n\)ri\ — m2 - (K — l){(n\ - n2)~
] 

Gij = (/c - 1) (30) 

. - (ni + n2)]/2m, - (1 + n2)/4n2]/K 

(31) 

and bij is the linear combination of en, Den, D2e/j and E\f (I = 1, 2; 
not summed). The nontrivial condition for A, then requires 

= 0. (32) 

Note that z and the elements of b are of the order of the initial strains. 
Neglecting these small terms, we obtain the zeroth-order solution |G | 
= 0, which leads to equation (17) and gives Vo. The variation of the 
phase velocity owing to the external stress is determined by the 
first-order solution as 

2 = -(G11&22 + G22bu - Gi262i - G2i612)/(G1ia22 + G22oii 

- Gi2a2i - G2]ai2). (33) 

Equation (33) defines z as the function of the principal strains, their 
derivatives up to the second-order evaluated at x2 = 0, and also the 
integration over the half space. Since D = d/d(kx2) and the integration 
(28) is involved there, 2 depends on k as well. Therefore the Rayleigh 
wave is dispersed in nonuniformly deformed material as opposed to 
the stress-free and uniformly stressed cases. The extent of the Ray­
leigh wave dispersion is roughly determined by the ratio of the . 
wavelength to the characteristic depth over which the initial stress 
varies or, in other words, how abruptly the stress varies within the 
penetration depth. For a given stress state, the dispersion is re­
markable for a relatively low frequency and diminishes as the fre­
quency increases. It was numerically checked that, approaching to 
the high-frequency limit, the result of equation (33) is asymptote to 
that of equation (15) for the uniform case. 

As an illustrating example, the foregoing formula was applied to 
the Rayleigh wave propagating the surface of the simply bent plate 
as shown in Fig. 4. In this situation, an = a22 — 0 and the terms in k~l 

do appear since the remaining stress component 033 is the linear 
function of a; 2. As a final result, we obtain 

AV/Vo = (j8o + Pi/kH)en, (34) 

where H denotes the plate thickness. The constants /?o and /?i can be 
written in terms of (X, fi) and (ci, v2, Ps), although the expressions are 
much cumbersome. Using the elastic constants obtained previously, 
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Fig. 5 Dispersion of Rayleigh wave propagating the surface of bent plates; 
theoretical curve Is asymptote to Av/Va = 0.84 X 10~4 

they are evaluated as /?o = —0.99 and /?i = 3.55. Equation (34) implies 
that the phase velocity of the Rayleigh wave changes linearly with the 
initial strain and furthermore its rate of proportionality consists of 
the constant and (kH)-1 terms. The latter term does cause the Ray­
leigh wave dispersion. It should be noted that the group velocity re­
sulting from equation (34) is frequency-independent. 

Experimental Result. In order to confirm equation (34) exper­
imentally, mild-steel plates of 5,10, 20mm thicknesses were simply 
bent. The Rayleigh wave was generated and received, as before, by 
the strip-type transducers whose resonance frequencies were nomi­
nally 2, 3, and 5MHz. They were transversely situated on the surface 
about 120mm apart. We thus obtain the data as to AV/Vo for nine 
different values of kH, ranging from 21 to 209. 

In Fig. 5, the experimental result is compared with the theoretical 
curve according to equation (34). The plate thickness was much larger 
than the Rayleigh wave penetration depth, so that the elastic waves 
observed were completely Rayleigh waves. Otherwise, such guided 
waves that obey the Rayleigh-Lamb frequency equation will be pro­
duced. The theoretical curve for kH < 2ir is drawn with broken line, 
suggesting that the plate thickness is less than the wavelength. 

Considering the experimental error, correspondence of the theo­
retical and experimental results is satisfactory. The slight disagree­
ments could derive from some sources. First, the elastic constants may 
be inaccurate in a degree. Above all, the precise determination for the 
value of vi was difficult, which has been the usual case [5]. An addi­
tional error source might be the anisotropy or texture developed 
during the rolling process and the specimen making. The anistropy 
has some distribution across the thickness, since the material un­
derwent the inhomogeneous plastic deformation. Therefore it may 
affect the measurement of the Rayleigh wave dispersion due to the 
nonuniform stress state, although the relative order of magnitude to 
the acoustoelastic effect seems to be small in reality. 

C o n c l u d i n g R e m a r k s 
The acoustoelastic theory has been developed to derive the ap­

proximate formulas for the Rayleigh wave velocity change induced 
by the stress. The corresponding experimental data were obtained 
on the mild-steel samples by using the sing-around apparatus. The 
result of the uniform case was essentially the same as the case of bulk 
waves in point of no dispersion and linear relationship between the 
changes in stress and velocity. The analysis for the nonuniform case 
revealed the Rayleigh wave dispersion due to the stress nonuniformity 
in the depthwise direction as well as the proportionality to the surface 
stress. The analytical result was supported by the experiment with 

the simple bending of plate. If the higher surface stress were available, 
the degree of dispersion could be enhanced to make the measurement 
easy and accurate. Unfortunately, however, the strip-type transducers 
prevented it because of the low tolerance to the high surface stress. 

The acoustoelastic formula obtained in this paper allows the de­
tailed prediction of the dispersion property for a known stress state. 
But it should be noted that the inverse does not hold in general, that 
is, the experimental data on the dispersion are not sufficient in 
themselves for the full estimation of the stress distribution. 
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APPENDIX 

Ri(x2) = [nf -n\+ K(n2 - nj)]z + £ (L\l)eu + M^Deu), (35) 
(= i 

where 

L? = 2Knnf + 2[(V2
B/V2

T0 - 4)r4 - K(1 + 2r4) - 1 - 2r3]nf 

+ 2(1 + 2r3 + 4r4)rc? + 2K(1 + r±)n\, 

M,'1' = 2\(n\ - Kntfn - (K - l ) ( r 3 + r 4 ) R 

L,(2) = Mr- i + 2r2) + 4(r3 + 2r4) + K(r0r2 + 2 r 4 ) K 

+ {[(ri + 3r2 - 1 - K)r0 + 4r3 + 10r4] V
2
0/V

2
T0 + 2K(1 - r0r2 - 2r4) 

+ 2(1 - r0ri - 2r0r2 - 2r3 - 4r4)!rei 

+ [(ri + 2r2 + V2
0/V

2n)ro - 2]n\ + K(V2
0/V

2
T0 - 2 + r0r2 + 2n)nl 

M\2) = -\[(n + 2r2)r0 + 4(r3 + 2 r 4 ) K + (r0r2 + 2r4)(m? + nf) 

+ K[(ri + 2r2)ro + 4(r3 + 2r4)]re! 

- (K - l ) [ (n + r2)r0 + 2(r3 + r4)])rc;. (36) 

In equations (25), 

t/i!» = - 2 [ 1 + 2(r3 + 2r4) + r3nf], V$ = 2(r3 + n)m, 

W$ = -2r 4 , 

U® = - ( V W o " ri - 2r2)r0 - 2 - (r0n + 2r3)nf, 

Vi?> = [(n + r2)r0 + 2(r3 + r 4 ) K W{f = -r0r2 - 2r4, 

U$ = 2([K(1 + 3r4) + 2(2r3 + r4)]m - Kr4nf], 

Vg> = 2[-/c(l + 2r3) + (2m2 - 3K - 2)r4], V7g; = -2Kr4n;, 
(37) 
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U£f = - | K [ ( n - r2 - V?/V^)r0 + 2(2r3 + r4)] lVg» = -K(/-0r2 + 2r4)n 

- (r0r2 + 2r4)(2 + Knj) - 3(r0ri + 2r3) + [(n + 2r2)r0 

+ 4(r3 + 2r4)] (raf + rei)!";, In the previous expressions, 

(37) 
(Cont.) 

Vif = (2m? +K- 2)(rQr2 + 2r4) + /c[2 - ( n + 2r2 + V§/V^)r0], 

(37) 
2/u/X, n = (-X + i/jj/it, r2 = - 1 + Viln, r3 = (X + i>2)/it, 

r 4 = 1 + K3/11. (38) 
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Propagation of Elastic Pulses and 
Acoustic Emission in a Plate 
Part 1: Theory 
Transient waves generated by a variety of dynamic nuclei of strains including a concen­
trated force, a single-couple, a double-force, a double-couple without moment, a center 
of rotation, and a center of explosion in an elastic plate are analyzed. Some of these 
sources, or a combination of them, could be used to model the dynamic process of material 
defects. The analysis is based on the generalized ray theory and Cagniard's method and 
the solutions are presented in terms of Green's dyadics for a plate. 

1 Introduction 
This investigation arose out of a need for a better understanding 

of the nature of the stress waves generated by defects upon their 
origination and expansion. It is known that whenever a material 
undergoes a plastic deformation or local failure, transient elastic waves 
are generated due to the rapid release of localized strain energy. Such 
radiation of elastic waves is known as acoustic emission in the field 
of nondestructive testing of materials [1]. In spite of a great number 
of research done on the subject, the mode or type of stress wave that 
dominates in the immediate vicinity of the source of acoustic emission 
is still unknown. This question cannot be answered unless the dy­
namic process of the source, and the propagation characteristics of 
the elastic wave are studied in detail. 

In this paper we present several point source models which can be 
used in describing the mechanism of acoustic emission. The approach 
is analogous to the modeling of statical point defects in crystalline 
materials [2], and the mechanism of earthquakes in the field of geo­
physics [3]. It has been pointed out that the seismic radiation from 
an earthquake is likely to be connected with the solution of a problem 
of dislocation, that is, a sudden creation of discontinuities in either 
the displacement or the stress field across the fault surface. Burridge 
and Knopoff [4], have shown that such discontinuities can be replaced 
by a distribution of forces called equivalent body forces, which pro­
duce the same radiation when applied over the fault surface in the 
absence of the fault. They have also shown that while concentrated 
forces represent discontinuities in the traction field, self equilibrating 
forces, i.e., forces with zero resultant, can be used to model discon­
tinuities in the displacement fields. An infinite isotropic elastic plate 
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is chosen as the medium where transient waves due to point sources 
such as a single-force, a double-force, a single-couple, a double-couple 
without moment, a center of rotation, and a center of dilatation 
propagate. These sources, known also as nuclei of strains, or some 
combination of them can be used as equivalent body forces in mod­
eling defects such as initiation and growth of cracks, voids, etc. 

Transient response of an elastic plate is usually analyzed by Fourier 
synthesizing all normal modes, the theory of which was investigated 
by Lamb [5] and Pursey [6]. The Fourier synthesis can also be effected 
by applying the Laplace transform. The inversion of the Laplace 
transform usually involves a summation of residues which are infinite 
in number, hence, the accuracy of the final answer depends on the 
number of terms taken in the series. 

As an alternative, we have chosen to use a method based on the 
generalized ray theory. In this theory, the total wave motion is de­
composed into disturbances that travel along a multitude of ray-paths, 
each of which undergoes different number of reflections at the plate 
surfaces. Since the travel times along ray-paths with a large number 
of reflections are longer than those with a few reflections, only a finite 
number of rays are to be considered in each study. The solution thus 
obtained is exact from the onset of waves up to the time of arrival of 
the next generalized ray which is not included in the calculations. A 
review of the method was recently given by Pao and Gajewski [7]. In 
a half space, the ray-path undergoes, to the most, only one reflection 
at the surface. Hence, the results given in this paper also include so­
lutions for the aforementioned point sources in a half space [3]. 

The development of the generalized ray theory goes back to 1939, 
when Cagniard [8] studied the transient waves in two homogeneous 
half spaces in contact. In his monumental work, he had shown that 
by going through a sequence of contour deformations and changes of 
integration variables, one can find the inverse Laplace transforms of 
the expressions for each ray. Details of this method related to transient 
waves in a plate will be given in Parts 2 and 3. 

Generalized ray theory and Cagniard's method were first applied 
to study the wave propagation in elastic plates by Mencher [9] who 
used the Bromwich expansion to recast the normal mode solution into 
the form of summation of individual rays. His results were confined 
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Fig. 1 Geometry of an oblique, concentrated force 

to axisymmetric loading and epicentral response. Other works on 
axisymmetric problems were done by Knopoff [10], Davids [11], Mi-
klowitz [12], and Pao, et al. [13]. Contributions on nonaxisymmetric 
plate problems were made by Pytel and Davids [14], and Davids and 
Lawhead [15] where they have considered shear impacts and oblique 
impacts. However, their results were all for the epicentral responses 
of the plate. Off-central results were given by Shmuely [16,17] -where 
he considered a line source on the surface of a plate. Mention should 
also be made of the works by Fulton and Sneddon [18], Scott and 
Miklowitz [19], Norwood [20], and Wu and Norwood [21] who have 
considered distributions of normal surface loads. In addition to a 
concentrated force, results for a double-force and a center of dilatation 
were also reported by Pao, et al. [13]. We note that a plate is a special 
case of a multilayered solid. A comprehensive study of transient waves 
in a multilayered medium based on the method of generalizated ray 
theory was made by Milller [22]. 

In this paper, the solution to nonaxisymmetric point sources such 
as a concentrated force, a double-force, a single-couple, a double-
couple without moment, a center of rotation, and a center of dilatation 
will be presented using the generalized ray theory [3, 7]. The paper 
is divided into three parts. Part 1 presents the Laplace transformed 
solutions for the general response of a plate. All solutions are ex­
pressed in terms of Green's dyadics and their derivatives for a plate. 
In part 2 the details of the Cagniard's method for inverting the La­
place transforms of the epicentral response of the plate will be pre­
sented along with numerical calculations. Part 3 will be devoted to 
the general off-epicentral response of the plate. 

2 C o n c e n t r a t e d F o r c e in a n Elas t i c M e d i u m 
1 Green's Dyadic of Unbounded Medium. Consider a con­

centrated force of magnitude f(t) acting at the point (0,0, ZQ) along 
an arbitrary direction indicated by the unit vector a (Pig. 1). The so­
lution for this problem is well known [3, 23]. For the purpose of 
applying this solution to analyze waves in a plate, we recast it in terms 
of displacement potentials <t>, 4>, and x in cylindrical coordinates (r, 
6, z) [7, equation 6.11]. The displacements are related to these po­
tentials through the relations 

_d<A d2^ l d X 
lir — 1 1 7 

dr drdz r i>8 

Ul) • 
1_ d0 1 d2j/ 

r dd rdBdz 

d0 d*i 
U, = 1 KA 

dz dz2 dt2 

dr 

d2f 

(1) 

while the stresses at a surface z = constant are given by 

Tzz I K2 jdt2 + K2dz[dz + dz2 * dt2} 

dt2) K2rdd\dzj 

1 d / d0 d2\fr 

K2dr\ dz dz2 (2) 

dt 2 / K2dr\dzj 

The potentials satisfy the wave equation of the type c2V 2(<j>, <p, x) = 

l i d a* d2^ 
= — 2 — + 2 — ! 1 -

K2rdd\ dz dz2 

d2(<l>, ip, x)/dt2; where Ci = c for </>, and c; = C for tp and x- The two 
wave speeds and their ratio K are defined in equation (6). 

Denote the Laplace transform of a time function f(t) by /(s), 

J(s)= j"°f(t)e-*'dt. (3) 

The Laplace transformed displacement potentials for the wave field 
generated by a concentrated force as shown in Fig. 1 are then given 
by [7] 

0,(r ,s;a) = azj?(s) J*"Sp(f)e-<»M*-*ol«/0(s£,.)£df 

+ arF(s) f " S'p(Z)e-">\*-*°\JMr)td$ 

- arS-lF{s) f " S'„(J)e-sflz-2<>IJ1(s^)df 
Jo 

XiO, s; a) = -aoF(s) f " S«(f)e-<*lz-*<>l</i(s£r)cf£. (4) 
Jo 

In these equations 

F(s) = }{s)/(4wK2»h2) (5) 

and a„ (a = r, 6, 2) are the components of the unit vector a in cylin-
derical coordinates. The wave speeds c and C of the pressure (P) and 
shear (S) waves, respectively, are given by 

c2 = (X + 2fi)lp, C2 = flip, K = c/C. (6) 

where X and p. are the Lame constants and p is the mass density of the 
material. The r\ and fare the slowness along the z -direction for the 
P and S-waves, respectively, 

V = IP + Dm, f = ( ^ 2 + K2)1/2 (7) 

and £ is the slowness in the radial direction. Note that h is any con­
venient length, introduced to normalize length, and the quantities 
given in equation (l)-(7) have been nondimensionalized while those 
given in reference [7] were in dimensional form. The quantities in this 
paper are related to those in reference [7] through the relations 

(*. v, D = c(r> v*, r*), v* = (r2+c-2) i / 2 , 
t* = (£*2 + C - 2 ) 1 ' 2 

r = r*/h, z = z*/h, u = u*/h 

(0,X) = /I-2(**,X*). 4' = i'*h~3 

t = ct*/h, s = s*h/c 

where the quantities with (*) are in dimensional form as given in 
reference [7]. 

For a concentrated force, 

S, •P - ~e, S'p = -£/?7 

s,,-e/j-, s'B = t, sH = K2n (8) 

where the subscripts p and v pertain to the pressure waves and ver­
tically polarized shear waves (SV-waves), while H denotes the hori­
zontally polarized shear waves (SH-waves). These source functions 
together with others are tabulated in Table 1. In equation (8) and the 
table, e is the directivity constant and it has the value ±1 according 
to whether the waves are propagating in the direction of ±2-axis from 
the source. 

Substituting equation (4) into (1), we obtain three displacements 
in Laplace transformed state. The component in the 2-direction is 

uz(',s;a) =sF(s) az f "SpDjpe—»>l*-*ole7o(s$r)£d£ 
Jo 

+ ar r " s ; D 2 p e - s " l ^ z » l t / 1 ( S £ r ) £ d £ (9) 
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Table 1 Source functions 

SOURCE 
TYPE 

Center of 

e x p l o s i o n 

S ing l e fo rce 

S i n g l e coup le . 

Double f o r c e , Si 

Double coup le 

wi thou t moment 

Center of r o t . 

FUNCTION 

* 
S 

3 

s. 
3 

S'. 
3 

s. 
3 

S'i 

Qtl I 

+ 
S3 

st' 
3 

INTERIOR 

P 
(.1 - 1) 

l / n 

- E 

- 5 / n 

n 

- 5 / n 

-e5 

-

sv 
(1 = 2) 

lit, 

e 

-eE 

e 

-c 

E2/c 

- c ' / C 

SH 
(1=H) 

-

K2/C 

K2/C 

2 
- E K 

2 

- E K 

K 2 /C 

ON SURFACE 

' P 

-

2 2 2 

Y2< < r + r ) M r 

4K25C/A r 

-

-

(f= 2) 

-4< 2 5n /A r 

? 2 2 
- Y 2 K (fT+t; ) / A r 

-

-

(1S2H) 

<2/c 

-

-

F(s ) 

M I ( s ) 
0 

IfltK \1 h s 

F o f ( s ) 

2 2 2 
4ITK uh s 

M f ( s ) 
0 
2 2 3 

4TTK u s h 

E=±1 according to the direction the ray travels with respect to ± z-axis, 
y=±l whether the source is at z = 0 or z=l surfaces. 

2 2 2 2 
Ar = 45 nc- (E + 0 

n2= C2 + l, S2 = S 2 + K 2 

K 2 = (c/C)2 = (X + 2y)/u 

h is the thickness of the plate which is taken as unity in the calculations, and M0 = lim(F 8) 
as S .-»• 0. For a double force the same limit is denoted by D . 

o 

+ sF(s)\az ("° S.D^e-^-^Ms^r)^ 
[ Jo 

where 

D„ -t% Dzo = - £ 

(9) 
(Cont.) 

(10) 

are the receiver functions associated with the displacement uz. These 
receiver functions together with those for the radial and angular 
displacements are given in Table 2. Bach term inside the brackets in 
equation (9) represents a single ray propagating the distance between 
the source and the receiver. The first term corresponds to the ray that 
propagates as a P-wave; it is characterized by the source functions (Sp, 
S'p), receiver function Dzp and the phase function rj\z — zo|. The 
second term is for a ray traveling as a SV-wave and it is characterized 
by the functions (S„, S'„), Dzu, and f |z — z<)|. Note that SH-waves do 
not contribute to the displacement in the z-direction. If each ray is 
denoted by uzj(t, s; a), then one can write equation (9) as 

u2(r, s, a) = Y. Uzj(r, s; a) 
j 

where 

uzj(r, s; a) = sF(s)\az j"J' SjTL^je-^^Ms^r)^ 

(U) 

Table 2 Receiver functions D„k; definitions and notations are given In Table 1 

MODE 

u 
r 

u 
z 

a 
rz 

° re 

a zz 

P 

sv 

SH 

P 

SV 

P 

SV 

SH 

P 

SV 

k 

1 

2 

H 

1 

2 

1 

2 

H 

1 

2 

INTERIOR POINT 

-? 

- e? 

1 

-en 

-E 

2ETIC/K 

2 2 2 
(l+C ) / K 

- E C / K 2 

(?V)/K 2 

2eEC/<2 

ON SURFACE 

4K2tr,E/Ar 

-2K2YC(E2+C2)/A r 

2 

-2K 2
Y n(E 2 +? 2 ) /A r 

4 K 2 n a / A r 

0 

0 

0 

0 

0 
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The index j indicates the mode of rays, j = 1 being the P-mode and 
7 = 2 the SV-mode. The function 11"; which is related to the reflection 
of rays in a half space is inserted at this point for later discussions. For 
an unbounded medium such as in equation (9), II"; equals 1. The gj(z, 
£) is the phase function of each ray and is given by 

gj(z, £) = r)zPj+ fz«; (12) 

where zpj and zsy are the projections along the z -axis of the ray-path 
in P and S-modes, respectively. In an unbounded medium, for the 
P-ray we set zp = |z — Zo|,zs = 0; and for the S-ray, we set zp = 0, zs 

= \z - z0\. 
Note that the first integral in equation (11), after it is inversely 

transformed, represents the displacement uz due to a concentrated 
force acting along the z-axis (az = 1, ar = a« = 0); it will be denoted 
by G'z'z. The second integral is the displacement uz due to a force ap­
plied along the radial direction (az = 0), and will be denoted by G'Jr. 
In similar manner, one can define G'r'r> Gfy, etc. Then the quantities 
2 G'lp, summed over all possible j's 0 = 1 and 2 corresponding to P 
and SV-waves, respectively), plus G~^ for the SH-wave are the 
components in cylindrical coordinates of the Laplace transformed 
Green's displacement dyadics G(r, s). Since they appear repeatedly 
in the ensuring calculation, we group all the components, together 
with VG which will be needed later, in the Appendixes A and B, re­
spectively. In terms of the components of Green's dyadics, the dis­
placement field in an infinite medium is 

u„(r, s; a) = F(s) £ [arG~»T + a^'J0 + a&L] 

+ F(s)[arG%r + ai^„] (13) 

where; = 1 pertains to a P-mode, and j = 2 a SV-mode. Note that for 
GJJ, four of the nine components, Gra, Gur, Gnz, and Gzg, vanish 
identically, and the only nonvanishing components of QH are (7^ and 

Goo-
2 Green's Dyadics for Half Space. Waves that originate at a 

point inside a half space behave just like those in an infinite medium 
until they reach a point on the boundary where they are reflected and 
refracted. Hence, the particular solutions obtained in the previous 
section represent incident waves on the boundary. Due to mode 
conversion, elastic waves of either P-mode or SV-mode when incident 
on a plane surface, will be reflected as two waves, one in each mode. 
However, the Sff-waves reflect only as S/Z-waves. Following the ap­
proach of Spencer [24], we express the displacement potentials for 
the rays reflected by the surface z = 0 and propagating in the region 
z > Oas 

0(ref) = F(s)\az f °S„flP"e--"(2 + 2o)J0^^ 
[ Jo 

+ ar f " SpflPPe-«»<2+2°>Ji£d£ 

+ F(s)\az f '°SuR>>Pe-'&<+'i')J<£d% 
[ Jo 

+ ar f " S'vRvPe-^o+i'lJitdt 

^(ref) = s-ip(s)L f ",S„fl""e-sf<2+2°»J0dS 
[ Jo 

+ ar ("° S'„flul'e-s«2+2o>J1d^ 

+ S-1F(s) az fj" SpRPOe-'teo+Mjtfli 

+ ar f S'pRP"e-s^o+^Jxd^ 

^ei)=F(s)a,i (""sHRHe-'H'+^Jidt (14) 

J o 
For brievity, the argument (s^r) of all Bessel functions are omitted 
in the foregoing. The phase functions in all integrals are changed by 

an additional term according to the mode of the reflected wave; the 
unknown functions RPP, RV", R"P, RP", and RH which are called the 
generalized reflection coefficients at the free surface z = 0, can be 
determined by satisfying the boundary condition on this surface. The 
total field in the half space is then determined by combining results 
in equation (4) and (14) 

(0, i , x) = (0i, h, Xi) + (4>(ref), ̂ iel), X(ref)) (15) 

For a traction-free surface, the boundary conditions that must be 
satisfied by the total field are 

z(r, d, 0, s) = rzr(r, 8, 0, s) = rzll(r, 6, 0, s) = 0 (16) 

The stresses are calculated from the potentials of the total field ac­
cording to equation (2). It was stated by Chandra [25] and were also 
proven by Ceranoglu [26] that the last two boundary conditions are 
satisfied if the following reduced boundary conditions are satis­
fied: 

d0 
2 — + 2 -

dz dz2 
2sV =0, m 

i dz I 
= 0. (17) 

Substitution of the potentials given by (15) into the boundary con­
ditions yields 

RPP = RVU = [4£2,,f + (£2 + f2)2]/Aj. 

RP» = -4r,^(e + f2)/A r, R"P = -4K(e + f2)/A r 

R" = 1 (18) 

Ar = 4 £ 2 , ) f - ( £ 2 + f 2 ) 2 

These reflection coefficients are the same as those for plane waves at 
a traction-free plane boundary. 

In the half space occupying the region z < h (h > zo), expressions 
similar to those given by equation (14) can be written with the un­
derstanding that the reflection coefficients pertaining to the surface 
z = h are used. The phase functions should be changed accordingly. 
Hence, following the same procedure, one obtains, for the half space 
z < h, the reflection coefficients a t z = h as 

Rn '• Rv •• RPP = R" 

-RP" 

RH = 1 (19) 

Thus, for reflection with mode conversion, the value of downward 
reflection coefficient is negative of the upward one. 

One can now write the total displacement u„ at a point inside the 
half space (z > 0) 

u„(r, s; a) = F(s){ £ \a^r + a0G'Je + azG~'i]i + [arG»r + ae^sh 
u=i 

+ F(s) E E [orGi* + a„Gl), + azGth + k G ? , + ailG»eh 
j ' - i k=i 

(a = r,d,z) (20) 

The superscripts j , k (= 1, 2) for Green's dyadics indicate a P-mode 
0, k = 1) or SV-mode (j, k = 2); and the superscript H indicates the' 
SrY-mode. The subscript 1 of all bracket denotes the first group of rays 
directly radiating from the source to a receiver. For this group we take 
n = 1,'arid II"; = 1 and II?; = 1 in Green's dyadics (Appendixes A, B). 
The subscript 2 denotes the second group of rays which have been 
reflected once at the surface. For this group, we take II"i = Rpp, II22 
= Ru", II?2 = RP", n'Si = R"P, and Iln

H = RH = 1 while n = 2. 
There are, in general, eight rays in the evaluation of u„ in a half 

space, two direct and four reflected P and SV-rays, plus one direct 
and one reflected SH-ray. For the convenience of future discussion, 
the previous result is symbolically expressed as 

u„(r, s; a) = E "m(f, s; a) a = r, 6, z 
i = l 

(21) 

The index i no longer pertains to P or SV-mode as in equation 
(20). 
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O r 

Fig. 2 Ray groups in a plate 

3 Green's Dyadics for a Plate. In a plate, the waves generated 
at a point by the source can propagate along many different paths 
before they reach the receiver. Fig. 2 shows some of the possible rays. 
For example, along Path 1 there are two rays traveling the distance 
between the source and the receiver; the first is a P-wave and the 
second arriving at a later time is the S-ray. These two rays are the 
same as those rays propagating in an unbounded medium. The waves 
traveling along 2+ or 2~ (+ or — denote the direction of the source 
segment of a particular ray, with respect to the z -axis) have been re­
flected by the boundaries once. Since a P or SV-wave gives rise to two 
waves while SH -waves gives rise to one SH-wave upon reflection by 
a plane surface, a total of 22 + 1 = 5 rays will travel along each of the 
Path 2. Pp, Pv, Vu, Vp, and Hh are the five rays traveling along Path 
2~. The letters P, V, and H represent the P, SV, and Sff-modes; the 
lower and upper case letters denote the downward (+z) and upward 
(—z) propagation directions, respectively, of the wave along each seg­
ment of the path. The number of rays traveling along the Path 3 + is 
23 + 1 = 9, pPp, pPv, pVp, pVv, uVv, uVp, uPu, vPp, hHh. Each of 
these rays are identified by their source function S,(£), phase function 
Sn(z, £), receiver function D „/,(£), and the product of the reflection 
coefficient function II"y(£). For the rays along Paths 1,2", and 3 + these 
functions are tabulated in Table 3 where the thickness of the plate 
is taken as unity. The final solution of the plate problem can be 
written as 

u„(x,s\a) = F(s) Y. 
2 2 

j=ik=i 
arG& + ai)G'„k„ + azGit]n 

+ [arGl + a,G^]n (22a) 

The superscript j will represent the mode of the first segment (from 
the source) and k the last segment (to the receiver) for the rath ray in 
a plate. Although the double sum on,/' and k is from 1 to 2 (P or SV-
mode) it implies 2 rays for n = 1; 4 rays for n = 2; 8 rays for n = 3;. . . 
etc. When all rays are arranged in a sequence, the previous result can 
be expressed symbolically as, like equation (21) 

ua(t, s; a) = "£,uai(r, s; a) (a- 9,z) 

Since each ray has a distinct travel time, only a finite number of them 
are to be added when the inverse Laplace transform is completed. 

4 Surface Source and Receiver Functions. The analysis so 
far was for a source and a receiver both located inside the elastic me­
dium. The source and the receiver functions have to be modified as 
discussed in the following sections, if the source or receiver is situated 
on a traction-free surface. The final expressions are shown in Tables 
1 and 2. 

(a) Surface Source. Consider a half space (z > 0) with the 
source and receiver both buried inside. In general, both P and S-waves 
will be generated at the source location. The rays that arrive at the 
receiver are those that travel along the Paths 1 and 2" (Fig. 2). Con­
sider now the rays p, Pp, and Sp. As zo approaches zero, these three 
rays coalesce to form a single direct ray which will be called the P-ray. 
Hence, the three ray-integrals can now be combined to form one in­
tegral with a new source function, say, S*, for the P-waves 

vr 

(a) (b) 

rJ 
/ : 

/ 

(d) (e) (f) 
Fig. 3 Dynamic nuclei of strains; (a) Single-force; (b) Single-couple; (c) 
Double-force; (d) Double-couple without moment; (e) Center of rotation; (/) 
Center of explosion 

In a similar manner, combination of the rays s,Ss, and Ps yields the 
surface source function for the SV-waves, S*, 

Si = S0 + S„R"" + SPRP» (23b) 

The surface source function for the SH-waves is obtained by applying 
the limiting process to the h and Hh rays, yielding 

S'H = SH + SHR» = 2SH (23c) 

Hence, if the source is located on the surface of the plate, all of the 
source functions have to be replaced by those given by equations 
(23). 

(b) Surface Receiver. Expressions for the case of a surface 
receiver on z = 0 can be obtained in a similar manner. For the P-wave 
receiver function, one has to consider the rays P, Pp, and Ps. As z 
approaches zero, all of these three rays coalesce and once again the 
three integrals can be combined to one with a new receiver function, 
D'„p 

D„ oRp" (24a) 

In a similar way the SV-wave receiver function is obtained by com­
bining three rays V, Vu, and Vp and the SH-wave receiver function 
by combining the H and Hh rays, 

D'„v = Dim + DlwR"" + DtypR"P 

D:,H = DlM + DaHRH~2D„H 

(246) 

(24c) 

If the receiver is at the surface z = h of a plate and the source is 
either in the interior, or on the opposite side, we should replace the 
reflection coefficients in equation (24) by the corresponding ones Rpp, 

(lib) / j ^ ^ u j a n ( j nvp a s g j v e n by equation (19). 

3 Other Point Sources in a Plate 
Solutions for waves generated by other types of point sources such 

as a single-couple, a double-force, a double-couple without moment, 
a center of rotation, and a center of explosion can be all derived from 
that of a single concentrated force. These solutions are simply ob­
tained by calculating the directional derivatives of the displacement 
field due to a concentrated force, equation (22). In an infinite medium, 
these point sources are called nuclei of strains, [23]. 

1 Single Couple. Configuration of two forces which result in a 
single-couple is shown in Fig. (36). The unit vector a which denotes 
the direction of the concentrated force of magnitude Fq forms an or­
thogonal triad with two other unit vectors b and c such that 

a X b (25) 

SP = SP + SPRPP + SUR"P. (23a) 

The vector c then indicates the direction of the resultant moment. 
Let ui denote the displacement field due to the force Fo acting at 

the point Pi(0, 0, Zo) and in the direction of vector a. Then 
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5i(r, s) = F#i(r, s; a) (26) Sdc(t, s ) = M0(b-V)u(r , s ; a) + M0(a-V)u(r, s; b) (34) 

where the components of u(r, s; a) are those given by equation (22). 
Now, consider a second force of magnitude Po acting along the di­
rection of the vector —a at a point Pz which is 5 units away from Pi 
along the vector b. Then the displacement field, U2, due to this second 
force is given by 

U2(f> s) = -Po" ( r ~ 5b, s; a). (27) 

The total field due to these two forces is the sum of the individual 
fields, i.e., ui + U2. In the limit as 5 approaches zero, the two forces form 
a single-couple acting at the point (0,0, zo) and the total field is given 

by 

uc(r, s) = M0(b-V)u(r, s; a) (28) 

where 

d 1 b d 
Mo = l im (F05); b-V = br — +be ~ + bz — 

s—o (>r r do dz 

Components of uc can be expressed in terms of § = VG or GV as 
listed in Appendix B. 

uz(r,s)=F(s) £ 
n = l 

uc
r(t,s)=F(s) £ 

n = l 

+ bzar9'kr + brazS'r
h

rz\ 

+ [brarSfrr + b0ae9?ee + bzar9%r + braz9?rz] 

co f 2 2 

E £ £ [braMe + b0arsH + b^S®, + bza0§'^\ 
n=l 0=1 *=1 

£ £ [bza 

£ £ [bza 

>& zzz 

z-* rzz 

+ brarS
J
z
k
rr + bzar9'kr 

+ brc 

+ braz9{k
z + beaeSiU 

IrWrr + beae9ik
ee 

m=F(S) 

where 

+ [bearSfer + brae9?re + beaz9&z + bza6Sge] (29) 

F(s) = Mo/(s)/(47r/c V> 3 ) (30) 

The SH-waves, indicated by the superscript H of S's, contribute 
nothing to the u\ component. In an infinite medium, explicit ex­
pressions for uc(xi, t) in Cartesian components are given in reference 
[27, p. 40]. Upon the completion of the inverse Laplace transform as 
discussed in Parts 2 and 3, equation (29) yields the displacements due 
to a single couple in an infinite space (n = 1), a half space (n = 1,2), 
as well as in a plate (n = 1, 2 , . . . ) . 

2 Double-Force. Going through the derivation as explained in 
the previous subsection, one obtains the displacement field due to a 
double-force as shown in Fig. 3(c), 

ud(r, s) = D0(a-V)u(r, s; a) 

Do = lim (-Fob) 
j—o 

(31) 

Comparing equations (31) arid (28), it is seen that the former is ob­
tained from the latter by simply replacing br, bo, bz by ar, ag, az, re­
spectively. In vector notation, the results are 

where in this case 
u d ( r ,s )=u c ( r ,s ) ] b= 

F(s) = D0f(s)/(4inc2nh3) 

(32) 

(33) 

Numerical results for a double-force in a half space were reported in 
reference [28]. 

3 Double-Couple Without Moment. Superposition of two 
single-couples with moments in opposite directions yields a point 
source known as the double-couple without moment, Fig. 3(d). From 
equation (28), the displacement field is given by 

The components of the displacement for each ray are then given by 
the relations 

u f ( r , s ) = P ( S ) £ 
B = l 

£ £ [2bzazSih
Zz + 2brar9{k

r + 2beae9>k
ee 

i k 

+ (bzar + azbr)(9'kz + S'k„)\ 

uic(i, s) = F(s) £ £ £ [2bzazSih
zz + 2brarg?rr + 2bea6Sik

M 
n j k 

+ (bzar + arbz)(sizr + Sik
z)] + [26za2£JL + 2brar9»r 

uf(t,s)=F(s)Z 

+ 2b0aeS% + (bzar + arbz)(S?zr + 9?rz)]\ 

£ £ [(Me + arbs)(Sik
s + §H) 

J k 

+ (b6az + a«b2)(gfe + $&,)] + l(brae + arbe)(S?rg + S%Br) 

+ (beaz + aebz)(8ge + 9%,)]) (35) 

where F(s) is given by equation (30). 
4 Center of Rotation. A center of rotation is obtained by su­

perposing two single-couples with moments in the same direction, [23], 
configuration of the two single-couples being shown in Fig. 3(e). 

u c r(r, s) = Af0(b-V)u(r, s; a) + M0 (a-V)u(r, s; - b ) (36) 

The vertical components of the displacement field is 

uc/(r, s) = F(s)(braz - bzar) £ ( £ £ (9{k
z - S{k

r)\ (37) 
n [ j h J" 

Substituting S(m n ' s from Appendix B into the foregoing expression, 
and also into those for u" and uc/ we find that these expressions can 
be written as 

uc
z
r [>,') = 

ue/(t, s) = F(s)c0 

uT(r,s) = F(s) 

F(s)ce [S?e\n = l+ £ 
n=2 

K? + £ #L,=i+ E 
n=2 

£ S'zo\n 
U = l / 

£ (S'r
k, + 9'r

He) 
,k=i j 

cz[S?z + 9'j!]n=i + cr[Sl + S'e«)n=1 

+ £ 
n=2 

2 
£ (Cz Si + cr9l) + ?z9'0

H
z+ c59'e

H
r 

n 
(38) 

where a are the components in cylindrical coordinates of the vector 
c given by equation (25), and the expressions for Wk0 are given in 
Appendix C. Note that only S-waves are emitted by the source, but 
rays with segments in P-mode are generated upon reflections. 

5 Center of Explosion. The displacement field due to a center 
of explosion can be obtained by simply superposing three mutually 
orthogonal double forces. Hence, using the expressions derived for 
a double-force, one obtains after some simple manipulation, the fol­
lowing expressions for the displacement field: 

uf (r, z, s) = F(s) 

uc
r
e(r, z, s) = F(s) 

( 0 » - i + E E s'h 

n=2 U = l 

M... 
where 

(S*zkz)n • 
! §J s\mkD.. 

+ £ £ s; 
n=i \k=\ 

ke-'HMs&W 

(39) 

(SIX = s 2 J o " SlnitD^e-^Jds^d^ 

Si = l/v, Sn = (ZpV + Zsf)n 

Note that only P-waves are radiated at the source location while the 
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segments in S - m o d e are genera ted u p o n reflection from t h e 

boundar ies . 

As shown in reference [7], t h e resul t s for a cen te r of explosion can 

be derived direct ly from t h e solution for an inhomogeneous equa t ion 

f o r <j>. 
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APPENDIX A 
In this Appendix we list t h e components of t h e Laplace t ransformed 

Green's dyadic, G(r, z, d, s), appearing in equat ion (13). For simplicity 

the limits of the integrals will be omit ted with the unders tanding they 

all go from 0 t o <=°. T h e index n for each componen t of G indicates t h e 

number of segments of each ray pa th , the first superscr ipt j identifying 

t h e m o d e ( P or S V ) of t h e first s e g m e n t (from t h e source) , a n d t h e 

second supe r sc r ip t k t h e m o d e of t h e last s e g m e n t ( to t h e receiver) . 

T h e two subscr ip t s , r, 6, or z a re t h e indices for dyad ic c o m p o n e n t s . 

T h u s Gap m e a n s t h e d i sp l acemen t c o m p o n e n t in t h e di rect ion of 

a - c o o r d i n a t e t h a t is gene ra t ed by t h e /^-component of t h e source . 

P a n d S V - C o m p o n e n t s . (J, k = 1 and 2 for P a n d SV-mode, re­

spectively) 

( G g ) „ = s S S / I I J l k D r t e - f e J o t e f r ) ^ 

(G[hr)n = s S S ; -n j k D,*e-»*v7 1 ( s f r )$d{ 

(G{ko)n = 0 

(Gik
r)n - s j S ; - n * » D r t e - W o ( « f r ) f d € 

+ i J*s;-ny»Df*e-««j1(«{r)d€ 

(G'r
ho)n = 0 

(Gi»X = a S Sjll%Drke-^-Jx(Skr)m 

<S«J)» = - ; J * S ; - n S k D « k e - * " J i ( s { r ) d f 

(GtfX = (GikX = 0 

where 

gn = (Zp7] + ZsDn 

zp and zs are t h e sums of vertical projections of all segments in P and 

S-modes , respectively, for a ray wi th re-segments. Sj and Dai, a re the 

source and receiver funct ions which are given in Tab le s 1 a n d 2, re­

spect ively. n."k is t h e p r o d u c t of (re — 1) reflection coefficients for a 

r ay wi th n - s e g m e n t s . 

N o t e t h a t , from T a b l e s 1 a n d 2, t h e p r o d u c t S'pzk (for uz) equa ls 

SjDrk (for ur). Hence G'Jr equals G[{ for an u n b o u n d e d m e d i u m (ILj 

= 1) as expected. T h i s is also t rue for a surface force/surface receiver 

and buried force/buried receiver in a plate. However t h e equali ty does 

n o t ho ld for surface force /bur ied receiver or bur ied force/surface re­

ceiver combina t ions . 

S H - C o m p o n e n t s . 

(G?2)n = (G»)n = (G»e)n = (G?e)n = Gg)n = ( S g ) „ = (G&)„ = 0 

(G?r)n = - f SHJi%DrHe-*'JMr)di 

(G&)„ = s / S H n & D , H e - W 0 ( « € r ) f d € 

- - JSHn-kDme-^JMr)^ 

Note t h a t the Sf f -components only contr ibute to the rays t h a t have 

all of the i r s egmen t s in S -mode , i.e., zpn = 0, a n d g „ = ( f z # ) n . 

T h e inverse Lap lace t r ans fo rm of each integral will be discussed 

in P a r t 2 of th is series of papers for r = 0; and in P a r t 3 for r > 0. When 

t h e t i m e funct ion of t h e source is h a r m o n i c in t h e form of exp(—iwt) 

t h e p reced ing Green ' s dyadics G>„$ a re also the d i sp lacement s for 

s t eady- s t a t e response if t h e p a r a m e t e r s is replaced by io> [29]. 

APPENDIX B 
In this Appendix the components of the third-order Green's tensor, 

it which appears in the displacement field expressions for higher-order 

force sys tems as discussed in Sect ion 3 a re given. 

P a n d S V - C o m p o n e n t s . (j,k = I and 2 for P and S V-modes , re­

spect ively) 

(S&X =s2f #jn%D:ke-«»»Jo(slr)Zdt 

(HhrX = s2 J # } n 7 * D r t e - ' * ^ o < 8 f r ) € 2 d f 
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(MkBo)n =S~f tf'jnjkD^e-^JAsZr)^ - - C ^ '„n5,£We-«»Ji(s£r)d£ 

(»&)» = s2 /#i"nylkD,fc«-«-«/1(s£r){df ( sa , ) n = (??„)„ = (<?SU = (»?„)„ = (»?„)„ = (»£,)„ = o 
(S{k

n)n = - s 2 J £'j'Il'jkDz)!e~'"l"Ji(s£r)£d£ Once again the components due to SH-waves only contribute if all 
talk \ - (oik \ - Calk \ _ tojk \ -n o f t n e segments in a given ray are in S-mode, i.e., zp = 0, zs = zH in 
ypzriln. - IVrJrJn _ \«itf>n ~ \» zOz>n - U 

(&{*r)n = s 2 S&'jIl'jkDrke~sflnJi(sfr) £2d J In cylindrical coordinates r,d,z, because four of the nine compo­
nents of G (Gro, G/}r, Goz, GZII) vanish identically, the nonvanishing 

+ - l <4a}n\D rte
_sg"Jo(s^r)^d^ components of S = VG are the same as those of 9C = GV, that is (a, 

r J P = r,6,z), 

- \ §S)U%Drke-^JAsiir)d$, grafl = S ^ , = dGa0/dr, a$ * r8, Or, 8z, z8, 

, r Sz«p = Sc„nz = dG«e/dz, a/3 * r8, 8r, 8z, z8, 

r J 8o„e = S'„0 

-I 1 S,'llnkDrke~s'!''Ji(.sMd^ where the four nonvanishing components of the last group are 
/•2 J 

{$'r\z)n = S2 SSjT\njhDrke
 s*»Ji(s i [ r)£d£ 

J
Vtitiz = Grz/r, Suzo = Gzr/r 

rjn'}kDrke-°«'>J0(sZr)ZdS 
The 14 nonvanishing components of the Laplace transform of Sc 

s ., are listed in this Appendix where the superscript c is dropped for 
+ - I i'"jWjkDrke~ss,tJi(s^r)d^ convenience. Note that the Green's stress tensor is given by [27, 

r J 30] 
(S# , ) n = s 2 J#7njJ kDr te-«-Jo(s«r)fiif . i m „ , 1 

2 = Xl(V-G) + /u(VG + GV) 

~Z J i iijkL>rke " "«i(s£r)di; where I is the idem-factor. Hence the components of S are useful in 
_ _ _ ., calculating Green's stress tensor. 

(8'rk
rS)n = (S'X)n = W{|)» = (»&)» = 0 

(.<*)„ = - S~ f £'jIl%Dl,ke-'!«"Jo(sb)ZdZ APPENDIX C 

2 r> t The displacement field in terms of the third-order Green's tensor 
+ ~ J Sj^.%Di)ke

 iS"Ji(s^r)d^ due to a center of rotation is given by equation (37). These equations 
can be written in a much simpler form by introducing the expres-

(.<? HhB,)n = *- §S'l'WjkPtoe-'^JMrWZ 

(»&)» = (»&)» 

sions 

J
(Sllzln = (WlWr ~ 8iro)n\ (•*» l)r)n = (S'tlzll ~~ ^fflzln 

i i" m s s Substituting the expressions for fi|,m from Appendix B we get 

(»«.)» = (SiJ,)» = (^{,)„ = (Fi*,)„ = (&**,)„ = 0 P a n d S V Components. 

SH-Compone„ts. <*?•>» = - ' 2 / S j n 3 A * e - ^ i ( S « r ) f d f 

( ^ , o ) n = 0 a,P = r,8,z (F„*)„ = - J*S£n§*Z)(,Ae-«*Vi(sSr)d£ 

r •/ (»;„)„ = s 2 J S ^ n ^ D ^ e ' ""JoCs^fdJ - (.90*)„ 

- 4 J«^n?,Z),.we-<*»«/i(s£r)d£ SH-Components. 

( % ) » = l-S»X &M» = - l §StHn%DrHe-^JMr)di 

(s?™)» = (^«)n = (^Sr)B = (sS,)« = (s?,.)B = (s?..)n = o <r»")" = s 2 f s^mDoHe-^MsWd!; 
(8l,)n = s 2 S AVII?,D„He-"*»Ji(s£r)£2d$ - F?rr - - CSf

Hn%DIIHe-^Ji(s^)d^ 

(8()iir)n = — I ^H^lltDiiHB~"K''Jo(s^r)^d^ In analogous to the case of center of explosion, the solutions for a 
center of rotation can also be obtained directly by assuming a proper 

, 2 r _ . . body force potential for the rotational part of a body force and then 
r2 »/ solving the mhomogeneous equations tor \p and x-
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Propagation of Elastic Pulses and 
Acoustic Emission in a Plate 
Part 2: Epicentral Responses 
In the first part of this paper expressions for Green's dyadics in terms of the generalized 
ray integrals for both unbounded and bounded media were given. In this part Cagniard's 
method is applied to obtain the transient response along the epicentral points of an elas­
tic plate. Numerical results are shown for a concentrated force, a single-couple, a double 
force, a double-couple without moment and a center of rotation up to 10 transit time re­
quired for the longitudinal (P)-wave to cross the thickness of the plate. 

4 R e s p o n s e of a P l a t e A l o n g the A x i s of the S o u r c e 
General expressions for the displacement field due to different 

point sources were given in Part 1. These expressions are simplified 
considerably if one is interested in the response of the plate along the 
axis passing through the source, i.e., r = 0. Displacement fields, per­
tinent to the axial points are obtained by taking the limit of the 
foregoing expressions as r approaches zero. In the limit as a -* 0 the 
following expressions are applied: 

lim JQ(O) = 1; l im J\(a) • 
a—-0 a—0 

a/2. (40) 

Applying the aforementioned limiting process to the components 
of the Green's tensor Gmn{r, z, s) and Simn(r, z, s), one obtains the 
corresponding expressions at the points along the axis, r = 0, which 
are listed in Appendix D. 

In what follows, we show how the inverse Laplace transform of these 
ray integrals for epicentral locations are computed exactly by applying 
the Cagniard's method. It is seen that, excluding the factor s or s2, the 
integrals for each ray appearing both in Gmn(0, z, s) and Stmn(0, z, 
s), (see Appendix D) are all of the form 

I(z,s) 
!«tt.z>d£ 

where g(£, z) = r)zp + fzs is the phase function and E(£) is an even 
function of £ involving the source function, receiver function, and the 
product of the reflection coefficients. The indices j , k, H, etc., for a 
particular ray have been omitted. The factor of s or s2 can be com­
bined with the function F(s) which appears in the expressions for the 
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displacement field due to an arbitrary time function. Hence, knowing 
the inverse Laplace transforms of the integrals of equation (41), one 
can obtain the complete solution through a convolution integral. The 
inversion of the integral I(z, s) will be carried out as discussed in the 
following. 

Note that s, the Laplace transform parameter, appears only as a 
factor in the exponent of the integrand of I(z, s) and nowhere else in 
the integral. This permits an explicit determination of the Laplace 
inversion. If a new variable of integration, t, is introduced such 
that 

t = g(£,z) = ZpTtl + Zsi (42) 

the integration over the real variable £ is then transformed into an 
integration over another real variable t. This is a one-to-one trans­
formation over the interval [0, <»], and one can solve for £ as a function 
of t, when z is specified, 

m = \t\zl + zs
2)2 -2zpzst[t2 + (1 - «2)(zs

2 - 4)Yn 

\Zp - Zs\ 

+ (z2-/c2z2)(zs
2-z2)}1 /2

 2 p ^ z s (43) 

(41) £ ( t ) = j [ t 2 _ z 2 ( 1 + / { 2 ) ] 2 _ 4z4K2)1/2 Zp = Zg 

Hence, equation (41) is transformed to 

where 

df fu 

(44) 

(45) 
dt £(zpf+zsi)) 

and tA, the value of t at £ = 0, is the arrival time of a particular 
ray. 

tA = Zp + KZS (46) 

The lower limit of integration in equation (44) is changed to zero 
by introducing the Heaviside's step function 
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Hz, s) s; EM)]W)\^]W-tA) (47) 

The aforementioned equation simply means tha t / ( z, s) is the Laplace 
transform of the quantity inside the curly bracket, hence, 

I(z, t) = JS[£(t)]£(t)(df/dt)H(t - tA) (48) 

where £(t) is given by equation (43). 
As mentioned earlier, the coefficients of these integrals, I(s), ap­

pearing in the expressions for the displacement field are either sF(s) 
or s2F(s), where F(s) involves the Laplace transform of the time 
function, f(s), for the source. From Table 2, it is seen that these 
coefficients in general can be written as smf(s). Now, from the con­
volution theorem 

X-^fWKs)] = ( fit- T)I(T)CIT 

= f ' /<"•>(* - T)I(r)dT + /'"•-1>(0)/(t) + . . . 
Jo 

+ /(0)J<m-1>(f) (49) 

where X - 1 denotes the inverse Laplace transform operator and the 
superscript in parenthesis denotes the order of differentiation with 
respect to the argument. For a concentrated force, m equals 1 while 
for the other sources discussed in this paper, m equals 2. 

Equations (48) and (49) give rise to the exact transient response 
for pulses traveling along a particular path from the source to any 
point on the z -axis passing through the source. The total response is 
obtained by summing up waves along all possible ray-paths as ex­
plained in the next section. 

In the next section, we show numerical results for the epicentral 
responses of a plate excited by six types of buried sources, a single-
force, a double:force, a single-couple, a double-couple without mo­
ment, a center of rotation, and a center of explosion, and also a surface 
force. The time function for the source is either a step function, or a 
parabolic ramp function. General responses due to an arbitrary time 
function can then be determined by a convolution integral as shown 
in equation (49). By measuring the general responses at the surface 
of a plate, it is also possible to determine the source time function by 
deconvolutions [31], Hence, the exact step responses as shown in this 
paper will be useful to evaluate the time function of a source. 

This inverse process of deconvolution is not only useful in charac­
terizing the time function of a source, but also a powerful technique 
to calibrate a transducer [32]. The Lamb's solution for a half space 
has been applied to deconvolute a loading function [33], and to cali­
brate an ultrasonic transducer [34]. Experimentally, it is easier to do 
the calibration on a plate, than on a massive block which simulates 
a half space [35]. 

5 N u m e r i c a l R e s u l t s a n d D i s c u s s i o n s of R e s p o n s e s a t 
E p i c e n t e r 

In a plate, the waves radiated at the source location travel along 
many different paths before they reach the receiver. Hence, the first 
step in the calculations is to sketch the possible ray-paths as shown 
in Fig. 2 and assign modes as P or S systematically to all segments of 
each ray. The vertical projections zp and zs of the segments in P and 
S-modes for the j t h ray are then obtained. The arrival time, £A, cal­
culated from equation (46), is then compared with the maximum time 
of interest and if the former is less than the latter, the contribution 
due to this ray is calculated. 

Excluding the source and the receiver segments, i.e., the first and 
the last segments of a given ray, let mp and ms be the number of seg­
ments traveled in P and S-modes, respectively. These (mp + m„) 
segments can be arranged in (mp + ms)!/(mp!ms!) number of com­
binations. Each possible configuration has a unique product of re­
flection coefficients, 11"/,. However, those rays that have the same total 
number of P to P and S to S reflections will have the same numerical 
value of 11%. This is because RPP = Rpp, R

uu = Rm, RP" = -flp„,.and 
R"P = -Rup. 

As an illustration, consider a ray with 10 segments (n = 10) where 

J Z 5 
Buried fo rce , ' 

Fig 4 (a) Vertical force 

-0.5' 
Fig 4 (b) Horizontal force 

Fig. 4 Response of the surface z = 1 due to a concentrated force at z0 = 
0 and 1/2; ordinate Is the normalized displacement •Kfih2uaIFt,aa(a - r, 
*) 

both the source and the receiver segments are in P-mode,i, k = \, and 
let trip = 5, ms = 3. The total number of possible combinations is then 
(5 + 3)!/(5!3!) = 56. However, it does not mean that 56 different cal­
culations are needed. These 56 rays can further be grouped into three 
subgroups with 

IIJ¥ = (RPP)HR<">)2RVPRP„ 

lift ' = (RPP)HRVV)(RP0)2R"PRUP 

n i ? = (RppnR»PHRpu)* 

In the first group, there are 6 rays with a value of IIi? = 11$, in the 
second group 30 rays with II}? = III?, and in the third group 20 rays 
with Ili? = Ufi. Since the source function, receiver function, phase 
function and the arrival time for all these rays are the same, the con­
tribution due to these rays can be calculated at once with one integral, 
where 

S1ll\
0
lDal = Si[6Ili¥ + 30111? + 20ni31>]£>„i. 

Hence, by choosing the proper source function, receiver function and 
forming the product II™*, the expressions for the rays are assembled 
for numerical evaluations. In the following numerical examples it was 
assumed that K2 = 3, corresponding to the case where the two Lame 
constants are equal (X = ii). 

1 Concentrated Force. The displacement fields at the epi-
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Table 3 Parameters of the three groups of ray Integrals for ua(z > z0) In a plate due to a concentrated force at 
Z = ZQ 

n 

1 

2 

3 

Ray 

P 

s 

h 

Pp 

Pv 

Vv 

Vp 

Hh 

pPp 

pPv 

PVp 

pVv 

Wv 

Wp 

vPv 

VPp 

hHh 

Source Funct ion S, 

S l 

- 1 

1 

1 

- 1 

- 1 

- 1 

- 1 

S2 

K/K 

Kir, 

K/K, 

S/C 

e/s 

Si 

-5 /n 

- ? / n 

- ? / n 

-5 /n 

-5 /n 

-C/n 

-5/n 

s 2 

1 

- 1 

- 1 

1 

1 

1 

1 

SH 

<2I, 

<2"/? 

K V 

Receiver Function D , ak 

z l 

- 1 

-n 

-n 

-n 

-n 

-n 

D 9 

z2 

-e 

-n 

-5 

-? 

-5 

" r l 

-£ 

-? 

-5 

"r2 

-e 

% 

1 

1 

1 

Product of 
Re f l ec t i on 
C o e f f i c i e n t s 

" j k 

l 

l 

l 

RpP 

RP V 
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central locations are calculated from equations (13) and (22) where 
the components of Green's dyadics G(0, z, s) are listed in Appendix 
D. The value of m in equations (49) is 1 for a concentrated force. 
Hence, if f(t) is taken to be Heaviside's step function, i.e., f(t) = H(t), 
then the only contribution in equation (49) comes from the term 
/(0)/(t). 

Pig. (4a) and (4b) show the response of a point on the surface z = 
1 due to a buried (zn = 0.5) and a surface (zo = 0) force. The ordinate 
is the normalized displacement irixh'2ua/(Fo), (a = r, 6, z), and the 
abcissa is the nondimensional time t = ct*/h. The results in Pig. 4(a) 
are in complete agreement with those given by Knopoff [10], and Pao, 
et al. [13], and those in Pig. 4(6) are similar to those given by Davids 
[14] who calculated the response due to the incident wave generated 
by a shear impact on the plate. The vertical displacement, uz, expe­
riences jumps at the arrivals of the rays with all segments in the P-
mode while the displacements ur and uo have jumps at the arrivals 
of rays in S-mode. The magnitude of these jumps calculated from the 
corresponding rays by setting t = tA or £ = 0, are 

Table 4 Superposition formulas for time functions 

(w^hVFo)[uz(0, z, tA)\ = az/(yAp) 

(irixh2/F0)[ua(0, z, tA)] = ar/(yzs) a = r, (50) 

where 7 is 1 for a surface force and 2 for a buried force. 
A total of 156 and 381 rays are calculated for surface and buried 

sources, respectively, in order to obtain the exact response up to t = 
10. The arrival time of the P, pPp, pPpPp,... are indicated on the 
figure for the surface source. 

2 Double-Force and Center of Explosion. Motion of a plate 
due to a buried double-force and a center of explosion for each ray are 
calculated from equations (32) and (39), respectively. The case of a 
vertical double-force and center of explosion were first studied by Pao, 
et al. [13]; some of their results are reproduced here for complete­
ness. 

Since a center of explosion is obtained by superposing three mu­
tually orthogonal double-forces, it is expected that the response of 
a plate due to a'vertical double-force be similar to that of a center of 
explosion. This is shown in Pig. 5 where three different time function, 
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Heaviside's step function, a linear ramp function, and a parabolic 
ramp function are considered. Superposition principle for these ramp 
functions are given in Table 4. The rise time of the ramp functions 
were taken to be 0.4. It is seen that by introducing a finite rise time, 
the response signatures become smoother. The displacement field due 
to these two kinds of sources exhibit a delta function behavior at the 
arrivals of rays with all segments in P-mode, Fig. 5(a). A period equal 
to twice the travel time of a P-wave to cross the thickness of the plate, 
T* = 2h/c, can be associated with these curves. This periodic behavior 
is due to the interference of those rays with 1m and (2m + 1) reflec­
tions from the surfaces of the plate. 

Responses due to a horizontal and an oblique double-force are 
shown in Fig. 6. These results have not been reported previously. Note 
that for a vertical double-force, Fig. 5, and for a horizontal double-
force, Fig. 6(a), the only nonvanishing component of the displacement 
field is uz, however, for an oblique orientation of the double-force, Fig. 
6(b), both uz and ur are nonzero. This shows that the response for an 
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Fig. 5 (c) Parabolic ramp time function 

10 

Fig. 5 Epicentral response of the surface z = 1 due to a point source at z<> 
= 1/2; the ordinate is the normalized nondimensional displacement 7f/i-
h3uz/D0 

oblique double-force cannot be obtained by adding vectorially the 
results due to two mutually perpendicular "components." This is due 
to the fact that the Green's function for a double force is a third rank 
tensor, Sijk, which is symmetric only with respect to the first two in-
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Fig. 6 (a) Vertical a = (0, 0,1) and horizontal (1, 0, 0) double-force (u, = 0) 
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Fig. 6(6) An oblique double-force, V2 a = (1, 0,1) 

Fig. 6 Epicentral response of the surface z = 1 due to three different or­
ientations of a double-force at z0 = 1/2; the ordinate is the normalized dis­
placement •Knh3ua/Oa(a = r, z) 

dices, i and j . Contrary to the vertical displacement which is nearly 
periodic with the period 2/J/C (T* = 2), the radial displacement has 
an oscillatory behavior with a period of T* = 2/j/C, and c/C = y/3 in 
this case. 

3 Single-Couple and Center of Rotation. Eventhough a sin­
gle-couple is not a self equilibrating force system, it is known as Type 
I force system of Honda in geophysics, and has been used in modeling 
some of the earthquake mechanisms, [36]. Epicentral responses of the 
plate calculated from equations (29) are shown in Fig. 7 for three 
different orientations of the couple. In these figures the time-de­
pendency of the source is a parabolic ramp function with a rise time 
of 0.4. The vertical displacement due to couples whose generating 
forces initially lie in a plane parallel or perpendicular to the surfaces 
of the plate vanishes (Fig. 7(a), however, it is nonzero for other or­
ientations (Fig. 1(b). An interesting feature of the single-couple is 
observed when the generating forces, lying in a plane that contains 
the z-axis, and make an angle of TT/4 with this axis. For such an or­
ientation, there is no contribution to the radial displacement from 
those rays which originate as a P-wave. Similar to the double-force 
case, periods of 2/i/c and 2/i/C can be associated with the long-time 
behavior of the vertical and radial displacements, respectively. 

Superposing two single couples, the moments being in the same 
direction and the generating forces along two orthogonal vectors, 
results in a force system known as the center of rotation. This source 
generates only S-waves at the source location, however, the P-waves 

136 / VOL. 48, MARCH 1981 Transactions of the ASME 

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



0.05 

ur 

-0.10 

-0.20 

Fig. 9(a) a = (1, 0, 0), b = (0, 0, -1) 

Fig. 7(a) Solid line a = (1, 0, 0), b = (0, 0, -1), dashed line a = (0, 0, 1), 
b = (1, 0, 0) 
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Fig. 7 Response of the surface z = 1 due to three different orientations of 
a single couple at z0 = 1/2; the ordinate is the normalized nondimensional 
displacement TCnh3uaIMa(ot = r, z) 
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Fig. 8 Response of the surface z = 1 due to a center of rotation at z0 = 1/2; 
the ordinate is the normalized nondimensional displacement, irfi-
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Fig. 9 Response of the surface z = 1 due to three different orientations of 
a buried double-couple without moment at z0 = 1/2; the ordinate is the nor­
malized nondimensional displacement 7r/n/i3u„/D0(a = r, z) 

are generated upon reflections (see, equation (38)). Fig. 8 shows the 
response due to a buried center of rotation at z0 = 0.5 with a parabolic 
ramp function of rise time 0.4 as its time-dependency. The ordinate 
in this figure is the normalized displacement iriih3Ur/(MgCg) where 
Co = arbz — azbr. The long-time behavior of the radial displacement 
has a period of 2h/C. 
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4 Double-Couple Without Moment. Double-couple without 
moment is the most widely used self-equilibrating force system in 
modeling the earthquake mechanisms. Known also as the Type II 
force system of Honda, [36], it represents the strike slip motion of the 
fault where the unit vector a is along the direction of the slip motion 
[3, Chapter 3]. 

Fig. 9 shows the epicentral response of the plate due to three dif­
ferent orientations of the double-couple without moment, equation 
(35). In all these figures the time-dependency of the source is a par­
abolic ramp function with a rise time of 0.4. As seen from these figures, 
a period of T* = 2h/c and T* = 2h/C can be associated with the ver­
tical and radial displacements, respectively. Note that the vertical 
displacement due to a double-couple without moment is very much 
similar to those due to a double-force and a center of explosion, hence 
these two sources can be distinguished only from the responses at 
off-center points. 
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APPENDIX D 
Both the Green's dyadics and the third rank Green's tensor simplify 

considerably at the epicentral locations, i.e., r = 0. Going through the 
limiting procedure as explained in Section 4 of this paper we get for 
the Green's dyadic: 

P-SV components, (j, k = 1 and 2 for P and SV- modes, respec­
tively) 

(&£)„ =-IfSjUJtPrhe-vW 

(Gihx = (Gikx = (Gii)n = (Gii)n = (oi*)„ = o 

SH-Components. 

((?*)„ = - f SHn-hDrHe-sHdt 

(G?e)n = S~S Sj/n&DMfe-'«»?d$ 

All other components are zero. 
In the case of the third rank Green's tensor the only nonzero com­

ponents are: 

P-SV Components. 

(St)n =\*2S #y I l f t D , * * - " * . . ^ 

(Sik»»)n = <$%r)n 

(S%r)n = ~ \** S # J n%Drke-SHdti 

(»#,)» = \** S $J n,yw-*$rf$ 

(»&)» = \**S #7 nj!kDtte-«»{d$ 

(Wze)n = ̂ 2 S #,' n y * D « , e - « - ^ f 

SH-Components. 

(S?.r)n = J « 2 S $H n%DrHe-«"£dZ 

(Sle)n = \s2 S *'HUiDrHe-Hd^ 

For a center of rotation: 
P-SV Components. 

(S'r\)n = s 2 f S2mkDrke-^d^ 

(8l)n = ~2s
2S S2m2kDoke-sHd^ 

SH-Components. 
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Propagation of Elastic Pulses and 
Acoustic Emission in a Plate 
Part 3: General Responses 
In the first part of this paper, the Laplace transformed solutions in terms of the general­
ized ray integrals for point sources in a plate are presented. The inverse transform and 
the exact solutions for the epicentral responses together with numerical results were given 
in Part 2. In this part a modified version of Cagniard's method is applied to obtain the 
transient response of the plate at any location due to point sources applied at the surface 
or the interior of the plate. Numerical results are shown for a concentrated force, a single-
couple, a double-force, a double-couple without moment and a center of rotation, at loca­
tions up to six plate thicknesses from the source. 

6 Source and Receiver on the Same Surface 
The general expressions for the Laplace transformed displacement 

fields due to different point force systems are given by equations 
(22)~(29) in Part 1, [30]. It was also explained in Section 2.4 how to 
modify the ray integrals to take into account the cases when either 
the source or the receiver was on the bounding surface of a half space, 
or when they were on the opposite sides of a plate. 

The problem where both the source and the receiver are on the 
same surface of a plate requires special attention. The solution for 
this problem is derived from the general plate solution by taking the 
limit as both ZQ and z approach zero. The order of this limiting process 
with respect to z and zo is immaterial. 

Consider first two rays, P and S, and four reflected rays, Pp, Ps, Ss, 
and Sp as shown in Fig. 10. The three rays P, Pp, and Ps form a P-
group in a half space or a plate and the remaining form a S-group. If 
we combine the three ray integrals of the P-group, as given by equa­
tions (9) and (20), and then take the limits when both z and zo ap­
proach zero, we obtain a single integral devoid of the exponential 
phase function because both exp [-s-qiz + zo)] and exp [—s£(z + zo)] 
reduce to unity. This ray integral represents a P-wave which propa­
gates directly from the source to the receiver along the surface. The 
coefficient of the Bessel functions in the integrands can be expressed 
as SiIIiiD«i and S J I I I I D K I where Si and S\ equals the surface P-
source, S*p and S'p, respectively, as given by equation (23a), and D n l 

equals the interior P- receiver function D„p as listed in Table 2. The 
I ln equals unity (no reflection) in this case. 

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY 
OF MECHANICAL ENGINEERS, for presentation at the 1981 Joint ASME/ASCE 
Applied Mechanics, Fluids Engineering, and Bioengineering Conference, 
University of Colorado, Boulder, Colo., June 22-27,1981. 
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10017, and will be accepted until June 1,1981. Readers who need more time to 
prepare a Discussion should request an extension from the Editorial Depart­
ment. Manuscript received by ASME Applied Mechanics Division, August, 
1979. Paper No. 81-APM-6. 

Fig. 10 Three rays coalesce Into a single P-ray, or a single S-ray as z0 -
0 and z —» 0 

P P \ / p P\ /P P\ I? P\ /P p \ /P 

Fig. 11 A group of nine rays which coalesce Into a pP ray as both receiver 
and source approach to the top surface of a plate 

Combination of the three rays of the S K-group gives rise to a single 
S V-ray integral with similar results. The case of the SH components 
of a surface source can be treated in the same manner except that the 
resulting SH ray integral is formed by combining only two rays, H and 
Hh. 

We note in passing that when the surface force is a vertical force 
(ar = 0, an = 0, az = 1), the result so obtained is the solution for the 
surface response of a half space originally investigated by Lamb [37]. 
When the surface force is a horizontal force, the results so obtained 
agree with that obtained by Chao [38]. 

Next, consider the nine rays shown in Fig. 11. All these rays, in the 
limit as z and zo approach zero, coalesce into a single pP ray that starts 
at the source location as a P-wave and reaches the receiver as a P-wave 
after one reflection. Going through the same limiting process, we find 
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that the resulting ray integrals will contain the products SilTiiD„i 
and S\HnD„i. The Si and S\ equal the surface P-source functions 
S*p and Sp but Dai equals the surface receiver function D„\ of equa­
tion (24a), (see Tables 1 and 2 of Part 1), and II?j = Rpp. 

Similarly, we can group nine rays to form a single pS ray, a sS ray, 
or a sP ray. The corresponding products Hjk are Rpu, Rm, and Rup, 
respectively. 

In summary, when both source and receiver are on the same surface 
of the plate, the surface source and surface receiver functions are to 
be used in all ray integrals except the three rays, P, S, and H that 
travel from the source directly to the receiver along the surface. In the 
latter case, the surface source function and interior receiver function 
should be used. 

7 Inverse Laplace Transform of the Generalized 
Rays 

The integrals appearing in the general expressions for the compo­
nents of the second rank Green's tensor G{r,z,s) and the third rank 
Green's tensor S(r,z,s) (Appendixes A and B in Part 1) are, in general, 
of two types: those that involve the Bessel function Jo(s^r) and those 
that involve Ji(s£r). For the / th ray propagating inside the medium, 
these integrals can be written in contracted notation as 

I(s)= f " E(Be-^^Jo(s^r)d^ 
Jo 

T(s)= f"{JS'({)e-»««.*Vi(8fr)df (51) 
Jo 

where E and E' are even functions of £, and involve the source func­
tion, receiver function, and the product of the reflection coefficients; 
g(%,z) is the phase function of the j t h ray, and s is the Laplace trans­
form parameter. Once the inverse Laplace transforms of these inte­
grals are obtained, the final solution due to the j t h ray can be calcu­
lated through a convolution integral as explained in Section 4. Since 
the application of the Cagniard's method to the integrals, given by 
equation (51) were explained in detail in [7, 26], we simply state the 
results 

ii(r.z.t) 
/(t) = - H ( t - t A ) I m P 

•K Jo 

l'(t)= — mt-tA)lm f 
7IT Jo 

where 

E{& 
1 

K(r,z,t;£) M 
Mr.z.t) t — Z„n — Z.t 

E'W * \ ' W (52) 
K(r,z,t;^) 

K(rjs.t;H) = [ £ V + (t - nzp - fr,)*]!/* (53) 

£/t = zp + KZS (54) 

t = -far + zp{g + l)1'2 + zAg + K2)1'2 (55) 

The symbol Im means that the imaginary part of these integrals are 
to be taken. 

The integrations in equations (52) are along the Cagniard contour 
in the complex £-plane from the origin to £i as shown in Fig. 12. Along 
the imaginary axis, £ at 1 and F at K are two branch points, R is the 
Rayleigh pole, and M is a stationary point. At the point M, the value 
for t in equation (55) is stationary, that is when £i = £A/ 

<dt\ 

ld£i/fi= '(M 
-0 = -ir + 2 p { „ ( & + l ) - W + z.fa{& + /c2)-1'2. 

(56) 

It can be shown that the foregoing equation has only one root and it 
is pure imaginary. 

The upper limit of the integrals, £i(r,z,£), is obtained from equation 
(55) for a given value of t at a given point (r,z). When the point M lies 
below the point E (Fig. 12a), these integrals are all real-valued until 
£i reaches the point M where £ = £M and t = tM- Hence, /(£) and I'(t) 
are both zero until the time tM is reached, and tM is the arrival time 
of waves traveling along the direct-ray paths. 

For rays with all segments in SV mode, it is possible to have the 
stationary point M situated above the point E\| %M \ > 1 in Fig. 12b). 
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Fig. 12 Cagniard's contour (heavy line) and alternative paths for numerical 
integrations; (a) Direct and reflected rays; (b) Refracted rays; (c) First 
P and S-rays for the case where both the receiver and the source are on the 
same surface 

In this case a part of the wave is refracted along the surface of the plate 
and it reaches the receiver faster than the waves along the direct-ray. 
The arrival time of this SV ray with refraction is obtained by setting 
zp = 0 and £i = +; (point E) in equation (55), 

tE = r + ZS(K
2 - 1) 1/2 (57) 

Waves along this refracted ray are also known as "head waves." 
When the integrands of all ray integrals are assembled as explained 

in Part 1, one is ready to carry out the numerical integrations of the 
integrals as represented by equation (52) along the path AM£i as 
shown in Fig. 12. 

The upper limit of the integration, £i(r,z,t), in equation (52) moves 
along the imaginary £-axis from the origin. The integrand is real-
valued when £i is below the point M, or the branch point E, the latter 
is for refracted or head waves. Since only the imaginary part of these 
integrals are used for the answer, the response is zero until the point 
M or E is reached. At the point M, Cagniard's path leaves the imagi­
nary axis and stays in the first quadrant of the complex £-plane. Since 
the path itself is given by a complicated equation, equation (55), in­
tegration along it is difficult. Several methods have been proposed 
by Pekeris and Longman [39], Sherwood [40], and Abromovici and 
Alterman [41] to evaluate these integrals. A comparison of these 
methods is given by Gajewski [42], who also developed a method of 
direct numerical integration of the ray integrals. His method first 
reported in 1971 [43] will be applied in this paper. 

The original path of integration AM^i is replaced by the path QM£i 
where Q is located below the point M or E since the value of the in­
tegral along AQ is zero. Note that the function K(r,z,t;!~) has a branch 
point at the point £i(r,z,t) and the required branch cut is taken to 
extend along Cagniard's path from ^ to infinity such that K has 
positive real part on the left side of the branch cut. Cauchy's theorem 
is then applied to find an alternative path of integration QP£i as 
shown in Fig. 12. Since within the closed path QM^iPQ there are no 
singularities, the integral along QM£j is equal to that along QP£i. 
Integration along the straight lines QP and P£i is much easier than 
the integration along the original path. The criteria that were used 
in the selection of the points Q and P were as follows: 

1 Q = 0.81 £M I if £M is below the first branch point (direct and 
reflected rays) and Q = 0.8 otherwise (for head waves). 

2 P is fixed for a certain time interval, and hence a certain range 
of complex values of £i. It is then shifted to another convenient lo­
cation. As a starting value, P is taken as (0.2 + i)\ %M\-
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3 The lengths of the path QP and P£ t are kept approximately 
equal and as short as possible. In the case where both the source and 
the receiver are on the same surface of the plate, the alternative path 
QPiPzt;i shown in Fig. 12(c) was used. 

The new path of integration stays away from the singularities on 
the imaginary axis, namely, the branch.points E and F, and the 
Rayleigh pole R (point where the denominator of the reflection 
coefficients vanish). However, the integrand is still singular of one half 
order at the upper limit of integration, which are the zeros of the 
function K in equations (52). This half-order singularity can be re­
moved by introducing a new variable 

a = (e - £i)1/2 (58) 

Then the integrals in equation (52) along the path P£i transform 
into 

/ ( t ) = H ( t - ^ ) - I m f £[£(«)] 
7T K'CVn 

adc 

K(r,z,t;Z(a)] 

I'(t) = H(t - tA) — Im CE'[Z(a)]\t - zpV(a) 
irr Jap 

ad a 

K[r,z,t;t(a)] 
(59) 

where ap is the value of a at the point P. Note that as £ -» £i both a 
and K approach zero. To remove this indeterminancy, the function 
K is expanded into a Taylor series around the point a = 0 where a 
common factor of a is factored out to cancel the a in the numerator. 
This power series expansion is only used when the point in the inte­
gration algorithm is near the point a = 0. 

Each of the integrals along the straight lines QP and P£i, in the 
complex J-plane can be transformed into an integration with respect 
to a real variable v and w in the interval [—1,1] [43]. The relations 
between £ and v along QP is 

2 2 du 2 

and that between a and w along P£i 

a = - (1 — w)otp; 
2 

da 

dw 

1 

$<}) (60) 

(61) 

Hence, the integrals in equation (59) become 

i(t) = m t - t A ) - \ ^ Im E - — 
Kdu 

I'(t) = H(t-tA)- x: Im IE 

du + f Im 

,t -zPV - zs£ d£ 

a da 

Kdw 

K ' dv 

x: Im 

du 

da t -zpv - z „ f 
A a — 

K dw 
dw 

dw 

(62) 

These integrations can now be carried out by using standard nu­
merical techniques for integration of real variables. 

8 N u m e r i c a l R e s u l t s for R e s p o n s e s a t the S u r f a c e of 
a P l a t e 

In the following numerical examples the plate material was assumed 
to have X = /it, corresponding to K2 = 3. In evaluating integrals, given 
by equation (62), we have used Gaussian quadratures with 10 or 20 
points. 

1 Concentrated Force (Figs. 13-19). The case of a vertical 
force was discussed in some detail [9-13] but no off-central results 
were reported for a horizontal force. The surface motion of the plate 
at the locations r = 2, 4, and 6 due to step-time function are shown 
in Fig. 13 for a buried vertical force and in Fig. 14 for a horizontal force 
applied in the direction of 8 = 0°. The receiver for the latter is also at 
8 = 0°. In both cases the force was located at the midplane. The or­
dinate in these figures is the normalized displacement iriMh2u„/F0, 
(a = r,z) and the abcissa is the nondimensional time t = ct*/h. Note 
that the initial stage of the response becomes weaker as the receiver 

2.0 

LJ 1.0 
2 
UJ 
O < 
Q! 0 
(/) 
Q 

r = 2 
f(t) 

i—i—r-'—i—'—i—'—i r 

2 3 4 5 6 7 8 9 10 
t 

-0.4 L-
Flg. 13 Response of the surface z = 1 due to a buried vertical force at z0 

= 1/2; the ordinate is the nondimensional displacement irnh'u^Fo (a = r,z), 
and the abscissa the dimensionless time 

is moved from r = 2 to 4, to 6. At equal r, the vertical motions of both 
surfaces due to a vertical force are in phase, while the radial dis­
placements are antisymmetric with respect to the midplane. This 
shows that such a loading excites the antisymmetric modes of the plate 
[13]. In the case of a buried horizontal force, the vertical motions are 
antisymmetric while the radial motions are symmetric. Hence, the 
symmetric modes of the plate are excited. 

Figs. 15 and 16 show the response of the plate due to a vertical 
surface force; these results were first given in reference [13]. As seen, 
for same r, while the vertical motion of the both surfaces are in phase, 
except at the arrival of the Rayleigh wave, the radial motion is out of 
phase. 

The responses of both surfaces due to a shear impact are shown in 
Figs. 17 and 18. The force is in the direction of a, its components in 
Cartesian coordinates being ax = 1, ay = 0, a2 = 0. In cylindrical 
coordinates, the components are calculated by the formulas 

ar = ax cos 8 + ay sin 8 

ao = ax sin 8 + ay cos 8 

az — az (63) 

Comparison of Fig. 13 with Fig. 14; Fig. 15 with Fig. 17; and Fig. 
16 with Fig. 18 shows an interesting relation between G2r an G„. The 
Gzr is proportional to the vertical displacement due to a horizontal 
force, shown as uz in Figs. 14,17, and 18. The Gr2 is proportional to 
the radial displacement due to a vertical force shown as ur in Figs. 13, 
15, and 16. Even though these two components are equal to each 
other for an unbounded medium, they may be different for a 
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- 0 3 L - ' " 0 0 3 F i9-15 Response of the surface z = 0 due to a vertical force on the same 
surface; the ordinate Is the nontllmenslonal displacement Xfih2ua/F0 ( a = 

Fig. 14 Response of the surface z = 1 due to a buried horizontal force at r,z) 
*o = %; the ordinate Is the nondimensional displacement ir/j/i2ua/(F0 cos 
6) (a = r,z) 

bounded medium. These components of the Green's dyadics are 
symmetric when the source and receiver are both buried in the plate 
or when they are on opposite sides (Figs. 16 and 18), but they are an­
tisymmetric when both source and the receiver are located on the same 
surface of the plate (Pigs. 15 and 17). However, they are completely 
unrelated if either the force or the receiver is buried while the other 
is on the surface (Figs. 13 and 14). 

We have shown in Fig. 19 the angular variation of the displacement 
field on the surface 2 = 0 due to an oblique force (a = 1,0,1) acting on 
the same surface. 

2 A Single Couple (Figs. 20-21). The expressions for the dis­
placement components due to a single couple were given by equation 
(29) in Part 1. There are 16 different integrals in these expressions; 
11 of them appear in the radial displacement urj and 5 in uzj. Even-
though the inversion of these integrals are similar to those given by 
equation (51), the calculations of these many integrals become very 
laborious and expensive in computer time. Hence, only the numerical 
results pertaining to the displacement u2 (r,i) are presented. Similar 
to the epicentral results presented in Part 2, a time-dependency of 
parabolic ramp function with a rise time of 0.6 will be considered for 
the source. 

Fig. 20 show the response at the points (r,8,l) r = 2,4, and 6 due to 
two different buried couples with vectors a = (1,0,0), b = (0,0,-1) and 
a = (0,0,1), b = (1,0,0), all in Cartesian components. The ordinate is 
the nondimensional displacement irnh3uz/(Mo cos 6). Eventhough 
these two couples are statically equivalent, the transient response due 

to each one is quite different. The response of the plate is antisym­
metric with respect to y-axis in Cartesian coordinates or 6 = ir/2 and 
37r/2 in polar coordinates. Hence, these are nodal lines. Similar to the 
previous examples, the initial part of the signals becomes weaker as 
the receiver is moved further away from the source. 

Fig. 21 shows the response due to a single-couple with moment axis 
along the z-axis. The two vectors are a = (1,0,0) and b = (0,-1,0). The 
ordinate in these sets of figures is ir/ihaUz/(Mo sin 20). Hence, the 0 
= 0,7r/2, 37r/2, and IT are nodal lines. 

3 Double-Force (Figs. 22-23). Pao, et al. [13], have studied the 
axisymmetric response of a plate due to a vertical double-force; their 
results along with the new results for a horizontal double-force are 
presented in Fig. 22. Again a parabolic ramp function with a rise time 
of 0.6 was considered as the time function of the source. The first large 
peak in all these curves is due to the arrivals of the first three ray 
groups, i.e., the rays with 0,1, and 2 reflections. Note that except for 
a phase difference these two transient signals near the source are 
similar in their gross behavior. 

Fig. 23 shows the angular dependency of the vertical displacement 
at r = 4 due to an oblique double-force whose generating forces act 
along a = (2,0,1) in Cartesian components. As noted in Section 5.2 of 
Part 2, the response due to an oblique and double-force cannot be 
obtained by superposing the responses due to the vertical and hori­
zontal components of the oblique double-force. 

4 Double-Couple Without Moment (Fig. 24-26). The tran­
sient motion of the surface 2 = 1 for two double-couples without 
moment at different orientations are shown in Figs. 24 and 25. In Fig. 
24 the couple axis is along the y-axis with a = (1,0,0) and b = (0,0,-1). 
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In Fig. 25, the axis of the couples is along the z-axis with a = (1,0,0) 
andb•= (0,-1,0). The center of the couples is at Zo = lk- The angular 
dependency of the vertical displacement for the first source is cos 8 
and for the second source sin 28. These angular dependencies are the 
same as those for single-couples with same orientations, Figs. 20 and 
21. It is also seen from Figs. 21 and 25, that while the two responses 
have exactly the same behavior, the one due to a double-couple 
without moment is twice that of due to a single-couple for this par­
ticular orientation of the sources. The effect can also be shown directly 
from the equations (29a) and equation (35a). Comparison of Fig. 25 
with Fig. 22 shows that the responses due to a horizontal double-
couple without moment and a horizontal double-force are very similar 
in nature. Such a similarity was noted by Stauder [36]. 

In Fig. 26 we show the angular variation of the u2 at r = 4 due to a 
double-couple without moment whose generating forces are along the 
vectors y/Ha = (1,1,1), V6b = (-1,2,-1) . In all the aforementioned 
cases the time function was assumed to be a parabolic ramp function 
and the rise time was taken to be 0.6. 

5 Center of Rotation (Fig. 27). Finally, in Fig. 27, we show both 
the radial and the vertical motion of the surface z = 1 due to a buried 
center of rotation at zo = lk- The axis of the couple (the unit vector 
c) is along the arbitrary vector (cr,co,cz). Eventhough only S-waves 
are generated at the source location, the initial response outside the 
critical range rc is due to head waves which arrive prior to the direct 
•S-waves to a receiver located on the surface. The critical distance rc 

is related to the source depth z0 and the wave speeds in the material 
through the relations 

= z0 tan 6*, sin 6* = C/c = 1/K (64) 

The ordinate in the Fig. 27 is the normalized displacement 
irnh3ua/{coMo), a = r,z, where eg is the ^-components of the unit 
vector c. Note that if c is parallel to the z-axis, both displacements 
ur and uz will vanish. 

9 Conclusions 
In this paper, we have shown the construction of the Laplace 

transformed Green's dyadics and triadics (the gradient of the dyadics) 
for nonaxisymmetric waves generated by a variety of point sources 
in a plate, based on the theory of generalized rays. The transient re­
sponse of the plate is then determined from the inverse Laplace 
transform which is accomplished by applying the Cagniard method. 
Extensive numerical results are shown for the plate surface responses 
at radial distances equal to 0, 2, 4, and 6 plate thickness for an oblique 
concentrated force, a double-force, a couple, a center of rotation, and 
a double-couple without moment. The time function for the source 
is either a step function or a parabolic ramp function. The last men­
tioned source has been used widely in seismology to model the slip 
motion of a fault. 

Since the integrand of the Green's dyadics have been decomposed 
into four parts, the source function, the reflection coefficients, the 
receiver function, and the phase function, the analytical results, and 
the computer codes for evaluating these integrals can easily be mod­
ified for other types of point sources, and boundary conditions of the 
plate. For instance, if one side of the plate is rigid, or if the plate is 
joined to a semiinfinite elastic solid, it is only necessary to change some 
of the reflection coefficients in the product for II";. The Laplace 
transformed Green's dyadics could also be modified for a distribution 
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on the surface z = 0; the ordinates are the nondimensional displacement 
•Kiih2ua/F„ (a = r,z) 

of point sources on an area, or in a volume, through a surface or volume 
integration [3, 44]. 

The results shown in all figures are exact for the time duration 
considered. At r = 6, a total of 1586 ray integrals are evaluated nu­
merically for each type of sources. Many more ray integrals must be 
evaluated if a longer duration is desired. For such a case, the method 
of normal modes perhaps should be applied to determine the long time 
behavior. 

From the analysis, we observe two interesting points about the 
Green's dyadics: 

1 Although the Green's dyadics Gy are symmetric in an infinite 
space, they are not symmetric when either the source or the receiver 
is on the surface, and the other is in the interior of the plate. 

2 Eventhough the response due to a concentrated oblique force 
can be obtained by superposing the responses due to its two compo­
nents, a vertical and a horizontal, such a superposition is not possible 
for double forces and double couples. 

To apply these theoretical results to the study of acoustic emission, 
we note that one of the main objectives is to determine the location 
of the source of emission. This is done by the well-known method of 
triangulation [44], which requires a priori the knowledge of the speed 
of the predominant signal that is first recorded by a receiver. Although 
the fastest signal always travels along the direct path between the 
source and the receiver in P-wave mode, its strength may be too weak, 
when compared with slower signals, to be detected by a transducer. 
In this regard, the following conclusions as drawn from this analysis 
may be of interest. 
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Flg. 21 Response of the surface z = 1 due to a buried (z0 = 0.5) single-
couple c = (0,0,-1); the ordinate is the nondimenslonal displacement 
irnh3uz/{Mo sin 20) 

3 Epicentral responses of the plate due to all kinds of force sys­
tems considered are strong at both the initial and later period. 

4 As the receiver is moved away from the epicenter, the strength 
of the initial part of the response is weakened for unbalanced force 
systems (a concentrated force, a single-couple, and a center of rota­
tion). However, in the case of self-equilibrating force systems (a 
double-force, double-couple without moment, and center of explo­
sion), the signal is relatively strong throughout, especially for the case 
where the generating forces lie in a plane parallel to the surface of the 
plate. 

5 There is a clearly identifiable peak in the signals due to self-
equilibrating force systems. This peak becomes conspicuous after the 
arrival of the first three groups of rays, namely, the source rays and 
those which have experienced one and two reflections from the sur­
faces. Arrival times of these rays depend on the thickness of the 
plate. 

The aforementioned results could be also useful to characterize the 
nature of the source, which is another main objective of acoustic 
emission. In this regard, we offer the following observations: 

6 As the rise time of the source increases, the signals become 
smoother. The surface response is very sensitive to the distance be­
tween the receiver and the source and to the depth of the source. 

7 For sources without axisymmetry, the magnitude of the re­
sponse is strongly dependent on the angular location of the receiver 
relative to the orientation of the source. This is evidenced by the re­
sults shown in the Figs. 17,19, 23, 25, and 26. 

8 Displacement fields due to a single-couple and a double-couple 
without moment with generating forces lying in a plane parallel to the 
surfaces of the plate have the same angular dependency, sin 26. 
However, the amplitude of the latter is twice that of the former. 
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Fig. 22 Response of the surface z = 1 due to two different orientations of 
a buried double-force at z0 = 0.5; the ordinate is the nondimenslonal dis­
placement TT(ih3uz/D0, (8 = 0°) 
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Flg. 23 Response of the points (4,0,1) due to a burled (z0 = 0.5) double-
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9 For a given type of source, the exact solution as given in this 
paper for a step time or parabolic ramp time function forms the kernal 
of a convolution integral, equation (49). The time function of the 
source can then be determined by an inverse process of deconvolution. 
Applications of such a procedure to characterizing a source or to cal­
ibrating transducers were mentioned in Section 4 of Part 2. 

Finally, we note that although only solutions for point sources are 
discussed in this paper, those for stationary sources distributed over 
an area or a volume can be obtained directly from integrating nu­
merically the response of point source [3, 44]. Recently, Israel and 
Kovach [45] have shown that, even for moving sources, such as a 
propagating strike-slip fault represented by the spreading of dou­
ble-couple without movement over an area, the transient responses 
can be calculated effectively by an additional numerical integration 
over the time variable. 
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Theoretical and Experimental 
Investigation of Stress Waves at a 
Junction of Three Bars 
When a longitudinal stress wave impinges on a junction of three elastic bars (where two 
bars are collinear and a third is noncollinear to the others), six separate stress waves are 
produced. A longitudinal stress wave and a flexural wave are reflected back along the first 
bar, and a stress wave of each type is transmitted into the second and third bars. For the 
theoretical treatment of these waves, the simple one-dimensional theory is used to de­
scribe the propagation of longitudinal (or axial) waves, and the Timoshenko beam theory 
is used to describe the propagation of transverse (or bending) waves. The method of char­
acteristics is used to transform the partial differential equations into total differential 
equations. The total differential equations are then solved by a forward differencing fi­
nite-difference scheme. For solution at the junction, the junction is modeled as a rigid-
body element. Impact experiments were performed to verify the analysis, and agreement 
between theory and experiment is very satisfactory. 

Introduction 
Previous studies [1, 2] have been made of reflections and trans­

missions of stress waves at a boundary discontinuity. Reflections and 
transmissions of longitudinal waves in a bar in which the discontinuity 
is formed by a change in cross-sectional area is treated by Ripperger 
and Abramson [3] and Yang and Hassett [4]. Reflections and trans­
missions of waves in which the discontinuity is formed by two non­
collinear bars is treated by Lee and Kolsky [5], Atkins and Hunter [6], 
and Mandel, Mathur, and Chang [7]. 

In the present study, three bars meeting at a common junction form 
the discontinuity. Two bars are collinear to each other and a third is 
noncollinear to the first two, as shown in Fig. 1(a). In general, when 
a longitudinal wave in one of the three bars impinges on the inter­
section, six waves are produced. A longitudinal wave and a flexural 
wave are reflected back along the first bar, and one wave of each type 
is transmitted into the second and third bars. In the present paper, 
these waves are predicted in each of the connecting bars and are 
compared to experimentally measured waves. For the analysis, the 
junction is modeled as a rigid intersection element. 

This work has applications in determining the internal equipment 
response of structures subjected to shock loading. 
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University of Colorado, Boulder, Colo., June 22-27, 1981. 
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10017, and will be accepted until June 1,1981. Readers who need more time to 
prepare a Discussion should request an extension from the Editorial Depart­
ment. Manuscript received by ASME Applied Mechanics Division, April, 1980; 
final revision, September, 1980. Paper No. 81-APM-16. 

(b) MEMBER 1 (c) RIGID INTERSECTION 
ELEMENT 

Fig. 1 Three-member Intersection 

(d) MEMBER 2 

(e) MEMBER 3 

Theory 
Wave Propagation Through Connecting Bars. Two general 

types of waves propagate through elastic bar elements: a longitudinal 
(or axial) wave and a transverse (or bending) wave. Because the 
transverse deflections are small (relative to the bar's cross section), 
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the two types of waves are not coupled in the bar segments. For 
propagation of longitudinal waves, a simple one-dimensional theory 
satisfactorily describes the longitudinal response. However, for the 
propagation of transverse waves, use of the Timoshenko beam theory 
rather than the Bernoulli-Euler beam theory is necessary because 
significant rotary inertia and transverse shear are produced. The 
Timoshenko beam theory accounts for rotary inertia of the cross 
section and for transverse shear, whereas the Bernoulli-Euler theory 
does not. 

For the longitudinal waves, the deformations of the bar are specified 
by the longitudinal displacement u. It is related to the axial force JV 
by the constitutive relationship. 

N + EA-
du 

dx 
0, (1) 

where E is Young's modulus, A is the cross-sectional area of the bar, 
and x is the axial coordinate. The equation of motion is obtained by 
applying the dynamical equation to a differential bar element. The 
equation of motion for longitudinal waves is 

diV d2u 
+ pA — - = 0 

dx dt2 
(2) 

where p is the mass density and t is time. 
For solution by the method of characteristics, equations (1) and (2) 

are transformed as follows. The longitudinal velocity is first defined 
by 

V= duldt. 

Then equation (1) is differentiated with respect to time such that the 
system of equations can be written in matrix form as 

= 0 

'o EA 

1 
— 0 
PA 

N 

V + 
X 

N 
V 

or in symbolic form as 

[T]\U)X + \U)t = 0 (3) 

These equations form a set of first-order partial differential equations 
in space x and time t. To transform these partial differential equations 
into total differential equations by the method of characteristics [8], 
each term in equation (3) is multiplied by the eigenvector / ' of [T]. 
The result is 

dx dtl 
(4) 

where X; is the eigenvalue corresponding to I' and |fi) is a column 
vector. Along the line X = dx/dt, the partial derivatives combine to 
form a total derivative; thus the governing equations in differential 
form become 

d(V{U}) = ll\a}dt. (5) 

X = dx/dt •• 

The condition required for the foregoing transformation is that X; be 
an eigenvalue of matrix V; that is, 

| [ r ] -x ;[ / ] |=o, 

where [/] is the identity matrix. 
This requirement reduces to 

+cb = VWp along /+ (6a) 

-cb = yfWp along / - . (66) 

Equations (6a) and (66) define two straight characteristic lines, 7+ 
and I~, in the x — t plane. With a convenient set of eigenvectors, the 
governing equations (5) can be written as 

/+: dN + cbPAdV = 0 (7a) 

• / - : dN-cbpAdV=0. (76) 

For the transverse waves, the deformation of the bar element is 

specified by the transverse deflection u and the slope of the deflection 
curve SP. These quantities are related to the bending moment M and 
transverse shear force Q by the constitutive relationships 

M + EI-
dx 

•• 0 

Q - k'AG I— - * 0, 

(8a) 

(86) 

where / is the moment of inertia, k' is the shear correction coefficient, 
and G is the shear modulus. The two equations of transverse motion 
are obtained by applying the dynamical equation to a differential 
beam element. The equation for rotary motion is 

dM d 2 ^ 

dx dtl 

and the equation for translatory motion is 

dQ d2y 

dx dt* 

The procedure for obtaining the characteristic equations is similar 
to that described for the longitudinal waves. The translational and 
rotational velocities are first defined by 

* , W = y. (10) 

The force-displacement equations (8a) and (86) are then differen­
tiated with respect to time, and the system equations are written in 
matrix form. 

(11) 

The procedure described for the longitudinal wave response gives the 
following characteristic lines for transverse wave response: 

(+cb along II+ (12a) 

0 

0 

llpi 

_ 0 

0 EI 

0 0 

0 0 

-UpA 0 

0 

k'AG 

0 

0 _ 

i r 
Q 

a) 

J L 

+ 

X 

I T 
Q 

03 

JL 

= 

t 

0 

-k'AGw 

QlpI 

_ o _ 

dx _ 
X - — -

dt 

—Cb along II 

+c s along III+ 

,—cs along I I I -

(126) 

(12c) 

(12d) 

where cs = y/k'Glp , and the corresponding characteristic equations 
are found to be 

11+ 

II-

III+; 

III" 

dM + plcbdco = CbQdt (13a) 

dM - pIcbdo3 = -CbQdt (136) 

dQ - pAcsdW = -k'AGoidt (13c) 

dQ + pAcsdW = -k'AGo>dt. (13d) 

Wave Propagation Through the Junction. At the junction the 
intersection is modeled as a rigid intersection joining the three bars. 
Two bars are collinear, and the third intersects at an arbitrary angle 
6 as shown in Fig. I.1 

The response at the junction is governed by 

1 The equation of motion for the rigid intersection element. 
2 Equations of compatibility at the interfaces of the rigid element 

and the deformable bars. 
3 Equations of motion for the three bars. 
4 Constitutive relationships for the bars. 

The equations of motion for the rigid intersection element are de­
rived by considering the forces and moments acting on a rigid inter­
section of unit width shown in Fig. 1. The longitudinal and transverse 

1 For the analytical and experimental results discussed here, the three bars 
that form the junction are of the same cross-soctional dimensions and of the 
same material properties. 
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equations of motion are given with respect to coordinates x i and y i, 
and the rotational equation of motion is given with respect to the in­
tersection's mass center of gravity. The equations for axial, transverse, 
and rotational motion are then as follows: 

-N1A + N3A + N2A sin 8 + Q2A cos 8 = pA0 

-QIA + Q3A + QIA sin 6 - N2A cos 8 = pA0 

MIA ~ M2A - M3A + ZIQIA - isQsA - &Q2A 

- (NlA - NSA)vi + N2AV2 = h. 

dVi 

dt 

dWi 

dt 

do>iA 

" dt 

(14a) 

(146) 

(14c) 

where subscripts 1A,2A, and 3A refer to the forces on the left, upper, 
and right faces of the rigid intersection; Ao is the area of the rigid el­
ement; and Ics is its moment of inertia of mass taken about the cen-
troidal axis perpendicular to the planar area AQ. They are given as 

hi hi 
h\ H sin I 

2 

ph\hi 

12 cos ( 
h\ + - -+12d 2 

ph\ tan 8 

36 
[/i!(l + tan20) + 18di], 

in which hi and hi are the depths of bars 1 and 2, and di and di are 
distances between the centers of gravity of the rigid intersection el­
ement and its component rectangle and triangle, respectively (Pig. 
1). The vectorial distances £,- and 7); are in the x and y-direction, re­
spectively, from the Xi — y,- coordinate axes to the rigid intersection 
element's mass center of gravity. 

After the derivatives are expressed in finite-difference form, the 
nondimensional forms of equations (14a), (146), and (-14c) become 

-tiiewNiA + C11N3A + (13N1A sin 8 

+ |Zf ISQIA cos 6 - —— A0VIA = - —— A0VIG (15a) 
27 27 

-(1K13Q1A + CHQM + e 13Q1A sin 8 

~ - i V 2 , c o s 0 - ^ W 1 A = W I G (156) 
V 3 A Q 

> 7 - 2 

« 1 2 « I A A ~ c 13M2A - eliM3A + ei2ti302£iQi/i 

- AiP%Q3A - e\M&2A - t\Am^iA 

+ (13V2N1A + (lirjlN3A ~ 6V3 7cgO>iA = - 6 V 3 Icg&lG (15c) 

where tij = hi/hj, /? = cs/cb, 7 = A T / 2 , and r; = hi/\fl2 . The nondi­
mensional components are expressed as 

77 = NKphcl) 

5 = QKphrf) 

V = V/cb 

W = W/cb 

M = MKphncl) 

a> = wri/cb 

A0 = A0/(h2h3) 

ICg = Icg/(ph\hl) 

Vi = ViM 

I = Un 
The equations of compatibility of motion are obtained by requiring 

that the rigid intersection element and its interfaces with the beam-
columns have the same axial, transverse, and rotational velocity. 
These equations in nondimensional form are 

*1 ~~ A3 

Fig. 2 Characteristic lines for three-member intersection 

'VIA 

WiA+UiA 

n 
VIA = 

VIA + WIA 
111 f7 V2- \ . 

= \VlA 0)2/1 SI 

n \ r2 I 

= V3A 

= w3A-

«13 USA 

sin0 

«>3A m 
r3 

(16a) 

(166) 

(16c) 

{2 
+ \WIA ~ VIA I i £ L cos 8 (16d) 

ri 

WIA + Wl/t " W' 1A — &1A ' i)sir 

+ p M ^ - V2A\cos8 (16e) 

&1A - ^120)2/1 (16/) 

The equations of motion and constitutive relationships for each 
bar are expressed in characteristic form by equations (7) and (13). 
Disturbances propagated to the intersection element are governed 
by nine characteristic equations, three for each bar. These equations 
were derived above in dimensional form. The characteristic lines in 
the dimensionless, x — T spaces along which these equations apply, 
are graphically represented in Pig. 2. The dimensionless spacial 
coordinate x = x/r, and the dimensionless temporal coordinate T = 
Cbt/r. The characteristic equations governing bending and shear apply 
along the characteristic lines of slopes ±1 and ±/?. The characteristics 
equations governing thrust apply only along the characteristic lines 
of slope ±1 . From equations (7) and (13), the required dimensionless 
forms of the characteristic equations in finite difference form are 

7 7 M - VIA = NIB - V1B (17a) 

MIA + UIA - !32yQiA = Mw + 5J1B + p2yQ1B (176) 

PQIA - WIA + $yZilA = ffilc - Wic - Pyaic (17c) 

N3A+V3A = N3F+V3F (17d) 

M3A - u3A + P2(i3y%iaA = M3F - w3F - ^2ei37^3F (17e) 

fiQak + W3A + Pei3yw3A = PQ3D ~ /3fi37^3D + W3fl (17/) 

N2A + VIA = NIJ + Vu (llg) 

M2A - u2A + /32fi27^2A = M2J - uu - $\uy§ij (17h) 

0$2A + WIA + /3ei27^2A = PQIH + W2H - fiei2yu2H (17i) 
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(b) Longitudinal Force History (c) Bending Moment History 

Fig. 3 Theoretical wave response at three-member junction 

0.2 0.4 0.6 0.8 1.0 1.2 
TIME r — cb/X 

(d) Transverse Shear Force History 

Equations (17c), (17/), and (17i) are expressed in terms of velocities 
and forces at points A, C, D, and H in Fig. 2. To simplify the finite-
difference solution, quantities at points C, D, and H are expressed 
in terms of those at A, B, F, J, and G, thereby eliminating the char­
acteristic lines of slope ±/3 from the computations. For example, the 
quantities at C in equation (17c) are expressed in terms of those at 
B and O by linearly interpolating along line BOF. Then the depen­
dence on quantities at O is removed by interpolating along line AOG. 
Equation (17c) is then expressed in terms of quantities at A, B, and 
Gas 

0(0 + l)Hu ~ (0 + Dffu + /?Y(3 - 0) 5 M 
= 2P[PQIB - WIB - PyZiiB] + (1 - /?) [05IG • WIG - / ? 7 " I G ] 

The 18 unknown forces and velocities at point A are obtained by 
solution of 18 simultaneous equations: three equations of motion, 
equations (15a)-(15c); six compatibility equations, equations 
(16a)-(16/); and nine characteristic equations, equations (17a)-(17i). 
These equations can be expressed in matrix form as 

[A]\U\ = |5), 

where jf7| is a column vector of the 18 unknown quantities at point 
A in Fig. 2; \B] is a column vector whose 18 elements are combinations 
of known quantities at points B, F, J, and G; and [A] is an 18 X 18 
square matrix of constant coefficients. 

In matrix notation, the solution for \U\ is 

It/) = \M-lB, 

where [A] - 1 is the inverse of [A], Since [A] is independent of time, it 
is inverted only once during the analysis; thus it is expedient to de­
termine [A]"1 numerically with an available computer subroutine. 
The intersection solution obtained in this way can then be combined 
with the solutions for the bars which are given in dimensionless fi­
nite-difference forms of the characteristic equations in [9] to give the 
solution for the three-member structure. 

Theoretically Predicted Wave Response. To characterize the 
wave propagation through a junction, the structure shown in Fig. 3(a) 
was analyzed. Member 1 of this structure was loaded by a half-sine 
wave longitudinal pulse. 

P = P 0 sin 
TTCbt 

IMPACTED END 
1.27 cm MACHINED ROUND 

D 

1.27 cm / 
2.54 cm 

rv 
I ir 

7.62 

61 cm 

7.62 

61 cm 

Fig. 4 Geometry of experimental structure and strain gage locations 

where C(, is the bar wave velocity, X is the half-sine wavelength, and 
t is time. 

Time histories of longitudinal force, bending moment, and shear 
force at the interface of the intersection and its three connecting 
members are shown in Figs. 3(6), (c), and (d) for several values of 
6. 

For member 1, Fig. 3(b) shows that the longitudinal or axial re­
sponse increases with increasing absolute values of 8. Because the 
response at the interface of member 1 and the intersection element 
represents a superposition of the incident wave and the reflected wave, 
the peak axial response always exceeds the amplitude of the incident 
wave. Figs. 3(c) and 3(d) show that the bending moment and shear 
response in member 1 are a maximum at about 8 equals 7r/4 rad (45 
deg). 

For member 2, Fig. 3(b) shows that the axial response increases for 
increases monotonically with 8. Figs. 3(c) and 3(d) show that the 
largest (absolute) values of bending moment and shear response occur 
at 9 equals zero. 

For member 3, Fig. 3(b) shows that the largest axial response occurs 
at 8 equals zero and is less than the amplitude of the incident wave. 
Figs. 3(c) and 3(d) show that the largest (absolute) values of bending 
moment and shear occur at about 8 equals —7r/4 rad (—45 deg). 

Experiments 
Impact experiments were performed to measure the stress wave 

response at the junction. Fig. 4 shows a schematic of the structure used 
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Strain gage records for three-member structure where 6 = + 7T/4 

Gage No. 1 

Loading 
Direction " 

No. 2 
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No. 6 
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GAGE NO. 5 GAGE NO. 6 

STATION 3 (Delay Time after Impact = +65 MS) 

Fig. 6 Strain gage records for three-member structure where d 
rad 

= - 7T/4 

in the experiments. The structure was fabricated from 6061-T6 Alu­
minum rods of 1.27 cm (1/2 in.) sq cross section. The junction was 
formed by welding a noncollinear bar to a second bar at an angle of 
7r/4 rad (45 deg) to form a junction of three bars as shown in the figure. 
The structure was heat-treated to the T6 condition to remove any 
residual stresses induced by welding. 

A short-duration load was induced by impacting the structure at 
one end with a cylindrical brass projectile fired from a 1.204 cm dia 
gas gun. Each end of the target was machined round so that it could 
be inserted into the muzzle of the gas gun, thereby aligning the target 
with the projectile. A 0.318 cm thick Teflon disk was attached to the 
impacted end of the target to give the loading pulse a finite rise time. 
The impact velocity was about 15.2 m/sec. 

Strains induced in the target by the impact loading were measured 
with foil-type strain gages. Gages were oriented to measure longitu­
dinal strains in the bar segments of the structure; their locations are 
indicated in Fig. 4. 

Measured strain-time histories are shown in Figs. 5 and 6. Fig. 5 
shows the response for a structure in which the intersection angle is 
+7r/4 rad, and Fig. 6 shows the response for a structure in which the 
intersection angle is —7r/4 rad. The gages located at the impacted end 
measured the longitudinal or axial wave induced by the impact of the 
projectile. Those gages located immediately before and after the 

junction measured the superposition of axial and bending strains due 
to waves reflected from and transmitted through the intersection 
element. 

Comparison Between Theory and Experiment 
To verify the analysis for wave propagation through the junction, 

the predicted wave response was compared with that obtained from 
experiments. Figs. 7 and 8 compare the theoretically predicted 
strain-time histories with the experimentally measured strain-time 
histories. (Fig. 7 shows histories for a three-member structure with 
an intersection where 0 = +7r/4 rad, and Fig. 8 shows histories for a 
three-member structure where 0 = —7r/4 rad.) The loading for the 
theoretical analysis was taken as the axial strain history measured at 
station 1 in the experiment. Agreement between theory and experi­
ment is good; however, the theory deviates slightly from the experi­
ment in the latter portion of each strain-time history. This is due to 
the arrival of the measured bending pulse at a time of about 10 /xs later 
than the arrival of the predicted bending pulse. 

This effect is better shown in Fig. 9, where the axial and bending 
components are shown separately. The figure shows strain-time 
histories obtained by the finite-difference integration scheme using 
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Fig. 9 Comparison of axial and bending strain-time histories for three-
member structure where 6 = + *74 rad 

two different va lues of t h e t i m e i n c r e m e n t (grid size) At .2 T h e axial 

response is v i r tual ly unchanged by a refined finite-difference grid, 

whereas t h e shape of t h e bend ing s t r a in - t ime h is tory is s o m e w h a t 

sensi t ive to grid size. T h e arr ival t ime of t h e theore t ica l ly p r ed i c t ed 

bending pulse, however, is no t sensitive to grid size; therefore, a more 

refined grid would no t improve ag reemen t in ar r ival t imes be tween 

theory a n d exper imen t . 

2 A time increment of A( = 0.2 [is was used in most calculations presented 
in this paper. 

T h e r e are two plaus ible reasons for t h e d iscrepancy be tween the­

oretical and experimental bending strains. First , the discrepancy may 

be due to the difference in the response of an intersection t h a t is rigid, 

as modeled in t h e analysis, and an intersect ion t h a t is elastic, as used 

in t h e expe r imen t . An inc iden t pulse of wavelength several t imes 

larger t h a n t h e d imens ion of t h e in tersec t ion p ropaga tes t h r o u g h an 

elastic in te rsec t ion a n d t h rough a rigid in tersec t ion in roughly the 

same manne r . However , an incident pulse of wavelength comparab le 

to t h e in tersec t ion d imens ion is d i s to r t ed when p ropaga t ed th rough 

a rigid intersect ion. Al though t h e exper imental ly measured incident 

pulse (which was also used as t h e loading pulse in the analysis) is 

d o m i n a t e d by long-wavelength componen t s , it also con ta ins some 

shor t -wave length c o m p o n e n t s . T h e d is tor t ion of these shor t -wave­

length c o m p o n e n t s when p ropaga t ed t h rough the rigid in tersec t ion 

is believed to cause t h e discrepancy be tween theory and exper iment . 

Second, t h e d i sc repancy m a y be d u e to t h e b e n d i n g (T imoshenko) 

equa t ions be ing more suscept ib le to in tegra t ion errors i n h e r e n t in a 

l inear - in te rpo la t ion scheme compared to those of t h e axial mot ion 

equations. A more sophisticated integration scheme such as t h a t given 

in [10] m a y have improved t h e corre la t ion be tween theory a n d ex­

pe r imen t . 

In sp i t e of t h e s l ight d i sc repancy in t h e bend ing response , t h e 

overall response is sat isfactori ly p red ic t ed by t h e theory . 
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Reflection, Refraction, and 
Absorption of Elastic Waves at a 
Frictional Interface: P and SV 
Motion 
An approximate method of analysis is presented for determining the reflection, refrac­
tion, and absorption of obliquely incident planar time-harmonic P or SV waves at a fric­
tional interface between dissimilar elastic solids. The solids are pressed together with suf­
ficient pressure to prevent separation, and the angle of incidence is subcritical. General 
expressions for the amplitudes and phases of all reflected and refracted waves are devel­
oped in closed form for a broad class of models for bonding friction. Specific results are 
presented for the case of identical elastic solids bonded by Coulomb friction, as an exam­
ple of application of the general approach. 

Introduction 
In a previous paper [1] the authors began an investigation of the 

effects of friction and slippage at an interface on the propagation of 
elastic body waves. The previous investigation was limited to the case 
of antiplane strain (SH) motion. Presented herein are the results of 
an extension of this investigation to the case of plane strain (P and 
SV) motion. In particular, attention is focused on the reflection, re­
fraction and absorption of planar time-harmonic P and SV waves at 
a frictionally bonded interface between dissimilar elastic solids. The 
solids are pressed together with sufficient external pressure to prevent 
separation at the interface, and the angle of incidence is assumed to 
be subcritical. 

The effect of bonding imperfections on the propagation of elastic 
waves is a subject of potential technological application in several 
areas, including soil-structure interaction of burried structures during 
earthquakes, and nondestructive testing of materials for bonding 
defects [2-4]. Several recent investigations have dealt with theoretical 
aspects of the subject. For time-harmonic body waves of P and SV 
type, Comninou and Dundurs have considered the effects of localized 
separation at a lubricated interface [5] and at an interface bonded by 
Coulomb friction [6], while Murty [7] considered the effects of slippage 

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY 
OF MECHANICAL ENGINEERS, for presentation at the 1981 Joint ASME/ASCE 
Applied Mechanics, Fluids Engineering, and Bioengineering Conference, 
University of Colorado, Boulder, Colo., June 22-27,1981. 

Discussion on this paper should be addressed to the Editorial Department, 
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10017, and will be accepted until June 1,1981. Readers who need more time to 
prepare a Discussion should request an extension from the Editorial Depart­
ment. Manuscript received by ASME Applied Mechanics Division, March, 1980;' 
final revision, September, 1980. Paper No. 81-APM-18. 

without separation along an interface with linear viscous bonding. 
Comninou and Dundurs have also considered the case of separation 
caused by transient (anharmonic) P and SV waves at a lubricated 
interface [8, 9]. Similar investigations of Stonely-type interface waves 
along an interface with imperfect bonding have been reported [10-12]. 
Each of these investigations employs an exact solution technique 
which depends on the bonding conditions which result for lubricated, 
viscous, or Coulomb friction laws at the interface. Any bonding laws 
which are more complex or realistic in their treatment of the boundary 
conditions at the interface are not tractable by the mathematical 
techniques used in the studies previously described. While simple 
models for bonding friction may be adequate for some applications, 
there exist applications for which the validity of such models may be 
questioned. For example, with regard to smooth metallic surfaces it 
is well known that the coefficient of friction in the Coulomb law may 
not remain constant, but instead may depend significantly on such 
variables as contact pressure, slip velocity, time of contact, temper­
ature, and others [13,14]. Furthermore, some experimental results 
[15] on the nature of friction between sliding steel plates reveal a be­
havior somewhat more complex than Coulomb friction would predict. 
With regard to interfaces between soil layers or soil and structural 
foundations, little is known about the frictional behavior. Experi­
mental research on such interfaces is currently in progress to inves­
tigate appropriate constitutive laws between cyclic shear stress and 
relative slip [16]. In order to investigate the features introduced by 
these more complex and even empirical frictional models, it is nec­
essary to use approximate techniques of analysis. The present in­
vestigation employs an approximate solution technique which relieves 
many of the mathematical difficulties and allows any of a broad class 
of models for bonding friction to be considered. 

An approximate analytical technique is employed in this paper to 
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Fig. 1 Orientation of coordinate directions, angles, and unit vectors relative 
to the interface between dissimilar elastic solids 

provide closed-form general expressions for the amplitude and phase 
of all reflected and refracted waves, and for the partitioning of energy 
in the system. The expressions are valid for a broad class of models 
for bonding friction at the interface. As an example of application of 
the general approach, specific results are presented for the case of 
bonding of identical elastic solids by Coulomb friction. The results 
in this case are shown to depend on the angle of incidence and Pois-
son's ratio in addition to the stress ratio T* identified earlier [1]. It is 
also shown that less energy is absorbed at the interface for incident 
waves of P or SV type than for an SH wave of equal shear stress am­
plitude. 

F o r m u l a t i o n 
Consider two semi-infinite elastic solids with a common planar 

boundary at xi = 0, as shown in Fig. 1. Following standard notation, 
let X and /x denote the Lame constants, CL and cy the longitudinal and 
transverse wave velocities, respectively, p the mass density, u; (i = 
1,2) the displacement field, and oij (i, j = 1,2) the stress field for this 
plane strain problem. An overbar is used to distinguish quantities 
associated with the upper solid from those of the lower solid. 

The solids are pressed together by a static pressure <r„, and 
subjected to a planar time-harmonic incident wave of P or SV type 
in the lower solid. The incident wave propagates in the direction of 
the unit vector p(0) at subcritical angle of incidence 0O> as shown in Fig. 
1. The incident wave is assumed to have displacement amplitude AQ 
and frequency u>. The resulting reflected and refracted P and SV 
waves propagate along the directions p(n> (n = 1,2, 3,4), with periodic 
but generally anharmonic time-dependence. 

Contact between media occurs on the planar boundary x2 = 0. It 
is assumed that the external pressure u„ is sufficiently large to prevent 
separation, but that additional bonding between solids is provided 
by friction only. Thus, when A0 is sufficiently large, local relative slip 
is allowed between solids. Let this local relative slip be defined as 

s(xh t) = ui(xh 0, t) - ui(xh 0, t). (1) 

The boundary conditions at the frictionally bonded interface then 
require that 

uz(xi, 0, t) = u2(xi, 0, t) 

~oii(xx, 0, t) = 0-22U1, 0, t) 

ou(x-i, 0, t) = TF[<T«,, S(XI, t)] 

(2) 

(3) 

(4) 

where TF is the frictional stress developed at the interface. As previ­
ously explained [1], the functional TF[-\ represents a general consti­
tutive law for the frictional shear stress TF in terms of the external 
pressure a„ and the time history of relative slip. 

Approximate Solution for a General Frictional 
Model, TF 

For many realistic nonlinear models for the frictional stress TF, the 
problem just formulated is very difficult to solve. In fact, as far as the 
authors are aware, exact solutions for this problem have been pre­
sented [5-7] only for the special case in which TF is zero, determined 
by Coulomb friction, or is a linear function of s, such as the expres­
sion 

KS(XI, t) + f 
ds(^i, t) 

dt 
(6) 

where K and fare constants. 
No attempt is made here to find an exact solution for the case of 

general nonlinear frictional stress, TF- Instead, the approach presented 
earlier [1] is used to develop an approximate solution. The approach 
involves replacing the nonlinear frictional stress TF with a linearized 
expression of the form (6), with appropriately chosen constants K and 
f. The solution to the resulting linearized problem is then regarded 
as an approximate solution to the original nonlinear problem. Clearly 
the accuracy of the approximate solution depends on the choice of the 
parameters K and f. As previously shown, an optimal choice of the 
parameters depends on the amplitude of motion in the linearized 
solution and the nonlinear constitutive law TF[-] through the inte­
grals 

1 (*2T 
• K(<X«,, S) = — I TF(O~, S COS ri) cos i) d i) 

7rS JO 

f-ffcr-.S). 
TTWS 

1_ p. 
>S Jo 

TF(O<», S COS ?/) sin ri d rj 

(7) 

(8) 

where S is a constant representing the amplitude of the harmonic 
wave form of the linearized solution for s of equation (1). These in­
tegrals may be readily evaluated for any of a broad class of nonlinear 
frictional models. 

Having obtained the linearized parameters K and f, it remains to 
solve the resulting linearized problem. This may be done by well-
known displacement potential techniques [7], the details of which will 

. not be presented here. However, it is noteworthy that closed-form 
solutions for a broad class of frictional models may be obtained in' 
terms of K(C», S) and f(°'«>. S), and these solutions are presented in 
the following. In particular, it may be shown [17] that the linearized 
amplitude S of slip displacement is governed by the transcendental 
equation 

S2 K(0\»,S)\2 /wf (o - „ ,S ) 2l>! - (U22 - 1)02 

nks 
+ nks 1 - U2a21 ' 

63 + (t>22 -

' " 3 1 — " 4 0 4 1 / 

(1 + uo2) 

(bi + U2022 + 032 + U4Q42) [2fl 

1)022 

U > 2 2 - l)fl2l] 

• u 2 a 2 i - a 3 i - 114(241 
(9)' 

where, if c„ (n = 0 ,1 , 2, 3,4) represents the phase velocity of the nth 
wave shown in Fig. 1, the coefficients are given by 

k. = co/cs; cs = c0/pi (0 ) (10) 

vn= ( c s
2 / c „ 2 - l ) 1 / 2 = cot(0„); n = 0 ,1 ,2 ,3 ,4 (11) 

and for an incident SV wave, 

bi = - l ; 62 = -2u 2 ; b3 = (v2
2-i); b4 = -u2 (12) 

while for an incident P wave, 

bi = m; i 2 = fej2 - l) ; 63 = 2 ^ ; b4 = -l. (13) 

ffi2(*i, 0, t) = TF[aa, s(xi, t)] (5) The remaining coefficients are given by 
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2l>l(l — l>42 + 2U3V4) + 2v3 (1 - V22 — 27U1D4) 
- W - l ) [ 7 f i ( " 4 2 - l ) + u 3 ( i ; 2

2 - l ) ] 

031 

«32 : 

041 

Q42 = " 

(l)22 - 1) (1 - D42 + 2u3[)4) + 4u3(o2 + 7U4) 
+ ( u 4

2 - l ) [ 7 ( " 4 2 - l ) + 2i;2U3] 
(14) 

21)3(27^461 - b2) - 63(1 - U42 + 2U3D4) 

+ ( U 4
2 - l ) [ 7 6 i ( u 4 2 - l ) - ^ 2 ] 

(l)2
2 - 1) (1 - D4

2 + 203U4) + 4U3(U2 + 7<>4) + 
(u4

2 - 1)[7("42 - 1) + 2v2i>3] 

(15) 

(1 - u2
2 - 27^11)4) - 2(u2 + 7^4)021 

7(1 - U22 + 2U3U4) 

(270461 - b2) - 2(u2 + 71^4)022 

7(1 - l>2
2 + 2V3U4) 

-7l>l(l>42 - 1) + V3(V22 - 1) + [7<"42 - 1) + 2u2Vs]a2i 
7(1 - u4

2 + 2v3v4) 

-U3b2 + 7("42 - l )bl + [2U2»3 + 7("42 - D]022 

7(1 - LI42 + 2U3U4) 

where 

7 = / * / ( " • 

(16) 

(17) 

(18) 

(19) 

(20) 

Due to the trancendental nature of equation (9), numerical solutions 
for S will generally be required. 

After S has been determined, the corresponding phase shift as 

(relative to the incident wave) of the wave form for the relative slip 
s may be obtained from the expression 

as = tan 1 0>%(<Jn,, S) + ixks 

2ui - (u 2
2 - l )Q2 i 

/ K ( ( T „ , S) 
, • • • ( 2 1 ) 

1 -U2021 - ( J 3 1 - U4<Z4lJ' J 
The displacement amplitudes An and corresponding phase shifts an 

(relative to the incident wave) of all reflected and refracted waves may 
be determined from S, as, and Bo, where 

So = A 0 / ( D 0
2 + D1 /2 . (22) 

In particular, 

(AJA0) = (BJB0)(vJ + 1)^1 W + D1 / 2; n = 1, 2, 3, 4 (23) 

where 

|(S/B0)2 cos2 as + [(S/B0) sin as + b4 

+ U2022 + O32 + D4042]2|1/2 

(Si/Bo) = 
(1 - u2a2i - a31 - 04041) 

(24) 
a i = tan" 1 |[(S/B0) cos as]/[{S/B0) sin as + 64 

+ u2022 + a32 + 1)4042]! (25) 

(BJB0) = |[a„i(Si/So) cos on + a„2]2 + \anl(BJBQ) sin ai]2)1 '2 

n = 2, 3, 4 (26) 

a„ = t a n - 1 f[a„i(Bi/Bo) s i n « i ] / 

[a„i(Bi/B0) cos a, + o„2]); n = 2, 3, 4. (27) 

Furthermore, the partitioning of incident wave energy into re­
flection, refraction, and absorption may be determined from the 
displacement amplitude ratios just presented. In particular, if En is 
the energy flux per unit area per cycle of oscillation associated with 
the wave of amplitude An (n = 0, 1, 2, 3, 4), then a measure of the 
portion of incident wave energy carried by this wave is given by the 
energy ratio e„ where 

0 8 
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e0=30° \ 
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1 

1 

/ / e"e> 
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-

Fig. 2 Dependence of energy ratios on the stress ratio r* for the case of an 
incident SV wave 

and where, for an incident SV wave, 

Ul(l)22 + 1) D3(l)4
2 + 1) - U4 ,_„, 

ft = , o , ,,'• ft = x; ft = 7 , n . ,,'< ft = 7 — (29) 
u2 

y2(ui2 + 1) 

or, for an incident P wave, 

u 2 ( o i 2 + D 
l; ft 

U2(U32+D' 

D3(D42+D(U12+1) 
33 = 7 -

Wl(t)2
2+D Ul (U2 Z +l ) (03 2 +l ) 

0 U4(ui2+1) 

ft = 7" 
(30) 

Ol(U22 + 1) 

The amount of energy absorbed at the boundary may be obtained 
by subtracting the energy associated with each of the reflected and 
refracted waves from the energy associated with the incident wave. 
A convenient measure of the absorbed energy is provided by the ab­
sorption energy ratio eA defined as 

eA = {EA/EOY'2 = (1 - ei2 - e2
2 - e3

2 - e4
2)1/2 (31) 

where EA is the energy flux per unit area per cycle of oscillation which 
is absorbed at the interface. 

Results for Identical Solids Bonded by Coulomb 
Friction 

As an illustration of the general approach presented in the previous 
section, consider the simple case in which bonding between solids is 
provided by Coulomb friction. At a given location along the interface, 
this model requires that the solids adhere so long as the local shear 
stress does not exceed a "slip stress," whose magnitude is the product 
of the local compressive stress and a constant coefficient of friction 
between surfaces. When the magnitude of the local shear stress builds 
up to the slip stress, local relative slipping occurs between solids. As 
a result, a pattern of alternate "stick" and "slip" zones will form at 
the interface during the passage of the train of incident waves, as 
discussed in a previous paper [1]. 

Let / denote the coefficient of friction between surfaces, and let 
<rc(xi,t) denote the net compressive stress at any location along the 
interface. The local slip stress then becomes fac (xi,t). Evaluating the 
integrals in equations (7) and (8) for this model of friction, it may be 
shown that 

K(O-„, S) = 0; f(o--> S) = (4/tr„)/(iraS). (32) 

e„ ^ {En/Bo)1'* = ft, 1/2(A„/A0); n = 1, 2, 3,4 (28) 

Because of the mathematical simplicity of equations (32), it is 
possible even in the general case of dissimilar elastic solids, to obtain 
closed-form approximate solutions for the displacement amplitudes, 
phase shifts, and energies associated with each of the reflected and 
refracted waves. This may be accomplished by substituting from 
equations (32) for K and f in equation (9), and solving for (S/Ao) in 
closed form. Closed-form expressions for the other amplitudes may 
then be obtained from the remaining equations in the previous sec­
tion. However, in order to avoid the lengthy coefficients which result 
in the general case, attention will be focused on the special case of 
identical elastic solids for the remainder of this example. 
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For upper and lower solids with identical material properties, it may 
be shown that 

7 = 1; a2i = «4i = -(t>22 - l)/2u2 

022 = 0; O31 = —1; 032 = D5; 042 = 

where, for an incident SV wave, 

fe6 = 0 

while, for an incident P wave, 

*>B = 1. 

(I - b5) (33) 

(34) 

(35) 

Using equations (32) and (33), it may be shown for identical solids 
bonded by Coulomb friction that 

(S/A0) •• 

f 2U2bS(V22 + l ) 

(y 0
2 +D 1 / 2 [4y iU 2 +( i ;2 2 -

0; 

L 
- I ) 2 ] ! 1 TTT*I 

63 

f \ b 2 

4 

As the amplitude of incident waves is further increased so that T* 
= b$/(f\ 62I), the local compressive stress vanishes at some locations 
along the interface, and zones of separation between solids begin to 
form. Since the formulation presented herein does not allow separa­
tion, the results do not apply in such a case. However, it should be 
noted that no separation will accompany the slip which occurs at the 
interface, even for rather large amplitude incident waves, if the 
coefficient of friction / is sufficiently small. 

In addition to the stress ratio r*, it is clear from equations (36)-(42) 
that the solution also depends on i>i and v<i- Furthermore, it is easily 
shown that v\ and v% are functions of the angle of incidence do and 
Poisson's ratio v for the identical solids. Thus the solution depends 

> T * > 

> T* > 0 

(36) 

a, = TT/2 (37) 

(AJAo) = (U!2 + l)i/2(S/Ao)/(u2
2 + l ) ; a i = 0 (38) 

U 2 M o ) = i^5 f lW ( S M o ) ; « 2 = - <39> 
Ws/Ao) = 65 + (1 - 265)(ui2 + D1/2(SMo)/(«22 + 1); 

a3 = ir(l - b5) 

W4/A0) = (1 - 65) + (266 - 1) 
(ua 8 - ! ) 

2u2(u2
2 + D 1 / 2 (S/A0); 

« 4 ; : •nbf, 

(40) 

(41) 
where 

r* = lnk,A0b3/(oo2 + l)1/2]/(/<r„) 

= max|(Ti2<0»(*i,0,t)|/(/a„). (42) 

As indicated in equation (42), the governing parameter T* may be 
interpreted as a ratio of the magnitude of <7i2(0>(*i,0,t), the shear stress 
along the interface associated with the incident wave, to an average 
slip stress fa„. This stress ratio plays a central role in determining the 
nature of the response of the system. 

When T* < (4/7r), the approximate solution predicts that S = 0, so 
that no slip occurs, and the solids behave as though perfectly welded 
along the interface. For this range of small amplitude incident waves, 
equations (38)-(41) reveal that the incident wave is simply trans­
mitted across the interface without causing any reflected or refracted 
waves, as expected. When T* = (4/7r), a "break loose" condition is 
encountered, and relative slip begins to occur in alternate stick and 
slip zones which travel along the interface. As the amplitude of inci­
dent waves is increased so that (4/ir) < T* < 63/(/ | i>2|)»the energy 
associated with the incident wave is no longer carried across the in­
terface by a single refracted wave. Instead, a mode conversion occurs 
at the interface, and some of the incident energy is carried by reflected 
P and SV waves, some by refracted P and SV waves, and some is 
absorbed at the interface. The energy ratios in this case may be ob­
tained from equation (28) and equations (36)-(42) where, for identical 
elastic solids in the case of an incident SV wave, 

/?i = fo = M u 2 2 + l ) ] / M » i 2 + l ) ] ; 02 = 0 4 = 1 (43) 

while, for an incident P wave, 

01 = 03 = 1; 02 = 04 = M U 1 2 + 1 ) ] / M l > 2 2 + 1 ) ] . (44) 

on do and v in addition to T*. In contrast, the solution for the case of 
incident SH waves was shown in a previous paper [1] to depend on 
T* alone. The dependence on do and v for the case of incident P or SV 
waves is a result of the mode conversion (P to S V and S V to P) which 
occurs at the interface in this case. 

For the case of normally incident SV waves (do = 0), the situation 
is identical to the case of normally incident SH waves and hence the 
energy ratios are independent of v, and their dependence on the stress 
ratio T* is as shown in Fig. 2 of reference [1]. When the angle of inci­
dence is increased to do = 30° in a solid with v = 0.3, plots of the energy 
ratios as functions of T* are shown in Fig. 2. (For v = 0.3 the critical 
angle is dCI = 32° 18.7'). The curves are similar in shape to those for 
the case of SH motion, with the principal differences being the ad­
ditional curves for the reflected and refracted P waves which occur 
in this case. For very small values of 7* it is found that no slipping 
occurs, all the incident energy is carried by the refracted SV wave, 
and the interface behaves as though perfectly welded. At the opposite 
extreme, as T* -* 00 each curve approaches an asymptote which 
coincides with the corresponding energy ratio for a perfectly lubri­
cated interface. At an intermediate value of T* (T* = 8/TT) it is found 
that the energy absorbed at the interface is maximized. These features 
are found to be independent of do and v, and identical with the case 
of an incident SH wave. It is also found that as the angle of incidence 
do is increased to the critical angle dCI, the energy carried by the re­
flected and refracted P waves vanishes, and the curves are again 
identical with those for SH motion. 

For the case of incident P waves, the solution presented herein is 
valid for all angles of incidence in the range of 0 < do < ir/2. Shown 
in Fig. 3 are plots of the energy ratios as functions of the stress ratio 
T* for the case of a P wave incident at an angle of do = 60° in a solid 
with v = 0.3. Again it is found that for small values of T* the boundary 
behaves as though perfectly welded, and as T* -» <*> the boundary 
behaves as though perfectly lubricated. The asymptotic values of the 
energy ratios for large T* coincide with the corresponding values for 
a perfectly lubricated interface. Maximum energy absorption occurs 
at T* = 8/TT. These features are again found to be independent of do 
and v. As shown in the figure, frictional slippage at the interface does 
not absorb much of the energy in this case, and most of the energy is 
carried by the refracted P wave. Furthermore, it can be shown that 
as do -* 0 or as 60 —• ir/2, all of the energy is carried by the refracted 
P wave, and no energy is absorbed at the interface. 

Energy Dissipation at the Interface. Of particular interest in 
this problem is the energy which is absorbed or dissipated at the in­
terface. For the particular case of identical elastic solids bonded by 
Coulomb friction, it may be shown that the absorption energy ratio 
may be expressed as 

C (4/TTT*)1 / 2 (1 - 4/TTT*)1/2; bs/(f\b2\) > T* > 4/ir 

0; 4/ir > T* > 0 eA (45) 
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Fig. 4 Dependence of the energy dissipation coefficient C on the normalized 
angle of incidence 0O for the case of an incident SV wave 

where C depends on the angle of incidence do and Poisson's ratio v. 
For the case of an incident SH wave it can be shown [1] that C = \/2 , 
independent of da and v. 

Shown in Fig. 4 are plots of the dissipation coefficient C as a func­
tion of the angle of incidence do (normalized with respect to the critical 
angle) for various values of Poisson's ratio v, for the case of an incident 
S V wave. Similar plots for the case of an incident P wave are shown 
in Fig. 5. As inferred from Fig. 4, except at normal and critical angles 
of incidence, less energy is absorbed at the interface for an incident 
SV wave than for an incident SH wave of equal amplitude. The 
maximum value of C is v^2, and the minimum value depends on 
Poisson's ratio. 

As inferred from Fig. 5, an incident P wave also results in less energy 
dissipation than an SH wave of equal amplitude. In this case, the 
minimum value of C is zero, while the maximum value depends on 
Poisson's ratio. 

Conclusions 
An approximate method of analysis is presented for determining 

the reflection, refraction, and absorption of obliquely incident planar 
harmonic P or SV waves at a frictional interface between dissimilar 
elastic solids. The solids are pressed together with pressure <r», and 
the analysis applies only to the regime in which slip occurs at the in­
terface without separation, and the angle of incidence is subcritical. 
The frictional stress at any location along the interface is assumed 
to depend in some prescribed manner on the local normal stress and 
the time history of the local slip across the interface, but remains 
otherwise arbitrary throughout the analyais. General results are 
presented for the linearized displacement amplitudes and phases of 
all reflected and refracted waves, and for partitioning of energy into 
reflection, refraction, and absorption. 

The special case of identical elastic solids bonded by Coulomb 
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Fig. 5 Dependence of the energy dissipation coefficient C on the angle of 
incidence 60 for the case of an incident P wave 

friction with coefficient of friction / is considered in detail as an ex­
ample of the application of the general approach. With regard to the 
results for this special case, it is concluded that 

1 The amount of slippage at the interface is dependent upon the 
stress ratio T*, which is the ratio of the magnitude of the peak shear 
stress along the interface associated with the incident wave, to an 
average slip stress, faa. When T* < (4/ir), the interface behaves as 
though perfectly welded, and no slippage occurs. When j * = (4Ar), 
a "break loose" condition is encountered, and relative slip begins to 
occur in alternate stick and slip zones which travel along the interface. 
As T* —>• oo, the interface behaves as though perfectly lubricated. 

2 Zones of separation begin to form along the interface when the 
magnitude of peak normal stress along the interface associated with 
the incident wave equals or exceeds a™. The results do not apply for 
such large amplitude incident waves. 

3 In addition to r*, the energy partitioning in the system also 
depends on the angle of incidence, 8o, and Poisson's ratio, v. However, 
less energy is absorbed by slippage at the interface for either an in­
cident P or SV wave than for an incident SH wave of equal stress 
amplitude. 
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Vibration of an Elastic Circular Plate 
on an Elastic Half Space—A Direct 
Approach 
The axisymmetric problem of a vibrating elastic plate on an elastic half space is solved 
by a direct method, in which the contact stresses and the normal displacements of the 
plate are taken as the unknown functions. First, the influence functions that give the dis­
placements in terms of the stresses are determined for the half space and the plate. Dis­
placement continuity then takes the form of an integral equation. Due to the half space 
the kernel is weakly singular, and a special solution technique that accounts for this is 
employed. The solution implies a direct matrix relation between the expansion coeffi­
cients of the contact stresses and plate deformations. The solution technique is valid for 
all frequencies and avoids asympototic expansion in terms of the frequency. The plate 
is represented by the theory of Reissner and Mindlin, which imposes physical limitations 
for high frequencies, but the method is easily extended to more general plate theories as 
well as nonsymmetric oscillations. The results include displacement and phase curves for 
rigid disks, power input for elastic plates, and typical stress and deformation distribu­
tions at selected phase angles. The results show considerable influence from the elastic 
properties of the plate. 

1 Introduction 
The problem of a vibrating circular plate on an elastic half space 

is of considerable technical interest, e.g., in connection with trans­
ducers or earthquake response of footings. It is therefore natural that 
a large number of papers have been devoted to the subject. Apart from 
the explicit solution by Reissner and Sagoci [1, 2] of the torsion 
problem, the problems have been formulated in terms of integral 
representations. Due to the mixed boundary conditions, dual integral 
equations are obtained for the Hankel transforms of the physical 
variables. A common approach has been to represent these Hankel 
transforms in terms of a Fourier transform, see, e.g., [3, 4]. This leads 
to a Fredholm integral equation of the second kind for the unknown 
function. This integral equation must be solved numerically. 

As demonstrated by Sneddon [5], the combination of a Hankel 
transformation and a Fourier transformation leads to a relation in 
terms of Abel integrals. Thus the bulk of existing work uses an indirect 
method in the sense that the unknown function which is determined 
numerically is related to the physical variables of the problem by Abel 
integrals. These integrals are inconvenient for numerical calculations, 
and this may account for the absence of information about the dis-
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tribution of the contact stresses. Another serious drawback of the 
indirect approach is the difficulty of incorporating more complicated 
boundary conditions such as those of the contact with a flexible 
plate. 

Both these difficulties are overcome, if the contact stresses are used 
directly as the unknown function. However, in order to do this it is 
necessary to be able to represent the relation between surface stresses 
and surface displacements accurately numerically. This is possible 
by using a simple polynominal relation originally derived by Popov 
[6] and later extended by Krenk [7, 8]. The demonstration of this 
approach is the main purpose of this work, and its ability to treat 
rather complicated boundary conditions is illustrated through its 
application to the problem of an oscillating elastic circular plate on 
an elastic half space. Due to the difference in method reference is 
made to [9] for a review of previous work on rigid plates. 

2 Basic Principles 
In order not to obscure the basic principles of the method, the 

problem is limited to axisymmetric oscillations of an elastic circular 
plate of thickness H and radius a assumed to remain in frictionless 
contact with an elastic half space, Fig. 1. Vertical oscillations of any 
trigonometrical order including rocking and torsion can be considered 
in an entirely similar way by use of the formulas of [7, 8]. The problem 
of vibrations parallel to the half-space surface is slightly more com­
plicated but is analogous to the problem of shear loading of a circular 
crack treated in [7]. Shear modulus, Poisson's ratio, and mass density 
are np, vp, pp for the plate and jxh, Vh, Ph for the half space. Cylindrical 
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Fig. 1 A circular elastic plate on an elastic half space 

coordinates \r, 6, z) are used with z directed into the half space. All the 
physical variables of the problem contain the factor exp (iiot), where 
&) is the angular frequency and t is the time. When differentiation with 
respect to time d/dt is replaced with the factor iw and all variables 
are allowed to take complex values, the time factor can be omitted. 
This will be done here. 

The vertical displacement of the contact surface of the plate is w(r). 
The total load on the plate is composed of the external load q (r) and 
the contact stresses <r22(r). In the plate theory to be used in Section 
4, the thickness of the plate remains unchanged, and the loads 
therefore only appear as the sum p(r) = q(r) + ozz (r). When the plate 
is linear elastic, the surface displacement is related to the load through 
a relation of the form 

w(r -J".' ' 3(r, x)p(x)dx (1) 

wp(r, x) is the displacement at r due to a unit ring load at x. It is noted 
that within the plate theory to be used, wp(r, x) is bounded and con­
tinuous. 

In order to be able to allow analysis of resonance phenomena, an­
other load is provided for, namely, a surface displacement of the half 
space, w* (r), had the plate not been there. Thus the contact stresses 
ozz(r) shall produce the surface displacement w(r) - w*{r) for 0 < 
r < a in order to obtain continuity. As in the case of the plate, the field 
equations of the half space can be integrated to yield a relation of the 
form 

w(r) - w*(r) r 
Jo 

Wh(r,x) ozz(x) dx (2) 

In contrast to wp(r, x), this influence function turns out to have a 
logarithmic singularity in \r — x\. This feature determines the ex­
pansions to be used. 

In the case of a rigid plate w(r) can be expressed directly in terms 
of the resulting force thus providing an integral equation that allows 
the determination of the contact stress azz(x) corresponding to a 
specified surface displacement. In the case of a flexible plate w(r) is 
unknown and is eliminated between (1) and (2) yielding the following 
integral equation for the determination of <rzz(x). 

s: [wh(r, x) - wp(r, x)\ rxzz(x)dx ; "(r) 

J w„(r, x)q(x)dx 
o 

(3) 

The integral equation (3) is of the first kind and therefore the log­
arithmic singularity contained in Wh(r, x) leads to a square root sin­
gularity of the contact stress <r22 (r) at r = a. The object of the present 
method is to provide suitable representations for the integrals in (1) 
and (2) that accounts properly for the singularity of azz(x). 

3 T h e In f luence F u n c t i o n of the Ha l f S p a c e 
The influence function Whir, x) of the half space determines the 

nature of the solution and is therefore treated first. Introduce the 
dimenionless coordinates £ = x/a, y = r/a, and f = z/a. Following 
Bycroft [10], the displacement components u(ri, f) and w(f], f) of the 
general solution are given as 

Jo [ a(s) 
-WW 

and 

rW •S )e-M«) + B( s ) e-^( s» 
/3(s) 

sJi(sr})ds (4) 

sJo(sri)ds (5) 

J „ ( ) is the Bessel function of the first kind of order n [11]. A(s) and 
B(s) are arbitrary functions, while 

and 

(s2 - h2)1'2 s > h 

a(s) = (i(h2 - s2)1'2 \s\<h 

-(s2 - h2Y>2 s < -h 

J ( s2 _ £2)1/2 s > k 

i(k2-s2)V2 \s\<k 
-(s2 - k2)1'2 s < -k 

(6) 

(7) 

The dimensionless parameters h and k reflect the relative wave-
number of longitudinal and transverse waves, respectively. 

, , 1 1 - 2 % u>2a2ph 
h2- = 

2 1 - Vh Hh 

(8) 

(9) 
V-h 

The pertinent stress components are [10] 

<Jzz22(v,D 

and 

: -"" X" A(s)-
2s2 - k2 

-fcv(s) 

a(s) 

+ 2B(s)se-WW sJ0(si])ds (10) 

-]lh f ° 2A(s)se-Ms> 

2s 2-
+ fl(s)-

•k2 

P(s) 
-ft»(s) sJi(srj)ds (11) 

When the surface f = 0 is assumed to be free of shear stress, the 
integral representation (11) provides a relation between A(s) and fl(s). 
After elimination of A(s) or B(s) inversion of (10) and substitution 
into (5) yields the following relation: 

ak2 a(s)sJo{sri) 

4 ^ J o ~(s2 - y2k
2)2 - s2a(s)P(s) 

X J ^ 1 <r„(£, 0)£Jo(s£)d£ds (12) 

The denominator in (12) has a zero between k and infinity corre­
sponding to the occurrence of Rayleigh waves. As shown by Bycroft 
[10], the integral representation accounts properly for the Rayleigh 
waves, if the integration with respect to s is performed along a contour 
indented with positive imaginary part at the pole. The corresponding 
formula for U(TJ, 0) in terms of c22(£, 0) is 

a f s2 - y2fe
2 - a(s)P(s) 

U(JJ,0) = - — ) — — — — s2Ji{sr]) 
2/xh Jo (s2 - y2k

2)2 - s2a(s)P(s) 

X J ^ V „ ( £ , 0)ZJo(sZ)d£ds (13) 

It is not immediately obvious that the order of integration in (12) 
can be reversed, and the asymptotic behavior for large s is therefore 
extracted. From the definitions (6)-(9) 

k2 sa(s) 
lim 

»/A—«4(1 - Vh) (s2 -
-= - 1 (14) 

• Vafe2)2 - s2a(s)f)(s) 

It is noted that the limit process only involves the ratio s/k. In the 
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case of a vibration problem k + 0, and the limit is used to extract the 
dominant part of the integral. Alternatively the limit process corre­
sponds to co -* 0, i.e., the static problem, for any fixed value of s. 
Therefore the dominant part of the integral for the vibration problem 
is identical to that of the corresponding static problem. The dominant 
part of (12) is 

ws(v) = a ("°Mstfl-—- C^aoKMs&dlilds (15) 
Jo [ fih Jo 

A change of the order of integration would lead to the kernel 
[12], 

j Jo(sr))J0(s£)ds 

£<r, 

u^r^Melr^r^ 
(16) 

where K() is the complete elliptic integral of the first kind. Asymp­
totic analysis of (16) reveals a logarithmic singularity at £ = rj, and a 
bounded Holder continuous function ws (t;) in (15) therefore requires 
C2z(?, 0) to have a square root singularity at £ = 1. 

What is needed is not a numerical calculation of the singular kernel 
(16), but an expansion of <r2Z(£, 0) for which the corresponding ex­
pansion of w{i), 0) can be easily evaluated. Such an expansion was 
found by Popov [6]. Let CT22(?;,0) be given by 

l-vh 
°zA% 0) = (1 - r,2)~1/2 E S J P 2 J ( A / T = V ) / P 2 ; ( 0 ) 

W> j-o 

0 < ij < 1 (17) 

where P m ( ) is the Legendre polynomial of degree m [12]. The poly­
nomials are normalized at rj = 1 by the constants 

P2y(0) = (-1V2*; (2 ;) (18) 

From Sonine's first integral and the recurrence relations for the 
Legendre polynomials and the Bessel functions, the following formula 
is derived, Krenk [8]. 

- i - f 1 (1 - v2)-1/2P2j(VT=lp)vJo(sv)dv 
2 i (0 ) JO P2;(0) 

= (-DJV2j(s) (19) 

£m() is the spherical Bessel function of the first kind [11], 

/ m ( s ) = W — Jm+m(s) (20) 

Substitution of (17) into (15) and use of (19) and the discontinuous 
Weber-Schafheitlin integral—Watson [13]—lead to 

ws(v) = « E (-D'Sj C"J0(sri)J2j(s)ds 

P y ( V i - v2). 0 < ij < 1 
•aZSjP2j(0)-

j-o 
(21) 

iQijtiVr, 1), i < n 

This formula is a special case of more general results derived by 
Gladwell [14] and Krenk [8]. In view of this result it is convenient to 
represent the normal displacement within the contact area in the 
form 

w(r,,Q) = a £ WmP2m(VT^lp)P2m(0), 0<t,<l (22) 
m=0 

A similar expansion with coefficients W*m is used for the displacement 
w*(r). 

The integral (12) is calculated by extracting the asymptotic value 
(14) and substituting the expansions (17) and (22) 

£ WmP2m(VT^V)P2m(0) = £ Sj 
m=0 j=0 

P2j(VT^)P2i{0) 

-<-"// («£ 
2 

sa(s) 

^ ) ( s 2 - y 2 f e 2 ) 2 - s 2 a ( s ) / 3 ( s ) 
- + 1 

X=/o(sr))/2;(s)ds 0 < n < 1 (23) 

The coefficients Wm can be evaluated by use of the orthogonality 
relations for the Legendre polynomials, here in the form 

f1 p2,(VT^p)p2m(Vr^5) ~ = 
Jo V I — V 

1 . (24) 

4 m + 1 

As the asymptotic behavior has been extracted, the order of inte­
gration can be reversed, and use can again be made of (19). 

Wm = E Sj - - (-iy+">(4m + 1) 
j=o 12 

X" 
k2 sa(s) 

\4(l-vh)(s
2-V2k

2)2-sMs)l3(s) 

This formula can be written in the form 

+ l | /2m(s) /2 j ' ( s ) r f s 

(25) 

lVm = ( 4 m + l ) E (-l)J+mSj A>}m 
j-o 

(26) 

which is the desired discretized form of the stress deformation relation 
(2) for the half space. Due to (14) the integral vanishes in the static 
case. 

The expression for the matrix Ajm is reduced in two steps. First, 
it is observed that the term 7r/2 in (25) can be written in integral form 
by use of the orthogonality relation of the Bessel functions, thereby 
cancelling the constant 1. Thus explicit extraction of the singularity 
of the kernel proves unnecessary in the numerical calculations. Sec­
ondly, the integral can be reduced to integrals over finite intervals by 
calculus of residues. The necessary formulae are derived in the Ap­
pendix. The result is 

A), 
Jo 

k2 sa(s) 

4 ( l - ^ ) ( s 2 - y 2 ^ 2 ) 2 - s 2 a ( s ) / 3 ( s ) 
J2j(s)J2m(s)ds 

4(1 - Vh) Jo (£2 - w + FV^Wf^T2 

ik r1 (e - 72)£3vT^p r 1 _ _ _ ( £ z j 
Jy (£2-V2)

4 + All \ 1 ItS. IIMXMII t2Mt2 as*®<W)h>nM)dZ. 
4(1 - vh) Jy ( r - V2)4 + r ( i - ? )(r - y ) 

j<m (27) 

For ; > m it is used that Ah
mj = Ajm. The material constant 7 is 

defined by 

: 1 1 ~ 2vh 

2 \-vh 

(28) 

and fa is the relative slowness of Rayleigh waves, i.e., the positive root 
of the denominator of the first intergral formula for A)m. A^(s) is the 
spherical Bessel function of the third kind [11]. Bycroft, who assumed 
the pressure distribution of the static case and a rigid disk, was led 
to the particular case of / = 0 in (27), a fact that is not surprising in 
view of its derivation. The asymptotic method of Robertson [3,4] leads 
to a similar expression but with the Bessel function products replaced 
with powers of s. The accuracy of the power series expansion thereby 
implied for the spherical Bessel functions clearly depends on the 
magnitude of the dimensionless frequency k. 
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4 T h e I n f l u e n c e F u n c t i o n o f t h e P l a t e 

T h e p la t e is descr ibed in t e r m s of t h e p la te equa t ions of Mind l in 
[15]. T h e y inc lude t h e effect of t r ansverse shear deformat ions , a n d 
accoun t for t h e iner t ia l t e r m s t h r o u g h an a s s u m p t i o n of s t r a igh t 
no rma l s . As shown b y Reissner [16] t h i s a s s u m p t i o n is n o t t r u e a n d 
is in fact unnecessa ry , b u t as shown by Mind l in [15] t h e ro t a to ry in­
er t ia plays a minor role c o m p a r e d t o t h e effect of t r ansverse defor­
ma t ion . 

T h e general ized d i sp l acemen t s are t h e t ransverse deformat ion w 

of t h e midd l e surface a n d in t h e p r e s e n t case of axial s y m m e t r y t h e 
angle \p be tween t h e n o r m a l a n d t h e 2-axis. T h e nonvan ish ing m o ­
m e n t s a n d shear forces are 

Mr 

Mg = D 

}[--W<) 
r dr 

- U - i >p)~ 
r 

vp W) + (1 - vp) 
r dr 

r = K2HpH 
dw — +f 
dr 

(29) 

- (30) 
r 

(31) 

D is t h e flexural r ig idi ty of t h e p l a t e D = Hsp.p/6(1 - vp), a n d K 2 is 
a p a r a m e t e r t h a t accoun ts for t h e averaging of t h e shear s t ress dis­
t r ibu t ion . A parabol ic d i s t r ibu t ion gives K2 = 5/6, while Mind l in [15] 
suggests K2 = i r 2 / l 2 , because th i s value gives t h e correct th ickness -
shear frequency. 

In t e rms of the generalized d isp lacements the equat ions of mot ion 
are for ro ta t ion 

^ f f w ) | - ^ f + f ] + f , ¥ = 0 (32) 
dr \r dr ) \dr ) 12 

translantion 

K*HPH - —(r —) + - — W)\ + ppHu2w + p = 0 (33) 
\r dr\ drj r dr j 

and for translantion 

where p(r) is the total transverse load on the plate. 
The following notation is introduced: 

_H 

a 

(D%: 

<*% = : 

1 2 K V P 

H2
PP 

2MP 

H2(l - vp)pp 

where cos is t h e angular th ickness - shear frequency. 

I t is convenien t t o replace \j/, which is a vector componen t , by 

1 a 

(34) 

(35) 

(36) 

<P: 

r dr (ri) 
(37) 

which is t h e divergence of t h e vector (\p, 0). As \j/ (0) = 0 (37) provides 
a unique relation between <p and \p. W h e n \p is el iminated between (32) 
and (33), t h e resul t ing differential equa t ion for w can be wr i t t en as 

CO£, 

12 /_C0_\2 

D 
(38) = l - r 2 P V 2 - — 

\usl vosl 

with the dimensionless radial coordinate rj = r/a and the differential 
ope ra to r 

>m (33), 

a2<p = — 

V2 = i — — 
7) dr] dri 

hmh r 2 K ) 2 ^ £ 
Us/ D 

(39) 

T h e equa t ions are solved by factorizing (38) in the form 

[V2 + 51 (co)] [V2 + b\ (co)] w = 

wi th 

2r*«?,(W)-12W2
 + W 

\(i>Sl \0>EI 

x-^V-^2 
usl .cos, 

(40) 

V I Wsl \d)El 

2 01 I2 

+ 4 8 -
WEI 

(41) 

S?(co) is posi t ive for all values of co, whereas Sl(co) < 0 for 0 < co < cos 
a n d &l(u>) > 0 for cos < co. For 0 < ai < cos we in t roduce t h e no ta t ion 
S2(co), where (S2(co))2 = - (S2(co))2. 

Now it is a r a t h e r s imple m a t t e r t o cons t ruc t the solut ion corre­
s p o n d i n g t o a concen t r a t ed r ing load of m a g n i t u d e 1 a t x, when co is 
n o t an e igenfrequency of t h e free p la te . T h e solut ion of t h e homoge­
neous equa t ion (38) wi th p(r) = 0 in t h e doma ins 0 < r < x and x < 

r <a involves six a rb i t r a ry cons t an t s , which d e p e n d on x. T h e solu­
t ion is given for 0 < co < cos, a n d the necessary changes for cos < co 
ind ica ted a f te rwards . In t e r m s of t h e dimensions less coordina tes rj 

a n d £ 

wp(v, £ ) /a = Ci(£)J0(5iJ?) + C2(f)/0(a*2)j), 0 < JJ < £ (42) 

wp(n, £ ) / a = CsiBMStf) + C 4 ( £ ) / O ( 6 2 T ) ) 

C&(Z)Yo(8iv) + C6($)K0(8'2ri), H < r, < 1 (43) 

Jo() a n d Y 0 ( ) a re t h e Bessel funct ions of order zero. J 0 ( ) a n d K 0 ( ) 
a re t h e cor responding modif ied Bessel funct ions [11]. <p follows from 
(39): 

<pil, &a = Ci ( f ) 

<P(V, Z)a = C3(B 

T^ \aisl T'\(I>SI . 

« ! - • 

1 2 / c o \ 2 

M&iv) + C2(£) 

X lotflv), 0<r,<^ (44) 

Jo(Siri) 

+c'4*-?yi'°«+c«MS1 Yoihv) 

+ Ce(f) &l-~l~j2JKQ(8lv), £ < „ < ! (45) 

\p follows by in tegra t ion of (37) 

Mv, ?) = 
C i ( | ) 

Si 

^ a ) = ^ l s ? 

+
c-f\ll-

,2 1 2 / c o \ 2 ' 
8j--

T1- \cos, 

I CM) 

8'2 

_ 1 2 / c o 

T2 \COs 

1 2 / c o 

JiiSiv) 

T* UoS/ 
h(8'2V), 0 < TJ < 1 (46) 

7 J 

C6^)\s2_U(w\ 

T 2 \C0 S / Si 

*1 
81 r2 U J Yi(8lV) 

Kii&ly), £<ri<l (47) 

T h e m o m e n t is given by (29) 

Mr = D\v-(\-Vp)t (48) 

f(V, ?) is con t inuous for 0 < i\ < 1, and it t h e n follows from (48) t h a t 
con t inu i ty of Mr(rj, £) is equ iva len t to con t inu i ty of <p(ri, f) as given 
by (44) and (45). T h e shear force is given by (31). After use of (35) and 
(36) 

Qr(n, 0 
1 — VpT JUE\2 

2 M P 

C I ( { ) 

Si 
Jii&iV) 

C2(|) 

s*2 
/i(S2J?), 0 < )) < I (49) 
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1 - vp r IWEY C S ( { ) , , . . C4(?) . 
H 2/up a \ a> / 5i 52 

- ^ ^ ( M J + ^ X x t * ; , ) , £ < t ) < l (50) 

The parameters Ci(£) Ce(£) are determined from the boundary 
conditions Mr = Qr = 0 for y = 1, continuity ofw.il/, and p at ij = £, 
and the discontinuity condition Q r (£- , £) - Qr(£+> £) ='!• The re­
sulting equations (51) follow from (42)-(50) by suitable linear com­
binations. 

«,VS1° ' i V 4 ^ ' - J iVM> 

« , J , ( « , U - « 2 * I , ( S j E ) - 4 , J , ( 4 , U 

- 4 j l 0 ( 4 ; 0 

* J,(«,{) --V 1,(4,5) ^ V M > 

ji- J , ( 4 , ) 

[ 4 ! - - ^ ( - f ) ' ] 

-451,(450 

7> ',"'»«> 

77 V : ' 
* 2 

2 x« " S 

After a slight reduction the expansion coefficients for the displace­
ment of the plate due to the external load (55) take the form 

Wm -—VjL^-(im + 1) £ £ A<jmMjkNk (58) 

where 

- 4 ; Y O ( 4 , O 

- 4 . Y . U , { ) 

17 V M ' 

17 W 

1 x ' u s 

1 - Vft Mp j = o fc=o 

M, 'jk' 
(4j + 1)[P2J(0)]2 

(2k + 1 - 2j)(2J + 2£ + 2) 
(59) 

' W - T f - V V 1 ' V ^ - i f V 4 ; " 

- 4 2 K O ( 4 ; U 

- 4 j K^(«* 5) 

-U, (4 ' 20 

' V V - T f W ' V ^ l f V4*2» 

- ^ 

^ 

(51) 

For ois < a) all coefficients to C2, C4, and C6 are'identical to those 
of Ci, C3, and C5, but with 52 instead of 81. The degenerate cases £ = 
0, £ = 1, and w = 00s can be evaluated by a similar procedure. 

Discretization of wp(ri, £) is divided into two steps because the 
contact stress azz{% 0) is singular at r\ = 1, while the external load q(r)) 
will be assumed bounded. The following polynomial expansion for 
wp(r\, £) is used. 

5 N u m e r i c a l S o l u t i o n and R e s u l t s 
By substitution of the appropriate series expansions into (3), the 

following infinite system of equations is obtained: 

(4m + 1) £ 
y=oi 

i"p 

1 - C 
iflpO?. f) = E £ (4/ + l)A?m£P2y ( V F D 

j'=0 m=0 

1 - % MP 

- W * m + ( 4 m + l ) £ 
j'=o 

1 - vP Hh , 

.1 _ "h Mp *=0 

XP2m(Vr :V)P2;(0)P2m(0) (52) m = 0,1, (60) 

The coefficient matrix Afm is found by use of the orthogonality rela­
tion (24). 

AfmP2y(0)P2m(0) = -^— f1 Cwp(v,£)ri 
1 — vp Jo Jo . 

x p i ^ ^ 3 ) p ? i ( ^ ! ) 

Substitution of the contact stress in the form (17) and wp (?j, £) from 
(52) gives the following expansion coefficients for the displacement 
of the plate due to contact stresses. 

Wm i — ^ ^ ( 4 m + l ) ESjAfm 
1 - Vh f-p j-0 

The external load <j(£) is expanded as 

HH qW h k VT=T*P'2k+M 
where the normalizing factor is 

(2k\ 
P2k+M = (~l)k(2k + 1)2 -2k 

(54) 

(55) 

(56) 

The solution is obtained by truncating all series to a maximum of 
yV-terms. The total displacement follows from (2) by use of (26). 

Wm = (Am + 1) £ [ ( - iy+ 'M*mS;] + W'm, m = 0, 1,. . . (61) 
y-o 

The bulk of the calculations is the evaluation of the matrices Aymand 
Afm. The matrix A)m is calculated from (27) by Gauss-Jacobi quad­
rature accounting for the behavior of the integrands near the end 
points of the intervals of integration. The matrix Afm is evaluated from 
(53) by Gauss-Legendre quadrature after a variable transformation. 
In both cases weights and abscissae were evaluated by the subroutine 
of Stroud and Secrest [18]. Due to the discontinuity of the derivatives 
of wp (TJ, £) at T) = £ the number of integration points necessary for the 
evaluation of Afm will be larger than N. The efficiency can be im­
proved by extracting the discontinuities explicitly. 

A Rigid Disk. In the limit fip ~* <*>, i.e., a rigid disk, the formula­
tion must be modified. In this case w(t]) = aWo, and (1) is replaced 
by the equation of motion for the disk. 

c2Mw = 2TT C 
Jo 

p(r)rdr (62) 

When (55) and (52) are substituted into (1) the following formula is 
needed [17, p. 306]. 

where M = ira2Hpp is the mass of the disk. By substitution of the 
expansion (17) for azz(r) and (55) for q(r) the relation (62) takes the 
form 

s1 
Jo 

P2j(s)P2k+i(s)ds W0 = 2ph 

k2ppT(l - Vh) 
So- ZMokNk 

h=0 
(63) 

i-lV+H2j)\(2k + 1)! 

22;+2*(2/e + 1 - 2/)(2i + 2k + 2){j\)Hk\)2 

Journal of Applied Mechanics 

(57) The modification of the equations (60) amounts to the following re­
placements: 
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Fig. 2 Displacement amplitudes from present theory and experiments [19] 

1 - vh tip 

-2ph 

k2ppT(l - Vh) 

0 

(64) 

else 

In any investigations restricted to rigid disks it will, of course, be more 
convenient to represent the external load q(l-) directly in terms of its 
resultant instead of using (55). In that particular case the effect of the 
mass can be accounted for explicitly because the resultant inertial 
force is in phase with the displacement [3,10]. 

Experiments have been carried out by Arnold, et al. [19], using foam 
rubber for the half space. The experimental results are compared with 
theoretical curves obtained by the present method in Fig. 2. The di-
mensionless displacement amplitude d = \ p.haw/F\ is shown as 
function of the dimensionless frequency k = o>aVph/w> • F ls * n e 

amplitude of the external force. The curves correspond to different 
values of the mass ratio b = M/(phaa) = irrpp/ph. The calculated 
results show slight deviations from calculations given in [19] based 
on the static stress distribution [10]. There is a general tendency for 
the experimental points to fall below the theoretical curves for small 
frequencies. Apart from the case of b = 24.5 an excellent fit can be 
obtained for all frequencies by increasing the value of Poisson's ratio 
from vh =0 used in Fig. 2 and in [19] to Vh x 0.05. 

The accuracy of the present method is supported by the excellent 
agreement with the results of Robertson [3] for ft = 0 as well as re­
garding the resonant amplitudes and frequencies given in Table 3 of 
[3]1. Also the static limit d -> (1 — Vh)/4 is accurately reproduced. 

In connection with ultrasonic and acoustic emission transducers 
a broader frequency range is needed and typical mass ratios will be 
much lower. Some results in the area of interest are shown in Fig. 3 
for Vh = 0.25. Expansions with N = 10 terms for low frequencies in­
creasing to N = 20 for the higher frequencies were used. Doubling of 
the number of terms only gave negligible changes. 

Elastic Plates. In the case of elastic plates no single displacement 
parameter describes the response of the plate to an oscillating external 
load. The best single parameter seems to be the average power input 
( P ) . As no damping is assumed in the plate the power input can be 
expressed in terms of the contact stress and the surface velocity of the 
half space. 

r ( P > = 2TT J <Re[o-„(r)e' '" ']Re[i«u)(r)e i u t])rc(r (65) 

1 r) and y should be y2 and i\ in the head of Table 3 in [3]. 
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Fig. 4 Dimensionless power Input for elastic plates 

When use is made of the relation (Achenbach [20, p. 34]), 

<Re[F]Re[ / ]>=V 2 Re[F/ ] (66) 

and the polynomial expansions (17) and (22), the following dimen­
sionless expression is found for the power input: 

l-»h ffh(P) . " 1 
V l = k £ T~T7 

fih V Hh ira m=o 4m + 1 

Re [HWm)S„ (67) 

In the examples presented here the following parameters are used: 
T = 0.2, Vh = 0.25, vp = 0.33, and pplph = 3.0. Three stiffness ratios 
are considered, p.pl\ih — 0.1,10.0, °=. The external load is uniformly 
distributed, i.e., No = 1, q(r) s p.h/(\ — Vh). 

Fig. 4 shows the dimensionless power input (67) for 0 < k < 5. The 
curves are based on calculations at 51 equally spaced abscissae, and 
the number of terms in the polynomial expansions increases from N 
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Fig. 5 Contact stress distributions for phase angles 0, 7T/3, 27T/3, and k = 2.5 

Fig. 6 Plate displacement distributions for phase angles 0, j r /3 , 2TT /3 , and k = 2.5 

= 10 to N = 23 with increasing frequency. The matrix Afm is evaluated 
by use of 3N integration points for the plate with \ipl\x.h = 0.1 and IN 
for fiplnh - 10.0. Increasing N to 1.5iV only gave relative changes of 
less than 10 - 3 for the most flexible plate and less than 10~6 for the 
other two. 

The figure shows a clear influence of the flexibility of the plate. 
While all three curves have a marked peak near the resonance fre­
quency of the rigid plate, the flexible plates exhibit a number of sec­
ondary peaks at higher frequencies. This number increases with in­
creasing flexibility of the plate. 

The influence of the flexibility of the plate on the distribution of 
contact stresses and displacements is illustrated in Figs. 5 and 6. The 
distributions are plotted at phase intervals of vr/3 and cover half of 
the oscillation at the dimensionless frequency k = 2.5. As expected 
increasing deviations from the rigid plate distributions are found for 
increasing flexibility. Additional calculations show the deviations to 
increase with frequency as well. 

The ability of the present method to account for the flexibility of 
the plate is supported by the fact that the contact stresses and dis­
placements for Hp/ph -*• 0 and k ->- 0 approach those of the static 
problem of a constant load on a circular area [21]. 
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APPENDIX 

An Integral Identity 
Consider the integral 

k2 1 /•• 
Bym~~4(l-,„)2J-. 

sa(s) 

(s2-V2A:2)2-s2a(s)/3(s) 

X A$(s) j2m(s)ds m>j (68) 

The denominator is known to have only two roots, both of which 
are real [20], and the contour of integration is indented into the pos­
itive imaginary half plane at these points. The spherical Bessel 
functions of the third kind are defined as 

Alm'(s) = tm(s) + iym(s) (69) 

where / m (s) and ym (s), are the spherical Bessel funtions of the first 
and second kind, respectively, [11]. 

In the upper half of the complex plane the product of the two 
spherical Bessel functions in (68) is bounded and the contour can 
therefore be closed without changing the value of the integral. The 
integrand is analytic in the enclosed domain, which do not contain 
any poles, and thus Bjm = 0. 

The integral is rewritten by introducing the dimensionless variable 
£ = s/k and rationalizing the integrand 

„ (k2 - W W^r* + (£2 - 72)£2 V F ^ 
(£2-i)4-(£2-72)(£2-U£4 

X^(fe£)/2m(fe£)d$ (70) 

The integration variable is now replaced by i) = — £ on the negative 
part of the real axis, and Bjm is then given as the sum of two integrals 
along the positive real axis, with £ passing over and r\ under the pole 
£fl- £fi is the positive root of the equation 

(e • e V?2 - 72 y/W^l = ° (71) 

corresponding to the relative slowness of Rayleigh waves. Apart from 
±£/e the denominator in (70) has four other roots corresponding to 
various interference phenomena, Scholte [22], but as they are also 
roots of the numerator, and it can be shown that they are outside the 
intervals y < |£ | < 1, Achenbach [20], they do not need explicit con­
sideration. 

The T] contour is now changed to pass over the pole T) = £/;, thus 
giving rise to an isolated contribution from the residue. The result is 
evaluated by use of the relations [11] 

4? ( -M = &%Hkv) 
hm(-k-n) = J2m(kri) 

After reduction of the residue the result is 

(72) 

Bin = 
iirk a<a - T2) V S F I 

4(1 - vh) 3(1 - y*)& - (3 - 2 7 2 ) $ + % 

— f 
- Vh) Jo 

^ - V 2 ) 2 V F f 
4(1 »h) *>o (£2 - V2)4 - (e - 72KS2 - D£4 

4(1 - vh) s; 1)£4 

4(1 

(e - % )4 - (e - 72K£2 • 
x hj(ki) hm(k£)di, 

__ rl g3(£2 - 72) VF^7! 
Vh)X ( p - % ) * - ( { 2 - y » ) ( f ! - l ) £ 4 

X iyzj(k& i2m(k$,)d£, 

£3(£2 _ 72) V f T r i 

4(1 •s: Vh)J* ( £ 2 - V 2 ) 4 - ( ? 2 - 7 2 ) ( l 2 - l ) r 
X J2j(kO frmik&dt (73) 

When use is made of the definitions (6) and (7) for the arguments of 
the square roots subtraction of Bjm = 0 from Ahjm yields the result 
(27). 
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Free Vibration of Thin-Walled Open 
Section Beams With Unconstrained 
Damping Treatment 
Free-vibration characteristics of a thin-walled, open cross-section beam, with uncon­
strained damping layers at the flanges, are investigated. Both uncoupled transverse vi­
bration and the coupled bending-torsion oscillations, of a beam of a top-hat section, are 
considered. Numerical results are presented for natural frequencies and modal loss fac­
tors of simply supported and clamped-clamped beams. 

1 I n t r o d u c t i o n 
Thin-walled open section beams are used as stiffening members 

in various sheet metal constructions, such as aircraft skin-stringer 
panels, ship-hull structures, and vehicle bodies. In general, the 
asymmetry present in this type of sections results in a coupling of the 
bending and torsional modes of oscillation. Free-vibration charac­
teristics of such beams in the coupled modes have been studied by 
Gere [1] and Gere and Lin [2]. 

The vibration of resonant structures can be controlled most ef­
fectively through applied damping treatments. Both unconstrained 
and constrained layers of viscoelastic materials are used for this 
purpose. Free and forced-vibration analyses of beams with additive 
damping layers have been investigated by several authors [3-9], who 
considered only beams and plates of uniform rectangular cross section. 
No analysis, however, has been reported of the vibration of a thin-
walled open section beam with an additive damping treatment. This 
paper presents an analysis of free-vibration characteristics of such 
layered structures. 

Another motivation for this study stems from the following con­
siderations. In a recent paper, Sengupta [10] has proposed the concept 
of intrinsic structural tuning for reducing the low frequency vibrations 
of aircraft fuselage skins. For a typical skin-stringer combination, the 
frequency of peak response is very close to the natural frequency of 
the individual skin bay (say fp), which is clamped along the stringers 
and simply supported along the frames. If the stringer and panel di­
mensions are such that the natural frequency of the stringer coincides 
with fp, then the stringer can act as a tuned absorber for the skin vi-
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India. 
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brations. Additional damping, through the application of damping 
treatments to the stringers, will increase the effectiveness of the in­
trinsically tuned stringers, over a broad frequency range. The analysis 
presented in this paper will also be useful in the design of such in­
trinsically tuned damped stringers. 

As an example, a top-hat section, with unconstrained damping 
layers at the flanges, is considered in this paper. Vibrations both in 
and out of the plane of symmetry are investigated. The vibration in 
the plane of symmetry is uncoupled and the analysis is exactly similar 
to those considered by previous workers [3-9]. This paper concen­
trates on the vibration in the coupled bending torsional modes. For 
this analysis, it,is necessary to determine the location of the shear 
center and the torsional and warping rigidities of the composite cross 
section. 

Numerical results are presented for natural frequencies and modal 
loss factors for simply supported as well as clamped end conditions. 
An efficient algorithm, based on a two-dimensional Newton-Raphson 
technique, is used for computations. 

2 T h e o r e t i c a l A n a l y s i s 
2.1 Vibration in the Plane of Symmetry. Fig. 1 shows a top-hat 

section with damping layers on the flanges. The composite neutral 
axis for bending in the plane of symmetry is shown as i) — ri, whereas 
r/i - 7)i and 772 - r\<i refer to the centroidal axes of the individual layers 
(1) and (2), respectively. In the present analysis, the base layer (1) is 
assumed to be nondissipative. Furthermore, the loss factor of the 
viscoelastic layer (2) is assumed to be frequency-independent, and 
the same in the shear and extensional modes of deformation. 

Following the analysis presented by Ditaranto [5], the natural 
frequencies and the modal loss factors, for various cases, are obtained 
as follows: 

For S-S Ends: 

l4TT4B 
(1) 
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Fig. 1 Cross section of the composite beam 

For C-C Ends: 

^ ( n + j J ^ B „ = 1 ) 2 ) 3 j . . . 
(2) 

;4 /» 
where, under the usual assumption of £2 « Ei, [11] 

B ^ E 1 / , 1 1 + £;2(/,22 + A2H|1) (3) 

and the loss factor in all the modes, rj, for both end conditions, is given 
by 

,-E<2 
77 ^ j8 

5 : 1 £2 / , „ + -r( /„2 2 + A2ffIi) _fci 

(4) 

2.2 Coupled Bending-Torslon Modes. Referring to Fig. 1, O 
and C are, respectively, the shear center and the mass center of the 
composite section. It is evident that 

vc = VQ — cz\p (5) 

The equations of motion in the coupled modes are given by [2] 

vw^S- (6) 

d4\p i>H d2o. d2\p 

where the constants Ci, C2, and c2 are as derived in Appendix A. 
Assuming harmonic solutions of the form 

v0 = V0(x)e'^ 

and 

f = ^0(x)eiaH, (8) 

and using equations (5)-(7) for eliminating \p and vc, one gets the 
following equation in terms of nondimensional quantities: 

d 8 7 0 d8V0 
• + ai + a2 fij2 -^r + <*&? ^ T T + «4fl;4 V0 = 0 (9) 

d | 8 " ' d | 6 ""' "'" d£ 4 ' '""'" d£ 2 

The coefficients ct\, ai, as, and 0:4 are given in Appendix B. Substi 
tuting a trial solution of the form 

Vo(0= £ &e X s f (10) 

in equation (9), the following characteristic polynomial equation for 
the X's is obtained: 

X8 + arX6 + a2U? X4 + a3ft?A2 + o ^ 4 = 0 (11) 

Applying the appropriate boundary conditions at the two ends of the 
beam, the frequency equation is obtained in the usual form 

det [A] = 0 (12) 

The boundary conditions, and the associated elements of the matrix 
[A] for different end conditions, are also included in Appendix B. 

3 C o m p u t a t i o n a l P r o c e d u r e 
It should be noted that two quantities, viz., Q2 and 7)c, are to be 

determined from the zeros of det [A]. The solution of the determi-
nantal equation (12) is somewhat cumbersome due to the complex 
arithmetic and the associated numerical problems [12]. This difficulty 
has been overcome by splitting the determinant into its real and 
imaginary parts and setting these separately equal to zero. The real 
and imaginary parts of the determinant are considered as functions 
of the two variables Q2and ?)cfi

2. The zeros of the functions are ob­
tained by using a two-dimensional Newton-Raphson procedure. The 
iteration scheme proceeds according to the following sequence: 

Let 

and 

An(m, re) = 0 

A/(m, re) = 0 (13) 

.Nomenclature 
Ai, A2 = cross-sectional areas of the elastic 

layer (1) and the viscoelastic damping layer 
(2), respectively 

Aif, Ay = flange areas of layers (1) and (2), 
respectively 

1 = length of the beam 

t = time 

x = lengthwise coordinate 

2 = coordinate along the axis of symmetry 

y = coordinate perpendicular to x and z 

E\ - modulus of elasticity of layer (1) 

Ei = storage elastic modulus of layer (2) 

uo, vc = deflections in Y-direction of the 
composite shear center and mass center, 
respectively 

Iml, Ij,22 = second moments of area of layer 
(1) about 7)1 — 7)1 axis and of layer (2) about 
7)2 _ »/2 axis, respectively 

hv I(i ~ second moments of area about ft (or 
fe) axis of layers (1) and (2), respectively 

IC1, IC2 = polar second moments of area of 
layers (1) and (2), respectively, about the 
longitudinal axis passing through the 
composite mass center 

G\ = shear modulus of layer (1) 
G2 = storage shear modulus of layer (2) 
C\ = Saint-Venant's torsional rigidity of the 

composite cross section 
C2 = warping rigidity of the composite cross 

section 
M = bending moment 
V = shear force 
pi, P2 = mass densities of layers (1) and (2), 

respectively 
p = mass per unit length of the beam = P1A1 

+ P2A2 
\p = rotation of the cross section about X -

axis 

13 = loss factor of the viscoelastic material in 
both shear and extension 

E\ = £2(i + m 
Gi = G2(i + m 
co„, ri = natural frequency and loss factor, 

respectively, in the vertical uncoupled 
mode 

$ = x/l 

co, 7)c = natural frequency and loss factor, 
respectively, in the coupled bending-tor-
sion mode 

o* = co(l + J7)c)1/2 

fic = nondimensional natural frequency in 

the coupled mode = co/2 (p/Ei/fj + 
E 2 / f 2) 1 / 2 

n; = nc(i + ^e)1 '2 

7 = shear strain 
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Table 1 Natural frequencies and modal loss factors in 
coupled vibration 

where 

AR = Real (det [A]), A/ = Imag (det [A]), 

m = fi^andra = j/cfi? 

Then, two successive iterations for the roots of equations (13) are 
related as 

and 

mj+i •• 

nj+i •• 

AiARn - ARAIn 

ARmAjn — ARnAlm 

ARAim - AJAR 

(14) 

(15) 
ARmAln — ARnAl„ 

In the foregoing equations, the subscripts m and n refer to the partial 
differentiation with respect to m and n, respectively, and the suffix 
j denotes the ;'th iteration. 

The required partial derivatives are computed by using a central-
difference scheme. Starting from the lower end of the frequency scale, 
the iterations are performed to obtain the natural frequencies and the 
modal loss factors in the various modes. For each natural frequency 
and its associated loss factor, the convergence is tested by a twofold 
criterion: 

1 A specified limit on the percentage change in the relevant values 
in successive iterations. 

2 A specified limit on the absolute value of the determinant. 

The foregoing scheme converged, in most instances, within six or 
seven iterations. The initial starting point for the variables did not 
present any problem. The value of the determinant, however, was seen 
to vary, with frequency, over a wide range. To eliminate consequent 
problems in dealing with very large numbers, the determinant was 
suitably scaled at the start of the iteration scheme for the different 
modes. 

4 Results and Discussions 
Numerical computations are performed with the following di­

mensions and properties of the elastic layer (Fig. 1) h = 20 mm, h = 
26 mm, ti = 2mm, and h = 35 mm. Ex = 6.87 X 1010 N/m2, p1 = 2700 
kg/m3. 

Table 1 shows some typical values of the natural frequencies and 
the loss factors in the coupled bending-torsion modes. It is seen that 
the modal loss factors for the coupled vibration, unlike those in the 
uncoupled vertical mode (see equation (4)), depend on the end con­
ditions and as well as the modal number. This is attributed to the si­
multaneous extensional and shear deformation of the viscoelastic 
layer in the coupled modes. A similar situation is encountered in 
beams of solid cross section with constrained damping layers [5]. 

It can also be seen that for both end conditions, the loss factor in 
the first mode is appreciably larger than those in the higher modes. 
Moreover, the simply supported beam has higher loss factors as 

10 

Mode 
No. 

1 
2 
3 
4 
5 
6 
7 
8 

£-2 = 0.2, 
Pi 

* 2 _ ^ t~ 
Simply supported ends 

fic 

3.8578 
13.3733 
16.8653 
29.1171 
51.1401 
66.5015 
79.4502 

114.0493 

Vc 

0.00350 
0.00175 
0.00124 
0.00126 
0.00106 
0.00101 
0.00097 
0.00092 

0.001, (3 = 1.00 

Clamped-clamped ends 
fic 

7.5646 
20.2314 
39.2024 
65.6123 

103.6293 
133.6277 
177.6716 
202.9504 

fic 

0.00172 
0.00129 
0.00108 
0.00103 
0.00098 
0.00090 
0.00088 
0.00096 

p-

P-

10' 

10 

10 

— Coupled first mode 
— Coupled second mode 
•— Vertical mode 

E I ' E I 
0 " 2 0 > ^ p Ip » 0.2 

Id3 

0.0 0.5 1.0 

Vt, 
1.5 2.0 

Fig. 2 Variation of composite loss factor with thickness ratio for a simple 
supported beam 

id"1 

10 

10' 

10 ;*> 

10 

Coupled first mods 
- - — Coupled second mode 

Vertical mode 
E8 /E,« 10 
p Ip -0 .2 

/9-0.3 

0.0 0.5 
j _ 
1.0 

t2 / t , 
1.5 2.0 

Fig. 3 Variation of composite loss factor with thickness ratio for a 
clamped-clamped beam 

compared to a clamped-clamped beam. This is especially so in the case 
of lower-order modes. 

Figs. 2 and 3 show the variation of the loss factor with the thickness 
ratio, tzlti, in the first two modes. The loss factor in the uncoupled 
vertical mode, given by equation (4), is also plotted in the same figures. 
It is clearly seen that an unconstrained damping layer is more effective 
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Fig. 4 Coordinates for shear flow calculations 

© © 

JLimjBtteBa ? _ 

o - o 
Fig. S Deflected surface of the membrane made of two materials 

in the lower-order coupled modes, than in the uncoupled vertical 
mode. Extensive parametric investigation [11] also showed that T/C 

(just like r/) varies linearly with 0 and E%IE\. However, the variation 
in tic with /? was found to be insignificant. Furthermore, in the range 
0.2 < pilp\ < 0.7, the composite loss factor in the coupled mode, r\0, 
was seen to be independent of pilp\. 

An analysis of the free vibration of similar sections, with constrained 
damping layers, will be presented in a future paper. 

5 C o n c l u s i o n s 
An analysis of the free-vibration characteristics of a thin-walled 

open section beam, with unconstrained damping layers at the flanges, 
shows 

1 For the coupled bending-torsion oscillation, the modal loss 
factors depend (even when the damping layer is unconstrained) on 
the end conditions and the mode number. 

2 For the coupled as well as the uncoupled oscillations, the com­
posite loss factor varies linearly with /? and E2/E1. 

3 The loss factor in the coupled mode, especially for the lower-
order modes, is higher than that in the uncoupled vertical mode. 

4 The unconstrained treatment is more effective in damping out 
the lower-order coupled modes. 
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APPENDIX A 

S h e a r C e n t e r of Compos i t e S e c t i o n 
Considering the bending, about the Z-axis, of the composite section 

shown in Fig. 4, the fractions of the bending moment resisted by 
Sections (1) and (2) are given by 

ME1IJ^^ „ . ME\IK, 
M i = : Mo (16) 

EJh + E\I^ ""• EJh + E'2Ih 

The total shear flow in the flanges for Sections (1) and (2), at a dis­
tance y, is then obtained as 

VE, 

{qxy)l+ (<lxy)l=-
Jo 

ytidsi VE 

Similarly, the shear flow in the webs is 

•ii 

E 

- + -
2 I ytidsx 

Jo 

EiI{l + E\Ih 
(17) 

(<7*z)i —^v-fr1 
hht + EllttiJo 

(E1t1 + E\t2)y dsi 

2 
I Extids2 Jo 

(18) 

The shear center is located by considering the moment balance about 
the point E, and the distance e is obtained as 

Etfih 

EJ^+EUte 

Thus, from Fig. 1, 

Hh 
+ 1 + Eihft 2 3 /J 

•e + d 

T o r s i o n a l a n d W a r p i n g R i g i d i t i e s of Compos i te 
S e c t i o n 

The Saint-Venant's torsional rigidity of a composite, thin, rectan­
gular cross section was derived in references [14,15] by using warping 
functions. A much simpler procedure, using the membrane analogy, 
is presented here. Consider a membrane made of two materials (Fig. 
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5) and subjected to an internal pressure. The membrane which is 
initially of the form 0 = 0 deflects to the shape 0 = 0(z, y). 

If h » h + t% the deflected surface of the membrane can be con­
sidered independent of y, except near the ends. 0i and 02 are the de­
flected surfaces of the membranes of materials 1 and 2; these quan­
tities also correspond to the Prandtl's stress functions. Let 8Q be the 
uniform twist along the length. Then, by the membrane analogy, 0i 
and 02 are governed by 

and 

a20i 

dz2 

dz' 

-2G]0o, - t i < z < 0; 

' = -2G*20O, 0 < z < t2 (20) 

The functions 0i and 02 can be obtained by integration of equation 
(20) with the following boundary conditions: 

hi-h) = 02(t2) = 

0l(O) = 02(0) 

o, 
(21) 

at 

Z = 0, (7xy)l = (Txy)2 

The last condition implies the continuity of the shear strain at the 
interface, and can be rewritten as 

1 d02 

z=o G2 dz 

J _ d 0 i 

Gx dz 

Finally, 0i and 02 are obtained as 

0! = -Gi6(z2 - t\) + FGMz + ti) 

and 

0 2 = -Gl8(z* - tl) + TG'28(z - i2) 

where 

G2t2 - Gift 

(22) 

(23) 
G2t2 + Git i 

Under pure torsion, the torque resisted by the shear stresses in the 
flanges is 

Tf = 2 I T 0 dzdy = 2 C <t>xdAu + 2 f 02dA2/ (24) 

The torsional rigidity of the entire composite beam, including the 
torque resisted by the rest of the cross section, is 

d = 4JiGx(§ tf + j r t?) + 4* 1 G 2 (§ tl - i r t | ) 

+ G 1 ( |h + i / 2 ) t i (25) 

Under nonuniform torsion, warping stresses are generated; these in­
clude shear stresses which, in turn, resist a part of the applied torque 
[13]. The warping torques of the two sections are given by 

d3\k 
T1 = -E1C01-^ and 

dx6 T2 E2 Ca 
'dx3 (26) 

where Cm and C„2 are the warping constants of the Sections (1) and 
(2), respectively. Hence, the warping rigidity of the composite section, 
C2, is obtained as 

C2 — EiC(J)1 + E2Cu (27) 

Expressions for Cwl and Cwv for a top-hat section, are given in refer­
ence [11]. 

APPENDIX B 

Coef f i c i ent s and B o u n d a r y Condi t ions of E q u a t i o n ( l l ) 
The coefficients a, appearing in Equations (9) and (11), are as 

follows: 

Ci*2 

ax = -• 

a2=-(ElIh + E2Il2) + — +-

a3 = -a\ 

(EJh + E\Ih) C2 

EJh + flg/ft 
lxC2 

EJh + E'2I(2 

« 4 : 
(EJh + E2Ih)

2
PlIcl + P2Ic2 

EJ^ + EUh ^C2 

For simply supported ends, the boundary conditions are 

V0 = 0 

(28) 

and 

d2V0 

d£2 

*o = 

d 2 *o 

0 

0 

0 

or 
d*V0 

d£4 

d6V„ 
d£2 d£ 6 

0 ) at £ = 0 and £ = 1 

0 

(29) 

hence the elements of the matrix [A] are obtained as 

Ay = 1, A2j = exi, A3i = Xj, Aij = Xj ex>, Ahj = Xj 

A6j = Xj e \ Anj = XJ 

Asj=X<}e*i for ; = 1, 2 8 (30) 

Similarly, for clamped-clamped ends, the boundary conditions and 
the matrix elements are given by 

V0 = 0 

dV0 : = 0 
dk 

* o = 0 or 

and 

dtyp 

d!i 

A, 

- = 0 or 

dW0 

d£* ' 

d6V0 

d£6 

•• 0 ) at £ = 0 and £ = 1 

0, 

(31) 

1, A2j = ex>, A3j- = Ay, An = Xjex', A5j = X] 

A6J = xyi, AV = xf 

Aaj=Xj5ex> for ; = 1, 2 , . . . , 8 (32) 
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Stability Theorems for 
Multidimensional Linear 
Systems With Variable 
Parameters 
Two equivalent theorems governing stability of multidimensional linear systems with 
variable parameters are derived which generalize some of the existing stability theorems. 
Illustrations include damped, gyroscopic, circulatory systems with varying parameters. 

I n t r o d u c t i o n 
Several stability theorems have been derived in the past two 

centuries which lead to a good understanding of a system even without 
the solution of its equations. Most of the theorems have been devel­
oped for systems with constant parameters. Some are applicable in 
presence of periodic coefficients. There are situations of importance 
where parameters may vary arbitrarily. Such systems will need at­
tention. 

Using a Liapunov-type approach, two equivalent theorems are 
derived here which govern stability of coupled linear systems with 
varying multiple parameters. Some of the existing theorems like the 
Sonin-Polya theorem [2] become special cases of the present theorems. 
These are applied, as illustrations, to mechanical systems with varying 
inertia, stiffness, gyroscopic, and damping terms, and velocity and 
position-dependent forces. 

Analysis 
Consider a set of n coupled nonautonomous linear equations, 

a2(x)z" + ai(x)z'+ a0(x)z = 0 (1) 

where x is independent variable, z is an rc-dimensional vector, a 2, ai, 
cto are n X n coefficient matrices varying with x. Matrices a% and ao 
should be nonsingular. Primes indicate derivatives with respect to 
x. Define 
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P(x) = exp [J02 xaidx\ (2) 

Note that P is a n X n positive-definite matrix. Using P, (1) can be 
written as 

where 

(Pz'Y + Qz = 0 

(x) = Pa2~
1a0 

(3) 

(4) 

Let us assume Q~XP (hence an-1a2) to be "symmetrizable" [1], i.e., 
there exists a positive symmetric matrix S(x), which makes (SQ-1?) 
or (Sao_102) symmetric. Note that S can be found from RT = S~iRS, 
where R = O2_1ao- Let a vector z be a nontrivial solution of (3). We 
can define a scalar F as 

F = zTSz + z'TSQ-^Pz' (5) 

If (SQ 1P) is positive-definite, F is positive-definite defining a region 
of possible solutions about the origin. Its derivative is given by 

F' = z'TSz + zTSz' + zTS'z + (P2 ' )T ' (QS- 1P' r)- 1(Pz ' ) 

+ (Pz')T(QS-1PT)-1(Pz'Y + (Pz')T(QS-1PT)-v(Pz') (6) 

Using (3) and symmetry of (SQ~1P), the first and second terms can 
be cancelled with the fifth and fourth terms, respectively. After some 
simplification we get 

F' = zTS'z - (Q-1TSTz')T(QS-lPTY(Q-1TSTz') (7) 

If S' < 0 and (QS-1PT)' > 0, F' will be negative semidefinite and F, 
defining the region of possible motion will be nonincreasing. If F' < 
0, F will be asymptotically decreasing. Therefore F is a Liapunov 
functional. Hence, we can state the following: 

Theorem 1. Let P(x) be positive-definite and Q(x) be nonsing­
ular and continuously differentiable on an interval / . If there exists 
a positive-definite symmetric matrix S, such that (SQ~XP) is sym-
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metric and positive-definite, S' =S 0, (QS-1PTY > 0, then the region 
of possible solutions of the nonautonomous coupled system 

[P(x)z'Y + Q(x)z = 0 

will be nonincreasing as x increases on / . It will be asymptotically 
decreasing if (QS-1PTY > 0. 

Application of the theorem in the present form may pose difficulties 
for large n, mainly in the computation of P. It is desirable to find 
conditions on the matrices a<i, a\, and ao directly. Note that 

SQ^P = Sao-xa2 

and 

P' = Pa 2
_ 1 oi = a2-

laxP (8) 

Using these, the definition of P and Q, and symmetry of (Sa0
_1O2) 

we can write 

(QS-1?7)' = P(Sao-1o2)-1[So0-1ai + (Sa0-
lai)T 

- (Sao-1a2) ' l (Sao-1a2)- irpT (9) 

This is positive-semidefinite if the matrix-pencil in the bracket is 
positive semidefinite. 

It may be noted that this condition can be obtained directly from 
(1) by writing it as 

Sao~1aiz" + •Sao~1aiz' + Sz = 0 

and 

F = zTSz + Z ' T Sa ( r
1 a2z ' (10) 

So the theorem can be restated as follows: 
Theorem 2. Let ao(x), arfjc) be nonsingular and continuously 

differentiable on an interval / . If there exists a positive-definite 
symmetric matrix S(x) such that (Sao_1a2) is positive-definite sym­
metric (i.e., oo_1a2 is symmetrizable), S' < 0 and A = [Sao -1ai + 
(Sao~1ai)T — (Sao_102)'] > 0, then the region of possible solutions 
of the coupled nonautonomous equations, 

a.i(x)z" + a\(x)z' + ao{x)z = 0 

is nonincreasing as * increases. If A > 0, the region will decrease 
asymptotically. 

These theorems generalize some of the existing theorems as ob­
served in the following: 

1 For a one-degree-of-freedom system [n = 1, S = 1, P(x) = p(x), 
Q(x) = q(x)], Theorem 1 reduces to the Sonin-Polya theorem [2], 
which states: Letp(x) > 0 and q(x) ^ 0 be continuously differentiable 
on an interval / , and suppose p(x)q{x) is nonincreasing (nonde-
creasing) on / . Then the absolute values of the relative maxima and 
minima of every nontrivial solution of the equation 

[p(x)y']' + q(x)y = 0 

are nondecreasing (nonincreasing) as x increases. 
2 If the parameters are all constant, S will also be a constant and 

most of the stability theorems of linear systems with constant pa­
rameters [1] can be shown to be special cases of the present theorems. 
For example, for a circulatory system with 01 = 0, Theorem 2 reduces 
to Theorem 6.1 of reference [1], which in the present notations states: 
A circulatory system is stable if and only if there exists a symmetric 
and positive-definite matrix Si such that (Sia2

_1ao) is symmetric and 
positive-definite. 

3 For the special situation of (aoa2
T) (and hence ao_1£i2) being 

symmetric at all * over the interval, S = identity matrix and the 
theorems can be reduced to the following simple criteria of sta­
bility: 

B = [aoOi7 + aiaoT + ao'«2T ~ ct2'aoT] > 0 

and 

a0a2
T > 0 (11) 

This is indeed a simple form of the condition, as there is no matrix 
inversion involved. 

4 It may be noted that if the asymmetry of (aoa.2T) is not signif­
icant, conditions (11) can still be used with a good approximation. 

Stab i l i ty of D y n a m i c a l S y s t e m s 
For dynamical systems the independent variable is time t. The 

region of possible solutions is the motion envelope in a 2rc-dimensional 
hyper-phase-space. For stability, it should be nonincreasing. For as­
ymptotic stability, it should decrease. The two theorems can thus be 
directly applied to such systems, as illustrated next. 

(a) Torque-Free Rotating Systems With Variable Inertia. 
The equation of a torque-free system is given by 

h + w X h = 0 (12) 

where h is angular momentum vector and w is rotation vector. The 
dot represents a derivative with respect to time. The equation can be 
linearized as 

h + gh = 0 (13) 

where g is a skew-symmetric gyroscopic matrix. Differentiating 
again, 

h + gh + gfi = 0 (14) 

Applying (13), it can be written as 

h - gg-^h -ggh=0 (15) 

Here aya^ = —gg is symmetric and condition (11) is applicable, which 
leads to 

B=[gTgT-gg]>0 

and 

-gg > 0 (16) 

This is satisfied only if the body is symmetric, rotates about the axis 
of symmetry, and the variations in inertia are such that the body re­
mains symmetric. Otherwise instability can occur in h -plane. This 
observation is made in reference [3] by decoupling the equations and 
applying the Sonin-Polya theorem to each equation separately. 

{b) Damped Gyroscopic Systems With Velocity and Posi­
tion-Dependent Forces and Variable Parameters. The general 
equation of a damped gyroscopic system with velocity and position-
dependent forces can be written as [1]: 

m(t)z + c(t)z + k(t)z =.0 (17) 

where 
m = an X n real symmetric nonsingular inertia matrix, 
c = a n X n real matrix containing gyroscopic, damping, and 

velocity-dependent forcing terms. 
k = a n X n real nonsingular matrix containing symmetric 

stiffness (conservative) terms and skew-symmetric circu­
latory force (position-dependent) terms. 

If kmT is symmetric or slightly asymmetric the stability condi­
tions are 

B= [ckT + kcT+kmT-mkT]>0 

and 

kmT > 0 (18) 

In presence of strong circulatory forces kmT will be quite asym­
metric. Then there must be a matrix S satisfying the conditions of 
Theorem 2 to insure stability. If no such S can be found, the system 
will generally be unstable. 

C o nc l us i o n 
Two equivalent theorems are derived which govern the stability 

of multidimensional linear systems with variable parameters. They 
generalize some of the existing theorems, applicable to systems with 

Journal of Applied Mechanics MARCH 1981, VOL. 48 / 175 

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



constant parameters and the Sonin-Polya theorem applicable to a 
single-degree-of-freedom system with variable coefficients. Although 
applied here to mechanical systems for illustration, they should be 
applicable to a wide range of systems. 
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Modeling of Nonholonomic Dynamic 
Systems With Applications1 

A feedback model.of nonholonomically constrained dynamic system is presented with ap­
plications in analysis, control, and understanding of such systems under impulsive and 
friction forces. 

1 In troduc t ion 
A feedback model of a nonholonomically constrained dynamic 

system is developed. This model contributes to better understanding 
of constrained dynamic systems and affords analysis and control of 
the evolution of such systems in time, allowing the constraints to be 
deliberately violated, maintained or, additionally imposed by external 
control. A general method of reduction of dimensionality for such 
systems is also provided. The model also renders some insight for 
analysis of dynamic systems with friction forces and those with im­
pulsive inputs. Nonholonomic dynamic systems have been discussed 
by Kane [1, 2], Whittaker [3], and Rosenberg [4]. Friction has been 
discussed by Whittaker [5], Den Hartog [6], and Bowden and Tabor 
[7]. Impulsive forces are discussed in [2-4] and by Pars [8]. 

The feedback models of this paper are based on [9,10] where it was 
shown that, in constrained motion of holonomically constrained dy­
namic systes, the Lagrange undetermined multipliers are explicit 
functions of the state (positions and velocities) and external inputs. 
This method is developed in Section 2. In Section 3, the reduction of 
dimensionality resulting from the imposition of the constraints is 
developed and compared with that of Kane [1]. In Section 4, the 
control problem and modeling of the friction forces are discussed. 
Finally, impulsive forces are treated in Section 5. Several examples 
are included in the text. 

2 T h e L a g r a n g i a n F o r m u l a t i o n 
Let a dynamic system be characterized by I generalized coordinates 

Z, m external inputs U, and r nonholonomic constraints: 

C(Z)Z + G(Z)=0 (1) 

where C(Z) is a r X re matrix and G(Z) is a r vector and C(Z) and G(Z) 

1 This work was in part supported by the National Science Foundation under 
•Grants ENG74-21664 and ENG78-24440 and in part by the Department of 
Electrical Engineering, The Ohio State University, Columbus, Ohio. 

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY 
OF MECHANICAL ENGINEERS, for presentation at the 1981 Joint ASME/ASCE 
Applied Mechanics, Fluids Engineering, and Bioengineering Conference, 
University of Colorado, Boulder, Colo., June 22-27,1981. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
10017, and will be accepted until June 1,1981. Readers who need more time to 
prepare a Discussion should request an extension from the Editorial Depart­
ment. Manuscript received by ASME Applied Mechanics Division, August, 
1978; final revision, August, 1980. Paper No. 81-APM-12. 

have first-order derivatives with respect to Z in the region of interest 
in the space of Z, and on its boundaries (where the constraints begin 
to be violated). Assume C(Z) has rank r in this region. Let the kinetic 
energy, the potential energy, the incremented work of the external 
inputs, and the vector V of the forces of constraint be, respectively, 

IZTI(Z)Z 

V(Z) 

dZTW(Z)U 

r 

(2) 

where / is an 2 X / symmetric positive-definite matrix, and W(Z) is 
re X m. The Lagrangian equations of motion for this system [1,3] 

±m_^=CrT+wu 
dt \dZ dZ 

(3) 

The left-hand side of equation (3) may be rewritten as 

I(Z)Z + g(Z, Z) = CT+WU (4) 

If equation (1) is differentiated with respect to time, one obtains 

d .. dGT . 
—[C(Z)} Z+C(Z)Z + Z = 0 
dt dZ 

(5) 

From equations (4) and (5) one obtains uniquely the forces of 
constraint T as functions of state X = [Z, Z]T and the inputs U 

T = T(X, U) (6) 

The constraints can be in general classified into two classes: soft 
constraints and hard constraints. A soft constraint may be violated 
on either side of the constraint manifold (equation 1). A hard con­
straint can be violated only on one side of the surface of constraint. 
For soft constraints to be maintained, the force of constraint should 
satisfy certain inequalities as shown later in example 4. These ine­
qualities can be written in the general form 

LiT + L2U>0 (7) 

where Li and Li are appropriate size matrices. 
Hard constraints, on the other hand, retain the same polarity while 

the constraints are satisfied [9,10]. 

r>o (8) 
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Fig. 1 Feedback model of a constrained system 
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Fig. 3 Representation of a constrained system with friction 
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Fig. 2 Representation of a system with friction 

When the hard constraints are violated, the forces of constraint be­
come inactive 

r = o (9) 

This development results in the feedback model of Fig. 1 encom­
passing both the constrained and unconstrained system. 

In many nonholonomic systems, friction plays an important role. 
Consequently, friction forces must also be adequately modeled before 
control problems can be discussed. 

Accurate modeling of friction is very difficult and involved [7,11, 
12]. Here it is assumed that friction forces F as functions of the state 
and the input are also available and well defined 

F = F(X, U) (10) 

Therefore, a dynamic system with friction forces can be represented 
by the feedback model of Fig. 2. This model can also adequately 
represent other dissipative systems [3] but this subject is not to be 
considered here. If a dynamic system with friction is further con­
strained, the combination of Figs. 1 and 2 results in the model of Fig. 
3, and can be described by the following equation: 

X = (X, U, F, D (11) 

Example 1. Kane's two rigidly coupled disks rolling down an in­
cline [1]. 

Let the parameters of the system be the same as Kane's with Z = 
lfa< fa~< *i> x2, <t>]T, the expressions for the kinetic, potential, and 
constraints are 

T = m(x\ + x\) + mjr2 + j)i>2 + Utyl + $ ) 

where J = mh2 is the moment of inertia. 

v = -

c = 

-2x\ mg 

r 

r sin 0 

r cos 0 

sin0 

—r 

r s i n <t> 

r cos 0 

0 

- 2 

0 

0 

2 

2r 

0 

0 

G = 0 

Carrying out the calculations results in the following forces of 
constraint as functions of the state [Z, Z]T: 

•r2 cos2 0 + k2 

7i 

72 

7s 

= m 
r2 + k2 g 

—r2 sin 0 cos 0 

g sin 6 — 0 cos 8 (ipi + 1̂ 2) 

v . • 
g sin 6 + - 0 sin 8 (fa + fa) 

rz + k' 2 

(12) 

Z = Z 

Z = I-1 CT T +1'1 [0, 0, 2mg sin 8, 0, 0 ] T 

where I is the diagonal 5 X 5 matrix 

hi = hi = mk2 

ha ~ hi = 2m 

k2^ 

(13) 

hb = m \r2 + 

If vector r is substituted in (13), the equations of motion, under 
constraint are 

fa 

fa 

r g sin 0 sin < 

r2 + k2 

r g sin d sin < 

r2 + k2 

(14) xi = g sin 8 ——— + - cos <f> (fa + fa)<t> 
ri + ki 2 

—r2 sin <t> cos 4> r . 
x2 = g sin 8 — — + - sm </> 4>(fa + fa) 

riJrhi 2 

0 = 0 

These equations, naturally satisfy the equations of constraint, and 
are equivalent to those of Kane [1]. More will be said about the 
equivalence below. 

3 R e d u c t i o n of D i m e n s i o n a l i t y 
When the r constraints are satisfied, the system's dimension re­

duces tol—r. Kane's method for derivation of the reduced equations 
is based on generalized active and inertial forces [1]. An alternative 
method of deriving Kane's results is provided later. 

Consider the r dimensional subspace spanned by the rows of C. Let 
OC be the orthogonal complement of C, and let H be a (I - r) X n 
matrix whose rows span the subspace OC. By definition 

HCT = 0 (15) 

If both sides of equation (4) are premultiplied by H, the forces of 
constraint are eliminated and the following / — r equations result 

HI(Z)Z + Hg(Z, Z) = MWU (16) 

Equations (1) and (16) are the reduced equations of the system. 
Since H is not unique, the reduced equations of the system are not 

unique in form. Consequently, for the reduced system, a variety of 
representations are possible. 

Example 2. In example 1, let the orthogonal complement of C 
be specified by 

1 - 1 0 0 - 1 ' 

-1 —1 — r sin 0 r cos 0 0. 

Then the reduced equations are 

(Smk2 + 2mr2) < 

1 

H •• (17) 

:0 

fa + <t> = : 

The equations of motion are 

k2 + r2 

On the other hand, if H has the form 

gr sm t) sm < (18) 
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Fig. 4 Wheel on a plane 

2 2 r sin ^ r cos $ - 1 ' 
-1 —1 — r sin 0 /• cos 0 0. 

Then Kane's equations of motion (see reference [1]) result. 
The computation of if may be eased by a variety of transformations. 

Suppose in equation (4) both sides are multiplied by I-1 

z +1-1 g{z,z) = i^c? r + /-1 wu (20) 
Now H may be selected to correspond to the orthogonal complement 
of(C/-1)T. 

Alternatively, let T(Z) be an r X r nonsingular transformation. Let 
the equations of constraint be premultiplied by T 

TCZ+TG = C1Z + G1 = 0 (21) 

Computation of H as well as computation of the forces of constraint 
may be eased by the choice of T. 

Example 3. In example 1, the transformation 

1 0 0 
-sin 0 2 0 
—cos 0 0 2 

was applied to Kane's equations of constraint (see reference [1, 
equations (23, 25)]) which resulted in considerable simplification of 
the Lagrangian derivation. 

Finally, if it is a priori known that certain constraints can never be 
violated, one may use part of H to eliminate only the corresponding 
forces of constraint and retain others. 

While the derivation of Kane [1] is physically based and relies on 
D'Alembert's law, the derivation here is mathematically based and 
relies on the Lagrangian method. The latter allows manipulation of 
the computations by choice of matrices H and T. 

4 The Control Problem 
With the foregoing discussion, a dynamic system is represented by 

equations (1) and (11). The control of dynamic systems with hard 
holonomic constraints is discussed in [9,10]. Here the control of sys­
tems with soft nonholonomic constraints are considered. For these 
systems, one must specify input reference signals V and feedback 
laws 

U=U(X,V) 

such that two major control problems can be solved. 

1 The trajectory of the constrained motion is modified, while the 
constraint is maintained. 

2 A transition is made from constrained motion to unconstrained 
motion and vice versa. 

If the system had no constraints whatsoever, classical state variables 
or optimal control would be utilized. For maintaining the constraint, 
essentially two approaches are available: 

1 One designs the control system such that the motion remains 
in the constrained subspace [9]. 

rS-x 

Fig. 5 Friction force versus relative velocity 

J P 

Fig. 6 Signal-flow graph 

Fig. 7 Specified velocities for example 

2 One indirectly controls the forces of constraint F, maintaining 
the constraint [10]. 

To be more specific, the second approach is applied to the control 
of a wheel in the following example. 

Example 4. Consider a wheel [12, 13] of radius r, mass m, and 
moment of inertia J, on a place with both static and sliding friction 
as shown in Fig. 4. The inputs are the forces f\ and fi and the torque 
r. The forces at the point of contact are the vertical reaction force fv 
and the friction force /#, which is assumed to be a function of the 
relative velocity (rd - x). An example is shown in Fig. 5, and in this 
case equation (10) reduces to 

fa = fif2Sgn(rd-x) 

where y. is the coefficient of friction. 
If the wheel is in contact with the plane, 

and 

fv = h 
(22) The equations of motion (4) then become 

mx=fi+ fa 

J8-- -rfa 

(23) 

(24) 

(25) 

(26) 

(27) 

and can be represented by the signal-flow graph of Fig. 6. A dotted 
line is used to represent the functional relationship of equation (23). 
When the wheel rolls without slipping, fa can assume any value be­
tween -ju/2 and +/t/2 in order to make x = rd. 

If x and 8 are specified as functions of time, it is possible to find f\ 
and T as follows. The required accelerations x and 6 can be found by . 
differentiating the specified velocities. Then from equations (26) and 
(27) 
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Fig. 8 Calculation of / i and T 

/ I = m i - / H 

T =J6 + rfa 

(28) 

(29) 

Three cases must be considered in order to find the value of /# to be 
used in equations (28) and (29). 

Case I. If x = rd, the wheel rolls without slipping, and / # may 
have any value between —jit/2 and +M/2-

Case I I . If x < rd, the wheel must slip, and fn = +fif2-
Case III. If x > rd, the wheel must slip, and fn = —fifi. 
This procedure can be illustrated by letting m = J = r = 1 for 

simplicity and calculating /1 and T for the velocities x and 6 in Fig. 7. 
This calculation is shown in Fig. 8. The maximum absolute value of 
fn was assumed to be 0.5, and /// was assumed to be zero when there 
was no slipping. 

Feedback can be used to produce the required values of f\ and T 
from the commanded values xc and dc. A simple feedback scheme is 
shown in Fig. 9, where Kx and Kg are large values of gain. 

If the system in Fig. 9 is linearized by assuming viscous friction 
between the wheel and the plane, the dotted line may be replaced by 
a branch of gain k. The four transfer functions then are 

i_ Kx{Jp + kr2 + K,) 

xc mJp2 + (kJ + kmr2 + KXJ + Kem)p + kKe + kr2 Kx + KxKe 

d_= Ke(mp + k + Kx) 

Bc mJp2 + (kJ + kmr2 + KXJ + Ksm)p + kK0 + kr2 Kx + KxKe 

Kgkr 

mJp2 + (kJ + kmr2 + KXJ+ K9m)p + kKe + kr2 Kx + KxKe 

61 = Kxkr 

xc mJp2 + (kJ + kmr2 + KXJ + Kgm)p + kKe + kr2 Kx + KxKe 

If k, Kx, and Kg are positive, all the poles of these transfer functions 
will be in the left half plane, and stability is assured. 

Since the signal-flow graph of Fig. 9 contains a single honlinearity, 
stability can be shown without the assumption of linear friction. If 
the inputs xc and 8C are set equal to zero, the linear portion of Fig. 9 
may be reduced to a single branch G(p) as shown in Fig. 10. 

where 

G(p) = 
1 r2 1 + r2 + (Kxmr2 + KgJ)p 

1 + Kxmp 1 + KgJp (1 + Kxmp)(l + KgJp) 

(30) 

G(p) has two poles and one zero, all of which are real and negative. 
Furthermore, the zero is between the two poles, and the phase angle 
of the frequency response G(jw) lies between 0 and —90° for all pos-

Flg. 9 Feedback control example 

f*-
G(p) 

-?(r6-x) 

Fig. 10 Reduced flow graph 

(31) 

Fig. 11 Polar sketch of G(/co) 

itive values of w. A sketch of G(jo)) is shown in Fig. 11. Since G(/w) 
lies entirely in the right half plane and k, the equivalent gain of the 
nonlinearity, varies from 0 to +•», the system is seen to be stable by 
Popov's criterion. 

5 Impuls ive I n p u t s 
Consider the system of equations (4) and (6) in state space form 

Z = Z 

Z = / - i [-g(Z, Z) + CTT (Z, Z,U) + WU] 

Suppose the system is under constrained motion. If U or components 
of U are impulsive or have impulsive components at time t, certain 
components of V are also impulsive from equation (6). Both of these 
impulses in U and V enter in equation (31) explicitly. If equation (31) 
is intergrated, the instantaneous changes in velocities can be com­
puted 

AZ = Z (tf) - Z (tT) (32) 

Example 5. Suppose the wheel in Example 4 is suddenly 
subjected to an impulsive input force/1 = 5(t - t{). This immediately 
violates the constraint that x = rd. Consequently, the system imme­
diately (even through the application of impulse) loses the constraint 
and would be governed by equations (26). If the input torque T is 
impulsive, the same argument holds, and the constraint is violated. 
If both /1 and T are impulsive at the same instant, and their ratio is 
such that fit in equation (28) does not have any impulsive component, 
the constraint is not violated, and the wheel rolls without slipping. 
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Fig. 12 A rod sliding down a vertical wall 

Examples G. Sliding movement of a rod down a wall from Kane 
[2, pp. 219-222]. 

Consider movement of a rod (Fig. 12) under the force of gravity and 
input force / and input torque T. There is no friction and the rod slides 
down. At the instant that the rod leaves the wall, external impulsive 
force / and torque r are applied to reverse the direction of motion, so 
that the rod starts sliding up the wall with prescribed velocity. 

Let the weight, length, and the movement of inertia of the rod be, 
respectively, 2m, 4L and (8m/3) L2. Let the generalized coordinates 
of the system be Z = [x, y, 0].TThis is a holonomic system and the two 
constraints are 

y - 2L, cos 0 = 0 

x - 2L, sin 0 = 0 

Let the corresponding forces of constraint be T = [71,72]T. Following 
the approach just presented, and in [9] with X = [Z, Z]T. The equa­
tions of motion are 

Z = Z 

— ( - 7 2 - / * ) 
2m 

Z = — ( - 7 i - 2mg - fy) 
2m 

(34) 

8mL: 

or in summary 

; (T + 2L cos 072 - 2L sin 8y{) 

x = F(x, r, u) (35) 

The constraint forces become the following functions of the state and 
the input: 

7 i = 4mL02 cos 0 - [ — + - ] (1 + 3 cos2 0) 

(36) — 1 sin 0 cos 0 fx H T sin 0 
8L 

72 = 4mL82 sin 0 - j — + —J 3 sin 0 cos 0 

- 1 ( 1 + 3 sin2 d)fx- — T cos 0 
8L 

For the constraints to be satisfied, both 71 and 72 must be nega­
tive. 

Case 1. Sliding Down. Suppose only the force of gravity is 
active, matrix H of equation (11) is 

H = [2L cos 0 - 2L sin 0 1] (37) 

Following step of equation (12) and differentiating equations (33) 
twice one obtains 

0 = — s i n 0 
8L 

The rod leaves the wall when 72 = 0 or 

82 = — cos 0 
8L 

(38) 

(39) 

Case 2. Sliding Up. It is desired to apply inpulsive force / and 
torque T at the instant that the rod leaves the wall in order to reverse 
the movement's direction, but with, say, one half of the downward 
velocity. 

From equation (36) it is obvious that one cannot do this with an 
impulsive torque T alone. The impulsive torque r must be negative, 
but then 72 becomes positive—a violation of constraint. Therefore 
at least a positive impulsive force fx is additionally necessary. Letting 
fx and T be the amplitudes (positive or negative) of the impulses, from 
equation (36) 

-\ (1 + 3 sin2 8)fx T cos 0 < 0 

fx > 
- 3 cos d 

2L 1 + 3 sin2 0 ' 

(40) 

Let equation (40) be satisfied. Equation (36) can be used to derive 
the impulsive components of T. The result is substituted in equation 
(34) and integrated to derive 

(33) Z(t+) - Z(t~) = I-

8L 
-cos 0 

3 sin 8 cos 0 

4 

- 2 L cos 0 

-sin0 
8L 

2L sin 0 

4 

From the requirement that the velocity of the upward motion be 
V2 of that of the downward motion one derives 

fx (41) 

W+) --Z(t~) = 
-3LB cos 

3L0 sin 

-1.50 

From (41) and (42) fx and T are related by 

3 
- I cos 8 fx + — T = 6L0m 

8L 

Let the following equality be substituted for equation (40) 

2 cos0 
fx- L 1 + 3 sin2 0 

(42) 

(43) 

(44) 

Then (43) and (44) can be solved for T and fx. It also becomes ap­
parent that the solution is not unique. 

Impulse forces may also arise [4, 8] when the system is subjected 
to additional surfaces of constraint, not accounted for in equation (1). 
The approach here can also be extended to such systems. Further 
discussion of this point is found in Kane [2, p. 228]. Also an example 
when the foot of a walking biped kicks a rigid stationary obstacle is 
given in [14]. 

6 Conc lus ions 
A model of a class of nonholonomically constrained dynamic sys­

tems is developed where the forces of constraint are explicit functions 
of the state and inputs. This model is useful in cases where the con­
straints may be violated and imposed at will. 

A reduction of dimensionality method was discussed that is an al­
ternative method to the method of generalized active forces and 
moments provided by Kane. As a matter of fact, it is a Lagrangian 
interpretation of Kane's results. It also shows that the representations 
of reduced systems are not unique in form. Some other uses can be 
cited: 
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1 The approach here may be used as a checking mechanism to 
prevent human error in the deriving equations of motion. 

2 With a priori knowledge that certain constraints can never be 
violated, one may use this method to eliminate only the corresponding 
forces of constraint. 

3 For large dimensional systems where computers may be used 
to derive equations of motion [15], it may facilitate and formalize 
Kane's method. 

An example with Coulomb friction force was discussed in order to 
reduce the control of nonholonomic systems to that of holonomic 
systems and control and stability were considered. 

Finally, one application of the model in analysis of systems with 
impulsive inputs was demonstrated for a holonomically constrained 
system. 
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On the Stability of Equilibrium Paths 
Associated With Autonomous 
Systems 
The postcritical behavior and stability distribution on the equilibrium paths emanating 
from a divergence point associated with an autonomous system are studied within a state-
space formulation. The analysis concerning the stability of equilibrium paths is based on 
the eigenvalues of the Jacobian evaluated at arbitrary equilibrium points in the vicinity 
of a critical point. Explicit conditions of stability and instability concerning the initial 
and postcritical paths are obtained through a perturbation approach. It is shown that at 
an asymmetric point of bifurcation an exchange of stabilities between two paths occurs 
in complete analogy with conservative systems. Similarly, a symmetric point of bifurca­
tion involves a postcritical path which is totally stable (unstable) if the initial path is un­
stable (stable). 

1 Introduction 
The stability of an equilibrium state associated with gradient sys­

tems can be studied on the basis of the extremum properties of a po­
tential function. In the analysis of elastic conservative systems, for 
example, the "energy criterion" provides a powerful means for this 
purpose[l]. In the case of nongradient systems, however, the conve­
nience of basing the formulation and analysis on a well-behaved po­
tential function is lost, and other methods have to be adopted. 

The postcritical behavior of nongradient systems has been studied 
by a number of authors. Plaut [ 2, 3], for example, analyzed the di­
vergence behavior of a discrete nonconservative mechanical system 
statically by setting the frequency to zero in Lagrange's equations and 
assuming that the system exhibits a trivial fundamental equilibrium 
path. Mass distribution and dissipation are not incorporated in this 
analysis, and the author remarks in his conclusions [3] that stability 
cannot be studied in general terms. In other investigations [4, 5], a 
more general approach, involving a set of first-order autonomous 
differential equations, is adopted. In this approach both gradient and 
nongradient systems are covered under the same formulation which 
is capable of yielding information on dynamic behavior as well as di­
vergence. Since the Lagrangian equations can be transformed into 
first-order state equations with a simple transformation of variables 
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without losing information (e.g., mass distribution and dissipation), 
the method seems to be quite comprehensive. 

The attention in references [4,5], however, is focussed on the critical 
conditions and the equilibrium solutions rather than their stability. 
In fact, an analysis concerning the stability of equilibrium states would 
have been rather cumbersome if not impossible under the formulation 
of [4, 5]. In this paper, a further transformation is introduced which 
facilitates the stability analysis, and enables one to explore the sta­
bility distribution on the initial and postcritical paths explicitly on 
a comparative basis. 

2 Bifurcating Stationary Solutions 
Consider an autonomous dynamical system represented by the 

first-order differential equations 

dy/dt = Y(y, X) (1) 

where y is the state vector of n -components in the Euclidean space 
En and X is an independent real scalar parameter. The nonlinear 
vector function Y is assumed to be real analytic in the state variables 
yl(i = 1, 2 , . . . n) and X in a region (R) of interest. The equilibrium 
states of the system are described by the stationary solutions of 
(1), 

Y(y, X) = 0 (2) 

Normally, the set of nonlinear equations (2) defines certain equilib­
rium paths which are one-dimensional manifolds of the n + 1 di­
mensional state-space E„+i spanned by yl(i = 1, 2, . . . , n) and X. 
Without loss of generality, suppose an initially stable path emerges 
from the origin of En+iS it is assumed that all the eigenvalues of the 
Jacobian matrix evaluated on this path have negative real parts in this 
neighborhood. As X is increased, a critical point on the path may be 
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reached where the real part of at least a pair of complex eigenvalues 
vanishes and, with a further increase in X, becomes positive, resulting 
in an oscillatory instability (flutter). At the onset of flutter instability, 
the system may bifurcate into limit cycles which will not be analyzed 
in this paper (Hopf bifurcation). Another type of instability occurs 
when at least one real eigenvalue of the Jacobian vanishes at a critical 
point and becomes positive with a further increase in X (divergence 
instability). This phenomenon has been explored in [4,5] with regard 
to coincident as well as simple critical points, and various equilibrium 
path configurations in the vicinity of a critical divergence point are 
obtained systematically through a convenient perturbation procedure 
which yields asymptotic results. In order to examine the stability of 
the equilibrium paths emanating from a critical point, however, a 
more appropriate formulation has to be introduced to facilitate the 
analysis. 

Let the initial path have a critical divergence point on it in the re­
gion of interest (R), and be expressed in the form y = f(\) where the 
vector function / is assumed to be single-valued in the neighborhood 
of the critical point. A coordinate system y can then be attached to 
the initial path by the relation 

y = /(X)+y. (3) 

Substituting (3) into (1), one obtains 

dy/dt = Y(y, X) (4) 

with the properties 

7(0, X) = Y'(0, X) = Y"(0, X) = . . . = 0 (5) 

which arise [1] from the derivation of (4). Here and in the sequel the 
primes on the functions are used to denote partial differentiation with 
respect to the parameter. It is understood that the assumption 
underlying the transformation (3) excludes the limit points from the 
analysis; see [4]. A further transformation 

y = Px, 

will be introduced into (4) to obtain 

dx/dt = X(x, X) 

(6) 

(7) 

"dXl 
,i>x\c' 

such that its Jacobian matrix 

J = 

evaluated at the critical point c(X = Xc) is in the canonical form 

J = diag [D, Ks, K5,...} (8) 

with real elements. Here 

D< 
0 0 

0, a2 

, Kr = 
Oir 

fir 

-fir 
«r. 

, r = (3, 5 , . . . ) (9) 

in which a-i < 0, ar < 0, and the Kr correspond to complex conjugate 
eigenvalues (ar ± iBr). The block D is chosen here as a 2 X 2 matrix 
solely for its simplicity and to avoid another subscript for real ei­
genvalues without loss of generality. In fact there can be m (2, 3, 4, 
5 , . ) nonvanishing real eigenvalues, am < 0, which would have no 
essential effect on the following analysis. It can readily be seen that 
the properties (5) are carried over to the vector function X, and one 
has 

X(0, X) = X'(0, X) = X"(0, X) •• = 0. (10) 

Consider now a transformation of the form (6) but with a matrix 
P = P(X) such that, when X varies in the neighborhood of X = Xc, the 
canonical form (8) of the Jacobian along the initial path /(X) is pre­
served. In other words, for each value of X in the vicinity of X = Xc, an 
appropriate transformation matrix P(X) is formed in such a way that 
the Jacobian matrix [dX/dx] evaluated on the initial path has the 
block-diagnoal form of (8) with D always diagonal: 

dX 

dx 

«i(X) 

a2(X) 
a3(X) -/33(X) i (11) 

.£3lX±_«3jXL__b___ . 
0 E=rr=3 

where a?i(Xc) = 0, and the at(t = 2, 3 , . . . ) remain negative in this 
neighborhood. 

It follows that all the off-block-diagonal elements and their deriv­
atives with respect to X vanish along the initial path. This property 
will facilitate the stability analysis and will be used in the following 
sections. Thus, if the Jacobian is denoted by Xtj(xk, X) one has for 
example, 

Xij(0, X) = X'ij(0, X) = X'ijiO, X) = . . . 0 for i * j 

where i = 1,2. (12) 

Similar properties can be expressed for the remaining blocks on the 
diagonal. 

Stationary solutions of (7) satisfy X(x, X) = 0 which can also be 
expressed as 

Xi(x', X) = 0. (13) 

The formulation assumes that xl = 0 is the initial equilibrium path, 
and the other possible paths in the vicinity of X = Xc are sought in the 
parametric form 

x = x (cr), X = X (a). (14) 

The scalar parameter a is chosen such that the functions in (14) are 
single-valued in a and can be expanded into power series around the 
point c. Introducing (14) into (13) one obtains the identities 

X[x(a), X(<r)]=0 (15) 

which can be used to generate asymptotic solutions intrinsically by 
successive differentiations. Thus the first, second, and third-order 
perturbations yield 

djXii'+ d0Xi\ = 0, (16) 

djhXiiixh + 2dj0Xix'\ + djXixi + d0oX;(X)2 + d0X; X = 0 (17) 

and 

djkiXiX'xV + 3(>jkoXixHk\ + 3djkXiX'xk 

+ 3djooXixHX)2 + 3dj0XixJ\ + 3dj0XixJ\ 

+ djXixJ + 3d00X;X X + doooXi(X)3 + d0X;X = 0 (18) 

where the dots denote differentiation with respect to the parameter 
<r, the operators do, dj, dyo, etc., indicate differentiation with respect 
to X, x>, x>, and X, etc., respectively, and summation convention is 
adopted. 

If the arc length of the equilibrium path (14), measured from the 
critical point c is used as the parameter a, the analysis is simplified 
considerably. The unit tangent vector of the path (14) at c is then 
given by (n + 1) components x and X, satisfying the relation 

tt1)2 + (*2)2 + .. . + ( i") 2 + (X)2 = 1 (19) 

Equations (16)-(19) will now be used to explore the properties of 
the postcritical path(s) in the vicinity of c. Evaluating (16) at c with 
the aid of (10) and (11) yields 

0, xs = 0 (s = 3 , 4 , . . . n). (20) 
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Similarly, evaluation (17) with the aid of (10), (11), and (20) results 
in 

i ' = U | / \ = (-Xul/2X'n)x
l 

or < 

= 0 

( - X z i i / ^ K * 1 ) 2 

(21) 

(22) 

(r = 3, 5,. . .) 

X311 

X411J 

where the derivatives of X; evaluated at the critical point c are indi­
cated by the obvious notation [d/fcX;]c = Xijk, [djoX,]c = X\j, etc., 
and it is assumed that X u ^ 0 (see [1] for a discussion of the case Xu 

= 0 associated with conservative systems). 
The solution of these equations give the initial and postcritical 

paths asymptotically. The former path is thus defined.by 

= 0 (24) 

as expected, and the latter is obtained upon setting a = x1 and using 
X = Xc + <p, as 

V-
l X i 

2 X 11 

X2=_ I ^ i l ( x l ) 2 A - 1 ( ^ 1 ) 2 
2 « ! 2 

i q r t i + p ) r t i ) i i 1 

(ar)2 + (ft.)2 
i ( x l ) 2 A _ _ a r ( x l ) 2 (25) 

+ 1 = _ l « r X ( r + 1 ) 1 1 - / 3 r X r l l A _ i a r + l ( x l ) 2 

2 (a,)* + (ft)2 2 

where r = 3, 5 . . . . It is clear that allowing for more real eigenvalues 
am (m = 2,3,. . .) would simply result in more equations of the type 
shown on the second line in equation (25), in effect replacing sub­
scripts and superscripts 2 by m. 

Equation (25) defines the postdivergence path which intersects the 
initial path at the critical point c. It is seen that the critical point is 
an "asymmetric point of bifurcation" in complete analogy with gra­
dient systems [1, 5]. 

It may turn out that certain key coefficient(s) vanish at c and, in 
fact, (25) indicates that if X m = 0, one will have to resort to further 
perturbations in order to obtain the first-order equations of the 
postcritical path. To this end, evaluate the third-order perturbation 
equation (18) at the critical point c, with the aid of X m = 0, to obtain 
the second derivative 

Xu(= X) = • 
1 

3X' n 

„ X121X211 
•A 1111 o o A i s i a s 

« 2 
-a0 

where s = 3 , 4 , . . . n. This second derivative can be expressed in the 
more compact form 

Xu = - 0 0 = - — 7 - [Xni i - 3X l e l a t ] , t = 2, 3, 4 , . . . n. 
SXU 

(26) 

Using this derivative, the first-order equations of the postcritical path 
are expressed as 

<P = --aoix1)2 

c ' = --adx1)2 (t = 2, 3 , . . . n) 

(27) 

which represent a space curve in the state-space (<p — x') intersecting 
the fundamental path at X = Xc and having a slope X = 0. It is recog­
nized again, in complete analogy with gradient systems, that the 
critical point c is now a symmetric point of bifurcation. It also follows 

that postcritical equilibrium states exist either for X > Xc or X < Xc 

only. 

3 Stab i l i ty D i s t r i b u t i o n on the Equi l ibr ium P a t h s 
In order to examine the stability of the equilibrium states on the 

initial and postcritical paths, consider the expansion oiXi(x>, X) into 
Taylor series around the critical point X = Xc, 

( J 1 ) 2 , ! (23) Jf,-' 
dX; 

i)xi 
xJ + 

dXj 

dX 

1 

(X - Xc) 

d2X; 

2 dx'dx' 
xix"+-

d2X; 

dx'dX 
x>(X - Xc) + . . . (28) 

The Jacobian of a given equilibrium state in the vicinity of the 
critical point can then be expressed in the general form 

djXi = Xtj + Xijkx
k + X'ijp + ..., (29) 

and the evaluation of (29) on the initial and postcritical paths inter­
secting at the critical point c yields information about the stability 
of these paths. Thus, evaluating (29) on the initial path, which is 
identified by xl = 0, by using the canonical form of Xy and keeping 
to first-order approximations, one observes that the eigenvalues of 
the Jacobian are uncoupled for each block and that those associated 
with the complex conjugate blocks of X;7 continue to have negative 
real parts (this was in fact assumed in the beginning) for sufficiently 
small <p. On the other hand, the eigenvalues associated with the di­
agonal block can be obtained from 

[djXi]Xi=0 = 
0 

"2l 

X11 
0 

0 ' 

•^22 . 
<P (30) 

as (X'u<p) and (0:2 + X'22<p). The latter obviously remains negative for 
sufficiently small <p, and one has the following stability criterion for 
the initial path in the vicinity of X = Xc; 

stable 

X'n<p = 0 for critical 

unstable 

equilibrium. (31) 

In practical situations, as emphasized earlier a\ < 0 for X < Xc and 
a\ > 0 for X > X cwhile a\ = 0 for X = Xc (which means X'n > 0) and 
the criterion (31) simply expresses the fact that the initial path is 
stable (unstable) for ip < 0 {ip > 0). Note, however, that the criterion 
(31) remains valid if the reverse situtation occurs, an unstable path 
gaining stability upon passing through the critical point. 

Next, suppose the critical point is an asymmetric point of bifur­
cation, and evaluate the Jacobian (29) on the postcritical path (25). 
Thus substituting for x ' and x1 yields 

[d;X;]p.c.p = Xu + Xijd-2X'n/Xui<p) + X'ijV + O (^2) + . . . 

in which (2 X 2) blocks are no longer in the uncoupled form as in the 
case of initial path. At the critical point <p = 0, the eigenvalues of the 
Jacobian are of course the same as before and it is assumed that the 
vanishing eigenvalue a\ = ai(f>) (ai = 0, for tp = 0) can be expanded 
into power series in the vicinity of the critical point while «2 and ar 

± ifir stay away from zero and preserve their qualitative properties. 
Expressing ai(cp) as 

«l = 0 + OL\ip + . . 
, da! 

where at = 
d<p 

which describes the variation of ct\ along the postcritical path, one 
can obtain a\ by differentiating the determinant of the Jacobian with 
respect to (p. To this end, consider the characteristic equation 

I d;X; -al\=0 (32) 

If a i is a root, it should stasify (32), and differentiating by columns 
and evaluating at <p = 0 one observes that all determinants except the 
leading one vanish identically, resulting in 
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X' n + X U i ( - 2 X ' n X i n ) - a\ 0 0 0 
0 + X2 1 i (-2X'1 1 /X1n) a 2 - 0 0 0 
0 + 0 a 3 - 0 - f t 

0 /33 a 3 - 0 

and it follows that 

•• 0 ( 3 3 ) 

which yields 

« i = ~ X'n (34) 

It follows that the eigenvalue cti(<p) can be expressed as 

ai = X'n<p + 0(p2) + . . . , (35) 

and in the vicinity of ip = 0 (or X = Xc) one has the following stability 
criterion associated with the postcritical path: 

X'uip 

stable 

! 0 for critical 

unstable 

equilibirum. (36) 

If X'n > 0, the postcritical path is unstable for ip < 0 and gains 
stability upon passing through the critical point X = \c in contrast 
with the initial path. More generally, the criteria (31) and (36) reveal 
that an exchange of stabilities occurs at an asymmetric point of bi­
furcation in complete analogy with gradient systems. 

Finally, consider the symmetric point of bifurcation and the 
postcritical path (27). In this case, the Jacobian (29) can be expressed 
as 

(djXi)p.c.p = Xij + Xyi*i + iXtfufce1)2 + XijA-htix1)2) 

+ X'tji-hoix1)2) + . . . (37) 

and the eigenvalue ctiix1), along the postcritical path, as 

o i = 0 + ai^x1 + 2«i,n(x1)2 + . . . 

where 

da\ 
«i,i = — - , etc. 

dx1 xi=o 

If a\(xx) is an eigenvalue of the Jacobian (37) it satisfies 

| d y X , - - « i I l = 0 , (38) 

and the first differentiation with respect to x1 yields, upon evaluation 

(39) 

t<p = x1 = 0, 

0 - , « i , i 
X211 
X311 
X « i 

0 0 
1*2-0 0 
0 a3 

0 ft 

0 
0 
-ft 
0:3 

resulting in 

on 1 = 0. (40) 

The second differentiation of (38) involves several determinants 
which upon evaluation at critical point and using (40) yields, after 
some algebra (see the Appendix), 

«i ,u = X i m - 3Xnto ( - Xna0 

where at and ao are as defined in (25) and t = 2, 3 , 4 , . . . n. 
In view of (26), however, o^n can be expressed as 

(41) 

where 

01,11 = 2 X u a 0 

ao - v , ( X i m - 3Xuia() 
3A n 

(42) 

a i = X'uoo(*1)2 + . . . (43) 

The stability criterion for the symmetric postcritical path is then 
given by 

stable 

X'nao = 0 for critical 

unstable 

equilibrium (44) 

In other words if we assume X u > 0 as before and the postcritical 
path (27) exists for tp > 0, then ao < 0, and the postcritical path is 
stable. On the other hand, if the postcritical path exists for ip < 0, then 
ao > 0 and the path is unstable. More generally, comparing (31) and 
(44) in conjunction with (27), one observes that the postcritical path 
is totally stable (unstable) for all <p > 0 or <p <0 if the initial path 
is unstable (stable) for the same range of <p. 

It is understood that the stability criterion in (44) is intended for 
a direct comparision with (31), and it can also be written as 

stable 

( X i m - 3Xi(iai) 5 0 for critical 

unstable 

equilibrium 

which is independent of the parameter ip. 

4 D i s c u s s i o n 
It was assumed that all the eigenvalues of the Jacobian matrix on 

the initial path have negative real parts initially, and the stability is 
lost at a critical point where a real eigenvalue vanishes. This eigen­
value becomes positive upon passing through zero while the remaining 
eigenvalues maintain their character, and continue to have negative 
real parts. 

If the equilibrium equations (25) and the stability criteria are ex­
amined, however, it is noted that the analysis and the results would 
still be valid if the real parts of some of the complex conjugate ei­
genvalues were zero and remained so in the vicinity of the critical point 
along the initial path as a real eigenvalue goes through zero. Here it 
is of course assumed that the imaginary parts are not repeated or the 
multiplicity of a repeated root is equal to its index [6] and nonlinear 
terms do not change stability characteristics. In some problems, all 
the eigenvalues can be imaginery, ± f t , as in the case of conservative 
systems, and the stability is lost when at least a pair goes through zero. 
The postcritical behavior in this case as well as in the case of multiple 
zeros has been studied in reference [5]. 

It was noted earlier that the formulation in this paper excludes limit 
points from the analyses automatically. It can be shown [7], however, 
that if the equilibrium states are stable on one side of a limit point 
they have to be unstable on the other side. 
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APPENDIX 
In order to derive the second derivative (41) of the vanishing ei­

genvalue ai(xl), the determinant (38) is differentiated by columns 
with respect to xx for a second time and evaluated at the critical point 
x1 = 0. Upon using (40), this operation yields 

X m i — Xutat — Xnao — a i ,n o o n 
X2iu-X2uat «2 0 0 
X3111 — X3uat 0 «3 —ff; 
-X4111_ Xutat 0 ft 0:3 

0 
X211 

X311 

X411 

X121 

X221 

X321 

X421 

0 
0 
Oi3 

ft 

0 
0 
- f t 
«3 

0 
X211 

X311 

Xi\\ 

0 
X211 

X311 

X411 

0 
a 2 

0 
0 

0 
Oil 

0 
0 

X m 
X231 

Xzzx 
X431 

0 
0 
(X3 

03 

0 
0 

-ft . 
a 3 

Xui 
X 2 4 1 

X 3 4 1 

X 4 4 1 

0 
X 2 1 1 

•X311 

•X411 

0 
X 2 1 1 

X 3 1 1 

X 4 1 1 

0 
X 2 1 1 

X 3 1 1 

X 4 1 1 

X 1 2 1 

X 2 2 1 

X 3 2 1 

X 4 2 1 

0 
0:2 
0 
0 

0 
ai 

0 
0 

0 
0 

" 3 

ft 

X\z\ 
X231 
X331 

X431 

0 
0 
<*3 

ft 

0 
0 

-ft . 
« 3 

0 
0 

-ft 
as 

X141 

X241 

X341 

X441 

+ . . . =0 

which results in 

tti.111 = X\\\\ — Xiitat — Xnao — 2 
X121X211 

«2 

-2X131 
fasXan + ff3X4.11 

-2Xi 
0:3X4 

al + ff 
-ff3x3 

4 + ffl I" 
Recognizing the definitions in (25), the fact that X\t 1 = X m for 

any t = 2 , 3 , . . . , and generalizing the summations lead to the deriv­
ative (41). 
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A Procedure to Generate 
Liapunov Functional for 
Distributed Parameter Systems 

M. Seetharam Bhat1 and S. K. Shrivastava2 

In troduc t ion 
Liapunov's theory of stability [1] has become an important tool in 

the analysis of dynamical systems described by ordinary linear and 
nonlinear differential equations. Extensions to systems represented 
by a class of partial linear and nonlinear differential equations are also 
made [2-4, et al.]. For a general case of distributed parameter system, 
difficulties may be encountered in obtaining a Liapunov functional. 
Parks and Prichard [5], and Mockaitis [6] present some approaches 
to deal with the problem. 

This paper gives a guideline for finding Liapunov functional for 
distributed parameter systems, represented by partial differential 
equations, based on the work of Schultz and Gibson [7] on lumped 
parameter systems. Two examples are also included to demonstrate 
applicability of the method. 

P r e l i m i n a r i e s 
Let 0 be a bounded open domain in m-dimensional x-space and 

dQ be its boundary. Let the system under consideration be described 
on the space-time domain Q X T by the following general vector 
partial differential equation: 

M uj = au(x, t) (1) 

where u(x, t) is a ra-dimensional vector, u e H", representing the 
physical variables of the system. Subscript t denotes partial derivative 
with respect to time. M is a n X n symmetric, invertible, time-invariant 
matrix operator, a is an X n linear or nonlinear spatial differential 
operator defined on fi. Hn is a Cartesian product of n real Hilbert 
spaces over the spatial domain H" = H\xKix,. . .Hn, in which the 
inner product is defined by 
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(u,u)H"= T. (Ui,Vi)Hi; u,veHn 

i = 1 
(2) 

and the norm is induced by (2). The inner product between a(x, t) e 
Hi and b(x,t)eHi is given by 

o, b) = I o • bdx (3) 

Assume that the solution to equation (1) with a set of initial and 
boundary data exists. The equilibrium state of the system with ho­
mogeneous boundary conditions is trivial for a linear system and it 
is nontrivial for nonlinear systems. With nonhomogeneous boundary 
conditions, a number of equilibrium states can exist for a nonlinear 
system. Here we wish to study the stability in the neighborhood of 
equilibrium or null solution (s) via Liapunov's direct method. 

Liapunov's theorem for asymptotic stability may be stated as fol-
vows [4]: 

Suppose there exists a functionaU[u(x, t)] = V(t), differentiable 
(Frechet) in t along u(x, t) such that J[0] = 0, and 

(i) «/[u(x, £)] = V(t) is positive-definite, that there exists a con­
tinuous nondecreasing function /3i such that /3i(0) = 0 for all t and all 
u(x, t) * 0,0 < jSi(p(0) < V(t); (p(t) c H»); 

(ii) The derivative V(t) is negative-semidefinite, i.e., there ex­
ists ay(t) such that 7(0) = 0 and for all t > 0 and u(x, t) ^ 0, V(t) < 
- y(p(t)) < 0; 

(Hi) There exists a continuous nondecreasing scalar functional 
/?2 such that p2(0) = 0 for all t and V(t) < fa(p(t)); 

(iu) fi\(p) —• 0° as p -*• <», then the equilibrium solution of equation 
(1) is asymptotically stable. The functional V(t) is called "Liapunov 
functional." 

F o r m u l a t i o n of L iapunov F u n c t i o n a l 
We develop a procedure to obtain a Liapunov functional V as well 

as its derivative V, which may be used directly to establish stability. 
The procedure essentially extends the "variable gradient method," 
developed for autonomous ordinary differential equations by Schultz 
and Gibson [7], to a distributed parameter system. We can rewrite 
equation (1) as 

du(x, t) 

dt 
Au(x, t); u e H"; t e T; x e Q (4) 

where A = M - 1a. 
We assume that the null solution u = 6 exists and W(0) is equal to 

zero. Then the gradient in the vicinity of the null solution is given 
by 

VV = VV(0) + (VV'(u))ru = G(u)Tu (5) 
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The operator G(u) is similar to the Hessian of the functional V. The 
Liapunov functional can be obtained from the path integral of the 
assumed gradient function (5) as 

W = ( V V ( U ) - U ) J I « = A v W u i ids (6) 

The time derivative of the Liapunov functional along the equation 
of motion is given by 

V(u) = (VV(u) • it)m = (VV(u) • Au)H-> 

f uTNTuds (7) 

where N = G(u)A(u). 
The path integral of VV to obtain V and V will be path-independent, 

if G(u) is symmetric [8]. This is equivalent to the curl condition in finite 
dimensional systems. The unknown operator G(u) is determined by 
(a) using symmetry or "curl" condition and (b) making functional 
V(u) at least negative semidefinite. To check the semidefiniteness of 
the functional V(u), the integral inequalities [9] can be used. Then 
the stability of the distributed parameter system is insured by 
checking the positive-definiteness of the Liapunov functional. 

To summarize, the procedure is as follows: 

1 Assume the gradient VV in the form of (5). 
2 Use symmetry conditions on G(u). 
3 Obtain the functional V and make V at least negative-definite. 

Obtain N = G (u)A(u) and make the off-diagonal elements of N an­
tisymmetric and thus determine all the unknowns in G(u). 

4 Obtain the Liapunov functional V and check for sign definite-
ness. 

Illustrations 
To demonstrate the applicability of the approach to a general class 

of problems, we shall now consider two examples. 
1 Turbluence . Let us consider Berger's linear model of tur­

bulence given by [10]: 

D2u 
+ u~ut = 0; 0 < x < l , u e ft1, t e [0, ») , 

ft 
D'=dl/dx' (8) 

and associated boundary conditions are 

u(Q,t) = u(l,t) = 0 (9) 

while ft is a positive parameter which may be varied at will. The 
equation can be rewritten as 

ut
 : 

ft 
- + u; u e ft1, x e [0,1], t e [0, ») (10) 

it = 0 is the equilibrium state of the system. Assume VV(u) = u; from 
(6)-(8) 

V = C VV-udx = C u2dx 
Jo Jo 

V = \ u- + u\dx 

Using (8), (9), and (12) 

V= f1 u2(R - ir2)/Rdx. 
Jo 

From (11) one can see that the Liapunov functional is positive-defi­
nite. If ft < ir2, V is negative-definite and hence the system will be 
asymptotically stable. For ft > TV2, it will be unstable. 

2 Whirling Motion of a Viscoelastic Continuous Shaft. The 
equations of motion in a coordinate system rotating at a constant rate 
ft with the shaft are [11] 

(11) 

(12) 

(13) 

m(x)uut + 2Cuu + 2Qu2t
 — ft2«i 

+ D2(p(x)D2ul) + D2(q(x)D2ult) = 0 

m(x)uitt + 2Cii2t ~ 2Quu — fi2U2 

+ D2(p(x)D2u1) + D2(q(x)D2u2t) = 0 

m(x)>0, p ( x ) > 0 , q(x)>0, C > 0, Si > 0, 

x e [0,1], t e [0, ») (14) 

and the associated boundary conditions are 

U](0, t) = u2(0, t) = Dui(0, t) = Du2(0, t) = 0 

D W l . t ) = D 2 u 2 ( l , t) = 0 

D(p(x)D2
Ul{l, t)) = D(p(x)D2u2(l , t)) = 0 

For simplicity we shall assume m, p, q to be constant throughout the 
shaft. The equations can be written as 

~ 0 0 m 0 ~ i r u i 

1 0 0 0 m u2 
" i = — 

"i a2-pD* 0 - 2 C - q D 4 -2Q u3 

0 Q2-pDi 2ft -2C - (?DlJL"4__ 
(15) 

where U3 = uu, m = u^t- Following the suggested procedure (section, 
" Formulation of Liapunov Functional,"), with a judical choice of G 
and some effort, the gradient vector is found to be 

~-Q2ui + (2C + p)D 4ui + (?D4uiD4 + m£>4u3~ 

- f t 2 u 2 + (2C + p)D 4u 2 + qD^D4 + mD^Ut 

2m mD4ui + mus 

mDAU2 + mu4 

From equations (7), (15), and (16) after simplification, 

V = - - C [ 2 C W + u4
2) + (q - 2m)((D2u3)2 + (D2u4)

2) 
m Jo 

+• (D*Ui + ftD2ui)2 + (D2u3 - ft£>2u2)
2 + p((D4ui)2 

+ (D*u2)
2)]dx (17) 

It is negative-definite if q > 2m. From equation (6) and (16), Liapunov 
functional is 

VV (16) 

2) V = — fX [ - f t W + u2
2) + (2C + p)((D2ui)2 + (D2u2)

2 

2m Jo 

+ q((D*Ul)Z + (£»4a2)
2) + m(u3

2 + u4
2) 

+ m((D2ur)2 + (D2u2)
2)t]dx (18) 

Using integral inequalities [9], 

V > — f X [(ui2 + u2
2)(-f t2 + TT4(2C + p) + ir8q) 

2m Jo 

+ m{u3
2 + u4

2) + 2ir4m(ui2 + u2
2 + u2

2)t]dx (19) 

V is positive-definite if 

ft2 < (2C + P)TT4 + <?ir8 (20) 

Thus the system is stable if q > 2m and the condition (20) is satis­
fied. 

These illustrations establish the applicability and simplicity of the 
suggested approach to obtain Liapunov functional for continuous 
systems. 
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Basic Transport Equations in 
Ascending Equiangular Spiral 
Polar Coordinates 

S. AIM 

Basic transport equations have been expressed in a coordinate 
system suitable for the analytical study of momentum, heat, and 
mass transport processes in ascending equiangular spiral tube coils. 
The chosen coordinate system for the representation of these 
equations is orthogonal curvilinear possessing proper transformation 
to the rectangular Cartesian coordinate system. Various tensorial 
quantities appearing in the tensorial form of the general basic 
transport equations have been obtained in expanded form in the 
chosen curvilinear coordinate system. Substitution of these quan­
tities, readily expands all the basic transport equations in their 
various forms. Illustration has been made for the equation of con­
tinuity, the general equation of motion, the Navier-Stokes equation, 
the equation of energy, and the equation of mass transport. The 
resulting equations are in forms suitable for analytical and nu­
merical solution. 

Introduction 
Various biomedical appliances, continuous flow chemical reactors, 

and heat and mass transfer equipment are preferred to be in the 
geometrical configuration of spirally and helically curved closed 
channels. As compared to straight channels, apart from the advantage 
of compactness of geometry, transport through these curved channels 
also has enhanced heat and mass transfer coefficients and closer ap­
proximation to plug flow. Also, as noticed by Ali and Zaidi [1], the only 
disadvantage of higher head loss in these channels disappears within 
a range of flow limited by the two critical Reynolds numbers of the 
curved channel flow. 

So far, as appears in literature, torus is the only continuously curved 
closed channel geometry for which basic transport equations have 
been obtained and solved. A toroidal geometry can be thought to be 
an approximation to a small pitch helical coil. With the help of these 
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Fig. 1 Configuration of an ascending equiangular spiral coil; LS, straight 
lengths; PT, pressure taps; Rmm, maximum radius of the coil; /?mI„, minimum 
radius of the coil 

analytical studies and other experimental works, the transport fea­
tures of flow and heat transfer through helically coiled tubes are now 
fairly well analyzed and understood. 

Although spirally bent coils form equally useful and interesting 
continuously curved closed channel geometries, no analytical study 
for transport problems concerning any type of them has been made. 
As a first step toward these studies, basic transport equations of 
momentum, heat, and mass transfer have been obtained in the fol­
lowing work for a well-defined spiral coil geometry known as ascending 
equiangular spiral coil. As compared to the other type of spiral coils, 
the ascending equiangular spiral coil geometry possesses analytically 
attackable transport equations and, as observed by Ali and Zaidi [1], 
minimum resistance for flow. 

Choosing a Suitable Coordinate System 
Ascending equiangular spiral coils are formed by bending tubes of 

circular cross section such that their axis takes the shape of a plan-
nular curve called ascending equiangular spiral. The family of the 
curve is described by the polar equation 

R = K emi\ (1) 

where K is the radius of the inner asymptotic circle, m is a positive 
constant characterizing rate of ascent, and G ranges from 0 to °°. The 
shape of the curve is shown in Fig. 1. 

A suitable choice of coordinate system for the mathematical de­
scription of transport processes in the spiral coil has to be only cur­
vilinear, preferably if possible orthogonal. To arrive at such a choice, 
we proceed as follows. 

We shall assign a rectangular Cartesian coordinate system (X, Y, 
Z) whose XY- plane coincides with the plane of the axis of the coil, 
X-axis is same as the initial line of the polar coordinate (R, Q) and 
origin O is same as the origin of the polar coordinate. The rectangular 
Cartesian coordinate of a point inside the coil will then be represented 
by (X, Y, Z). 

Now, as shown in Fig. 2, a curvilinear coordinate system can be 
chosen in which any point P on the axis of the spiral coil is located by 
an angle fi such that for a given Q there is a perpendicular PQ to its 
ray OQ which is tangent to the spiral axis at the point P to be located. 
The angle (2 is measured in anticlockwise direction from the initial 
line OX. Now, we consider a cross section of the coil through the point 
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Basic Transport Equations in 
Ascending Equiangular Spiral 
Polar Coordinates 

S. AIM 

Basic transport equations have been expressed in a coordinate 
system suitable for the analytical study of momentum, heat, and 
mass transport processes in ascending equiangular spiral tube coils. 
The chosen coordinate system for the representation of these 
equations is orthogonal curvilinear possessing proper transformation 
to the rectangular Cartesian coordinate system. Various tensorial 
quantities appearing in the tensorial form of the general basic 
transport equations have been obtained in expanded form in the 
chosen curvilinear coordinate system. Substitution of these quan­
tities, readily expands all the basic transport equations in their 
various forms. Illustration has been made for the equation of con­
tinuity, the general equation of motion, the Navier-Stokes equation, 
the equation of energy, and the equation of mass transport. The 
resulting equations are in forms suitable for analytical and nu­
merical solution. 

Introduction 
Various biomedical appliances, continuous flow chemical reactors, 

and heat and mass transfer equipment are preferred to be in the 
geometrical configuration of spirally and helically curved closed 
channels. As compared to straight channels, apart from the advantage 
of compactness of geometry, transport through these curved channels 
also has enhanced heat and mass transfer coefficients and closer ap­
proximation to plug flow. Also, as noticed by Ali and Zaidi [1], the only 
disadvantage of higher head loss in these channels disappears within 
a range of flow limited by the two critical Reynolds numbers of the 
curved channel flow. 

So far, as appears in literature, torus is the only continuously curved 
closed channel geometry for which basic transport equations have 
been obtained and solved. A toroidal geometry can be thought to be 
an approximation to a small pitch helical coil. With the help of these 
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Fig. 1 Configuration of an ascending equiangular spiral coil; LS, straight 
lengths; PT, pressure taps; Rmm, maximum radius of the coil; /?mI„, minimum 
radius of the coil 

analytical studies and other experimental works, the transport fea­
tures of flow and heat transfer through helically coiled tubes are now 
fairly well analyzed and understood. 

Although spirally bent coils form equally useful and interesting 
continuously curved closed channel geometries, no analytical study 
for transport problems concerning any type of them has been made. 
As a first step toward these studies, basic transport equations of 
momentum, heat, and mass transfer have been obtained in the fol­
lowing work for a well-defined spiral coil geometry known as ascending 
equiangular spiral coil. As compared to the other type of spiral coils, 
the ascending equiangular spiral coil geometry possesses analytically 
attackable transport equations and, as observed by Ali and Zaidi [1], 
minimum resistance for flow. 

Choosing a Suitable Coordinate System 
Ascending equiangular spiral coils are formed by bending tubes of 

circular cross section such that their axis takes the shape of a plan-
nular curve called ascending equiangular spiral. The family of the 
curve is described by the polar equation 

R = K emi\ (1) 

where K is the radius of the inner asymptotic circle, m is a positive 
constant characterizing rate of ascent, and G ranges from 0 to °°. The 
shape of the curve is shown in Fig. 1. 

A suitable choice of coordinate system for the mathematical de­
scription of transport processes in the spiral coil has to be only cur­
vilinear, preferably if possible orthogonal. To arrive at such a choice, 
we proceed as follows. 

We shall assign a rectangular Cartesian coordinate system (X, Y, 
Z) whose XY- plane coincides with the plane of the axis of the coil, 
X-axis is same as the initial line of the polar coordinate (R, Q) and 
origin O is same as the origin of the polar coordinate. The rectangular 
Cartesian coordinate of a point inside the coil will then be represented 
by (X, Y, Z). 

Now, as shown in Fig. 2, a curvilinear coordinate system can be 
chosen in which any point P on the axis of the spiral coil is located by 
an angle fi such that for a given Q there is a perpendicular PQ to its 
ray OQ which is tangent to the spiral axis at the point P to be located. 
The angle (2 is measured in anticlockwise direction from the initial 
line OX. Now, we consider a cross section of the coil through the point 
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Fig. 2 Coordinate system 

P, whose plane is normal to the foregoing tangent. Any point p on this 
circular cross section is located by the usual polar coordinates r and 
0 such that its initial line ox coincides with the line P'P", its origin 
o coincides with the point P, and 0 is measured in anticlockwise di­
rection. This choice of the coordinate system (0, r, 0) is such that 0 
= constant is a plane, r = constant is a curved circular cylinder, and 
8 = constant is a spirally bent curved surface. At any point p inside 
the coil, all these surfaces meet at right angle to each other, hence the 
chosen coordinate system is orthogonal. The coordinates 0 and 6 are 
dimensionless and r has the dimension of length. 

The sequence 0, r, and 8 forms a left-hand screw system. 

T r a n s f o r m a t i o n of Coord inates 
Transformation from the defined curvilinear coordinate system 

(fi, r, 8) to the defined Cartesian coordinate system (X, Y, Z) is given 

by 

X = R cos G + r cos 8 cos 0, 

Y = R sin 6 + r cos 8 sin 0, 

Z = r sin 9 , (2) 

where 9 is related to 0 by the equation 

0 = 9 - TT/2 + c o r ' m (3) 

It is shown by Ali [2] that transformation (2) is proper, i.e., one-to-one 
correspondence between the two coordinate systems exists in the 
region inside the coils bounded by the finite values of 0. 

R e q u i r e d T e n s o r i a l Quant i t i e s 
Since basic transport equations consist of terms which are various 

tensorial quantities, these quantities are obtained in the chosen 
coordinate system and given later. For the dimensional consistency, 
these are given in their physical component form. Definition of these 
quantities can be found in any book on general tensor analysis. 
Eringen [3] has also described them. 

Matrix of the Fundamental Metric Tensor, gy 

gu 0 0 

0 1 0 

0 0 r2 

where 

V i i i = V ( l + m 2 ) K e m 0 + r cos 0. 

Gradient of a Scalar Field <t> 

1 _ _T 50 150 
V0 = , — ei + — e2 H — ea, 

/gu bO br r i 

(4) 

(5) 

(6) 

where ei, 62, and e3 are unit base vectors in the ascending equiangular 
spiral polar coordinate. 

Divergence of a Vector Field A 

-•An, (7) 
1 8An 8Ar I8A0 / l cos0\ A 

V -A = — = : — — + + + \- + —==\Ar -
V g n o« or r 88 \r s/gul 

where Aa, Ar, and Ag are physical components of the vector A. 

Laplacian of a Scalar Field 0 

+ 

gu bO2 br2 r2. 
/gu ~ rcos 1 

Viu 
/ l cos0\ j 

V Vgiil < 

80, 

sin f 
Sr ri/gu> 

Divergence of a Second-Order Symmetric Tensor f 

(8) 

V-T = 
1 5Tsiii 5Tnr 1 drag 

g n 5fi br r 88 

1 

2 cos 

'gu 

2sin< 
Tar 

/gu 
"fa» 

brqr brrr 1 brre 

gu 80. br r 88 gu 
Tan 

/ l cos 0\ 

\r x/gul 

sin0 1 
— p = Tr0 ' 
Vgu r 

1 brqe brre 1 breg sin 8 

Ju^ bQ br r b8 Vgn" 

sin 8 2 cos0\ sin0 

v"2 Vgul Vgu . 
e». (9) 

Laplacian of a Vector Field v 

V2
V: 

1 52un S2vn 1 52usi 

gu SO2 br2 r2 

. UL (V'i i i ~ r c o s e\ §ESL + (l 
gu \ Vgu~ I 80. [r 

cos0\ 8vn 
H — 1 H 

Vgul br 
sin 8 bvn 2 cos 8 bvr 2 sin 8 bug 

rVgu <50 gu b0 gu 

vn m cos0 ly/g~u~ - r cos 0' 

5Q 

+ 

g n gu \ ,\l gu 

m sin 0 IVgu ~ r cos 

£11 Igu 
ve en 

' 1 82vr b2ur 1 52ty 

g u 5 n 2 5r2 r 2 5 0 2 

2 cos 8bvn 

gu b0 

m 

gu 

fgu — r cos d\ bvr II cos 

'5fi + 
/gu 

cos 0\ 5i;r 

V i u ) br 

sin 0 5ur 2 bvg m cos 0 (\/~gu ~ r cos 0̂  

1 cos21 

r2 gu 

gu 

vr + 

Vgu 
sin 0 cos 0 \ 

fn 

g n 
y» 

g n 
2 sin 0 5i>n 1 b2Vg 82Ug 1 52U9 

g u 5 f i 2 br2 r2bd2 gu bQ 

2 bvr m 
+ 72~b8~Ju~ 

- r cos 8\ bve ll cos 8\ bus 

rg~u I b0 \r y/gul Sr 

sin0 Sue m sin 0 lyfgu ~ '' C0S 

rVgu SB gu 

sin 8 l\/gu ~ r c o s 

IVgu ~ r cos 0\ 
wo 

'gu 

1 sin2 0\ ' 
— + vs 

r2 gu I . 

Material Derivative of a Scalar Field <j> 

D(j> 8<p 

Dt ~ 8t 

va 8<l> 8<t> vo 8<j> 
h Vr 1 • 

ZgYibO br r 50 
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B a s i c T r a n s p o r t E q u a t i o n s 
Having obtained the expansion for the required tensor quantities, 

almost all basic transport equations in their various forms can be 
readily written down by simple substitution for terms. This is illus­
trated for few important basic transport equations of common oc­
currence in the following. 

Equation of Continuity 
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in the chosen coordinate system takes the form 
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General Equation of Motion 

pa = pt + (V • T), (15) 

where a is the acceleration vector, f is the body force, and r is stress 
tensor, takes the form 

Dv 
P — = pfa en + pfr ' • + pfe ee + (V • T) , (16) 

where first and last terms can be substituted from equations (12) and 
(9), respectively. 

For fluids of known constitutive equations, expressions for stress 
components in terms of velocity gradients and fluid properties may 
be substituted to get more useful form of equation of motion. Nav-
ier-Stokes equation of motion, which uses constitutive equation 
corresponding to Newtonian fluid with the assumption of constant 
density and viscosity, is given by 

pa = — Vp + /uV2v + pg, (IV) 

where p is pressure and g is the gravitational force assumed to be the 
only body force present. In the ascending equiangular spiral polar 
coordinate system, the Navier-Stokes equation is easily obtained by 
substituting for pa and pg from equation (16), for Vp from equation 
(6) and for V2v from equation (10). 
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(Cont.) 

Equation of Diffusion 
For binary mixtures obeying Fick's law and having constant mass 

density and diffusion coefficient, the equation of mass diffusion is 
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C o n c l u d i n g R e m a r k s 
Apart from the basic transport equations, expansions, which have 

previously illustrated almost all other forms of transport equations, 
can readily be written down in the developed ascending equiangular 
spiral polar coordinate system by simple substitution for their ten-
sorial terms expansion which has been obtained in the foregoing. 
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Linear Spatial Stability of 
Developing Flow in a Parallel 
Plate Channel 

S. C. Gupta1 and V. K. Garg2 

Equation of Thermal Energy 

For the cases where viscous heat dissipation is not important and 
coefficient of thermal conductivity is constant, the equation of energy 
is given by 

- DT 
pCu =feV2T- (V • v) + pS, 

and in the required coordinate system becomes 
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It is found that even a 5 percent change in the velocity profile pro­
duces a 100 percent change in the critical Reynolds number for the 
stability of developing flow very close to the entrance of a two-di­
mensional channel. 

I n t r o d u c t i o n 
The temporal stability characteristics of the developing flow in a 
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Fig. 1 Variation of critical Reynolds number with X; — , present work; - - -, 
Chen's results with finite-difference technique [1]; © present results for 
Sparrow's profile [2] 

two-dimensional channel were determined by Chen [1] using the 
Sparrow profile, the velocity profile determined by the linearization 
method of Sparrow, et al. [2]. However, it is now widely accepted that 
the velocity profile, hereafter referred to as the B-0 profile, obtained 
by Bodoia and Osterle's method [3] gives a better velocity field de­
scription. The present study, therefore, aims to study the linear spatial 
stability characteristics of the B-0 profile and to compare them with 
those of the Sparrow profile. Symmetric disturbances of the type x(x> 
y, t) = <t>(y) exp \i(kx — u>t)} are considered, where x is the stream 
function of the disturbance, x and y are the dimensionless streamwise 
and transverse coordinates measured from the inlet section and the 
center line of the channel, respectively, w and t are the dimensionless 
frequency and time, respectively, k is the complex number whose real 
part kr is the wave number and imaginary part ki is the spatial growth 
rate. Nondimensionalization is carried out with respect to half width 
of the channel and average velocity of the flow. This leads to the 
Orr-Sommerfeld problem. 

Solution 
The eigenvalue problem is solved by means of the fourth-order 

Runge-Kutta method while using selectively the Gram-Schmidt or-
thonormalization procedure [4]. Convergence to the eigenvalue is 
achieved by Muller's method [5], By numerical experimentation it 
was found that a step size of 0.0025 gives an error of 0(10 -6) in the 
eigenvalues when computation is done in double precision mode on 
DEC 1090. Iteration to the neutral point was terminated for | A; | < 
io-fi. 

Results 
Fig. 1 shows the variation of critical Reynolds number, R t , with X 

for the present analysis and for the Sparrow profile as obtained by 
Chen [1] using the finite-difference scheme of Thomas [6]. Here 
X = JC/R, where R is the Reynolds number. It is observed that the 
critical Reynolds number for the B-0 profile is much lower than that 
for the Sparrow profile in the near-entry region. At X = 0.002, Rc for 
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Fig. 2 Neutral curves at various axial locations; — , present work; , 
present results with Sparrow's profile [2]; - - -, Chen's results [1] 
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Fig. 3 Variation of critical frequency and critical wave number with X 

the Sparrow profile is about twice that for the B-0 profile. This dif­
ference between the Rc-values decreases as X increases to about X 
= 0.09 where the two curves appear to coincide with each other and 
remain so thereafter. This behavior is to be expected since the two 
velocity profiles are found to merge into one at X « 0.084. One, 
therefore, draws the conclusion that the large difference in Revalues 
in the near-entry region is due to the difference in the two velocity 
profiles. The three critical points, obtained for the Sparrow profile 
by the present technique and shown in the figure by points marked 
O, show the agreement of our results with those of Chen obtained by 
the finite-difference method. 

Fig. 2 shows the neutral curves at X = 0.001,0.00208,0.00408,0.006, 
and 0.008 to <» for the B-0 profile. Also shown on this figure are the 
neutral curves at X = 0.00208 and 0.00408 for the Sparrow profile 
obtained by the present method as well as by Chen using regular 
viscous solutions for the full channel profile. Comparison of the 
neutral curves at X = 0.00208 and 0.00408 reveals that the B-0 profile 
is unstable for a wider range of frequencies at any given X and R. We 
also note that neutral curves reported by Chen for the Sparrow profile 
are not accurate. It may be observed that the area of unstable region 
for the B-0 profile decreases with increasing X. 

Fig. 3 shows the variation of the critical wave number, krc, and 
critical frequency, coc, with X. We note that both krc and wc decrease 
with increasing axial distance in the entrance region and approach 
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asymptotically the corresponding values for the fully developed flow; 
the curves being nearly parallel. 

Conclusions 
Though the Sparrow and B-0 velocity profiles differ by 5 percent 

at most in the near-entry region, the critical Reynolds number for the 
former is twice of that for the latter at X = 0.001. It is difficult to say 
which velocity profile predicts the stability of the actual developing 
flow more accurately due to lack of experimental stability charac­
teristics. However, since the superiority of the B-0 profile over the 
Sparrow profile has been widely accepted, one has the intuitive feeling 
that the stability results reported herein for the B-0 profile should 
be closer to the actual one. 
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Fig. 1 A crack starting from the apex of a wedge 

knowledge, no such closed-form solution for an arbitrary crack length 
a has been presented (see, for example, Khrapkov [2] for Modes I and 
II). 

Brief Methods of Solutions 
Following the theory developed by Sih [3], we will analyze Mode 

III crack of length a which starts from the apex of an infinite wedge 
subjected to concentrated forces P acting in opposite directions at 
2 = £e

±in' (Fig. 1). 
We employ a function 

z = w(f) = e - " ' r i ( f 2 - a 1 M ) " , 0 < r e < l , (1) 

which maps the upper side of the crack to -a1/2n < Real (f) < 0, the 
lower side to O < Real (f) < a1 '2", and the points at which the forces 
P are acting to (3 = ± (£lln + a 1 / n ) 1 / 2 , respectively. 

With the aid of equation (16) of Sih [3], the relevant stress function 

Note on the Energy-Release 
Rate for a Crack Starting 
From the Apex of a Wedge 

C. Yatomi1 

We show that for a Mode III crack starting from the apex of a wedge, 
the initial value of the energy-release rate is zero, although the 
stresses at the crack tip are unbounded. 

Introduction 
Griffith [1] was apparently the first to employ the energy-release 

rate S as a critical condition of crack extension. In this Note we will 
show, however, that if a crack starts from the apex of a wedge (cf. Fig. 
1 with n ^ 1), the initial value of ff is zero, although the stresses at the 
crack tip are unbounded. This example suggests that you cannot use 
the initial energy-release rate as a critical condition of crack extension 
unless the opening-angle of the crack faces in the reference is precisely 
zero. Since the order of the singularity of the strain-energy density 
is less than one, this result may be predicted mathematically but it 
is not trivial physically. 

We confine our problem to a simple Mode III crack; the given so­
lutions are then simple and of closed form, so that we can examine the 
precise dependence of S on the crack length a. To the author's 
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where G is the shear modulus. The stresses are then given in the 
form 
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in the z -plane. 
Equations (3) and (4) show, as is expected, that the stress singu­

larity of order V2 has changed discontinuously order to 1 - lkn at 
a = 0+ . (This is another example of simple closed-form solution ex­
hibiting the singularity transition phenomenon which was studied 
by Nuismer and Sendeckyj [4].) 

Inserting equations (1) and (2) into equation (7) of [3] yields the 
solution for the stress-intensity factor: 
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Since S = TTK2/2G, the energy-release rate is given by 
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Equation (5) shows that 

h'(a)~ai/"-1 as a — 0, 

(5) 
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asymptotically the corresponding values for the fully developed flow; 
the curves being nearly parallel. 

Conclusions 
Though the Sparrow and B-0 velocity profiles differ by 5 percent 

at most in the near-entry region, the critical Reynolds number for the 
former is twice of that for the latter at X = 0.001. It is difficult to say 
which velocity profile predicts the stability of the actual developing 
flow more accurately due to lack of experimental stability charac­
teristics. However, since the superiority of the B-0 profile over the 
Sparrow profile has been widely accepted, one has the intuitive feeling 
that the stability results reported herein for the B-0 profile should 
be closer to the actual one. 
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knowledge, no such closed-form solution for an arbitrary crack length 
a has been presented (see, for example, Khrapkov [2] for Modes I and 
II). 

Brief Methods of Solutions 
Following the theory developed by Sih [3], we will analyze Mode 

III crack of length a which starts from the apex of an infinite wedge 
subjected to concentrated forces P acting in opposite directions at 
2 = £e

±in' (Fig. 1). 
We employ a function 
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which maps the upper side of the crack to -a1/2n < Real (f) < 0, the 
lower side to O < Real (f) < a1 '2", and the points at which the forces 
P are acting to (3 = ± (£lln + a 1 / n ) 1 / 2 , respectively. 

With the aid of equation (16) of Sih [3], the relevant stress function 
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We show that for a Mode III crack starting from the apex of a wedge, 
the initial value of the energy-release rate is zero, although the 
stresses at the crack tip are unbounded. 

Introduction 
Griffith [1] was apparently the first to employ the energy-release 

rate S as a critical condition of crack extension. In this Note we will 
show, however, that if a crack starts from the apex of a wedge (cf. Fig. 
1 with n ^ 1), the initial value of ff is zero, although the stresses at the 
crack tip are unbounded. This example suggests that you cannot use 
the initial energy-release rate as a critical condition of crack extension 
unless the opening-angle of the crack faces in the reference is precisely 
zero. Since the order of the singularity of the strain-energy density 
is less than one, this result may be predicted mathematically but it 
is not trivial physically. 

We confine our problem to a simple Mode III crack; the given so­
lutions are then simple and of closed form, so that we can examine the 
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Equations (3) and (4) show, as is expected, that the stress singu­

larity of order V2 has changed discontinuously order to 1 - lkn at 
a = 0+ . (This is another example of simple closed-form solution ex­
hibiting the singularity transition phenomenon which was studied 
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and the initial value of G (a) at a = 0+ is zero unless n = 1 as noted in 
the Introduction. 
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On the Polygon-Circle Paradox 
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Introduction 
The problem of the polygon-circle paradox in thin plate theory [1] 

has attracted sustained attention during the last decade [2-7] pri­
marily due to its implications in thin plate and finite-element anal­
yses. There have been some earlier investigations [8-10] too on the 
subject some of which were considered by Hanuska [11]. Inspite of 
such continued interest, a satisfactory resolution of the paradox does 
not seem to have appeared in the literature. The resolution of the 
paradox, based on an earlier study [12], is presented in this Note. 

Statement of the Paradox 
Consider a two-dimensional physical phenomenon in a regular 

polygonal domain with an inscribed circle of radius a and also in a 
circular domain with the same radius a, both fields being subject to 
identical physical boundary conditions (Fig. 1). One would expect 
that, as the number of sides n of the polygon is increased indefinitely 
(n -* •»), the solution for the polygon should approach that for the 
circle. Numerical results from different sources referred to in [1] for 
the flexure of regular polygonal plates under uniform transverse 
pressure, show diverging trends in relation to this anticipation when 
the edges are simply supported, although they are all in agreement 
with the anticipation when the edges are clamped. 

Resolution 
The paradox shows that, even though the limiting polygon (n -» 

00) and the corresponding circular plate under identical loading 
conditions are governed by the same differential equation, their 
flexural behavior is identical for conditions of edge fixity, but is en­
tirely different for edge conditions of simple support. Obviously one 
should shift attention from the complete solution of the problem to 
the boundary conditions. For simplicity the discussion can be in 
relation to axisymmetric load distributions. 
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(i) Clamped Edges. Consider the conditions along a clamped 
circular edge. On such an edge, the clamped condition implies w = 
0, wn = 0, and w = 0 itself yields wt = 0 and due to axisymmetry Mnt 

= 0. Thus four quantities w, wn, wt, and Mnt become zero on the edge 
of a clamped circular plate. 

On any edge of a clamped regular polygonal plate, once again the 
conditions are w = 0, wn = 0. Further more w = 0 leads to wt = 0 while 
wn = 0 yields Mnt = 0. Also from an eigenfunction analysis due to 
Williams [13], it is clear that there are no singularities at the corners 
of the polygonal plate. All these conditions hold good however large 
the number of sides, even in the limit n -» ">. 

Comparing the conditions on the clamped circular edge with those 
of the limiting clamped polygon, it is observed that the same four 
quantities (w, wn, wt, and Mnt) vanish on the edge in either case. 
There are apparently no other physical quantities that may produce 
any discrepancy. Hence the limiting clamped polygon, as n -* <», 
should be and is identical with the corresponding clamped circular 
plate. 

(ii) Simply Supported Edges. First, consider the circular edge. 
By definition, w = 0 and M„ = 0. Due to axisymmetry, Mnt = 0. But 
from the exact solution for the circular plate [14] it is clear that Mt 

^ 0, and therefore V2 w ^ 0. 
Next, consider the edges of the polygon. The simple edge support 

needs w = 0 and Mn = 0. As a consequence, wtt = 0 and Mt = 0 and 
also V2 w = 0. It is also realized that Mnt 9^ 0 anywhere except at the 
midpoints. These conditions apply for all n. On the other hand, in the 
corresponding circular plate wtt, Mt, V2 w 9^ 0 while Mnt = 0. Clearly, 
in this case the limiting polygonal plate solution must be different 
from the circular plate solution. 

Now let us proceed to consider the effect of the corners in the lim­
iting simply supported polygon. From an eigenfunction study [13], 
one finds that when n > 4, the corners C are points of moment (Mri 

Mg, Mrt) singularities. The singular part of the deflection function 
is given by Airi* '" sin (w/a) d\ where ivla = n/(n - 2) and Ai is the 
strength of the singularity. The corresponding second derivative in 
r (contributing to the moments Mr, Ma, and Mr«) is found to be 

Ai - I - - l) r i ' / " " 2 sin Ma) 0j. 

It is also observed that, at each corner, the slopes in two different 
directions are zero and as such each corner behaves like a clamped 
point. In view of this, the simply supported condition along the 
straight edges is effectively augmented by periodic corner clamping. 
Thus the limiting polygon is supported by an alternating system of 
"infinitesimally short" simple straight supports and stiff point sup­
ports. As such the stiffness of the limiting polygon should be between 
the stiffnesses of the simply supported and clamped circular plates. 
This is confirmed by the central deflections and edge rotations for the 
three cases which are shown in Table 1. 

In fact it can be readily shown that a circular plate with an elastic 
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Vibrations of Free Circular 
Plates Having Elastic 
Constraints and Added Mass 
Distributed Along Edge 
Segments 

A. Leissa1 and Y. Narita2 

In troduc t ion 
Although numerous references exist which treat the free vibrations 

of circular plates [1], the vast majority analyze cases having classical 
boundary conditions (i.e., clamped, simply supported, or free). Several 
papers can be found (cf., [2, 3]) which deal with elastic constraints 
uniformly distributed around the edge, and at least one [4] treats the 
boundary having uniformly distributed, additional mass. 

Recently, free-vibration problems for circular plates having rota­
tional and/or translational springs distributed around segments of 
the edge have been solved [5,6]. The analytical method utilized there 
is now applied to a more general problem wherein additional mass also 
appears along a segment of the edge (see Fig. 1). Numerical results 
are presented for some interesting problems for which the intensities 
of the partial springs and masses are varied. 

A n a l y s i s 
The free transverse vibration of a thin, homogeneous plate is gov­

erned by the differential equation 

D v 4 W - pu2W=0 (1) 

where, in polar coordinates, W = W(r, 6). An exact solution to equa­
tion (1) for a solid circular plate is given by 

edge rotational restraint of finite stiffness K = (1 - v)D/a would re­
produce the behavior of the limiting polygon. For such a circular plate, 
the edge conditions are found to be w = V2 w = 0. 
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W(r, 6) •• £ Wn(kr) cos nd+ £ Wn*(kr)smn6 (2) 
n = 0 re=l 

where 

Wn(kr) = AnJn(kr) + CnIn(kr) 

Wn*(kr) = An*Jn(kr) + Cn*In(kr) 

(3a) 

(3b) 

Consider a free circular plate elastically constrained along parts 
of the edge as shown in Fig. 1. Translational and rotational springs 
having stiffnesses Kw and K^, respectively, are attached to typical 
portions of the edge. An additional strip of mass m and rotary inertia 
la (per unit of length) also acts upon a segment of the boundary. The 
following boundary conditions are required along typical portions of 
the edge: 

Vr(a, 0) = ~(KW ~ mo>2)W(a, 8) 

Mr(a, 6) = (K+ - Iao>2) — (a, 6) 
dr 

(4a) 

(4b) 

where the edge reaction and bending moment are related to the de 
flection by 

• v d (1 d2W 
Vr(r, 6) = -D 

Mr(r, 6) = -D 

— (v2W) + — 
dr r 

\i>2W 

dr2 -+ v 
tldW 1 i>2W 

\r dr r2 d02> 

dr\r dB2 

W\ 

l2} 

(5a) 

(5b) 

and where the coefficients Kw, K^,, m, and la are, in general, not 
constants, but functions of 6, either continuous or piecewise contin-
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Fig. 1 Circular plate having elastic constraints and added mass along 
boundary segments 
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Fig. 3 Frequency parameter X = (coa2Vp/D)1/2 versus ratio of added mass 
for four cases of elastic edge constraint 

uous, as shown. The coefficients can be expanded into Fourier series; 
that is, 

Kw(d) = £ Km cos id + £ Km* sin id (6a) 
i=0 i=l 

K+W) = £ Lm cos id + £ Lm* sin i0 (66) 
;=o i = i 

m(0) = YL mi cos ̂  + Y. rrii* sin i0 (6c) 

IG(8) = L /oi cos if) + £ /Oi* sin id 
j'=0 i = l 

(6d) 

where the Fourier coefficients are determined in the usual manner. 
Substituting equations (2), (3), (5), and (6) into (4), and utilizing 

trigonometric identities of the type 

sin id cos nd = - [sin (i + n)d + sin (i — n)6] (7) 
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allows the products of two infinite sums on the right-hand sides of 
equations (4) to be replaced by single infinite sums, yielding an infinite 
characteristic determinant for the eigenvalues (or nondimensional 
frequency parameters) of free vibration (cf., [5,6]). 

N u m e r i c a l R e s u l t s 
Fig. 2 shows the lowest five frequency parameters X = 

(coa2-s/p/D)1''2 and the corresponding nodal patterns of circular plates 
elastically constrained along —ir/4 < 0 < TT/4 and having uniformly 
distributed mass along 37r/4 < 8 < 5ir/4. The nodal patterns are either 
symmetric (S) or antisymmetric (A) with respect to the symmetry 
diameter. The fundamental (i.e., lowest frequency) mode has no in­
terior node lines. The constrained part of the plate can be regarded 
as effectively clamped due to the large stiffness Kw = Kj, = 106 (Kw 

= asKw/D, Kj, = aK^/D) [5,6]. The attached mass is increased with 
the ratio of MAIMP = 0,0.5,1 (MA, total mass of the added mass; Mp, 
mass of the plate by itself). In the present calculations, Poisson's ratio 
is taken as v = 0.33 and the rotary inertia of the added mass is zero. 
A 60th-order determinant is used to yield the frequencies which can 
be considered as accurate within three significant figures, as found 
in previous convergence studies [6]. 

Fig. 3 shows the variation of the frequency parameter in the same 
problem for four different degrees of elastic constraint along the 
boundary segment —x/4 < 6 < 7r/4, ranging from fully free to fully 
clamped. Symmetric and antisymmetric modes are presented in Figs. 
3(a) and (b), respectively. As the mass ratio MA/MP is increased, the 
frequencies decrease monotonically, as expected. But the rate of 
change depends upon the mode of vibration and, in one case, the 
curves (3-S and 2-A) cross each other. For KW=K^ = 0, the l-S, 1-A, 
and 2-S modes correspond to rigid body motions of translation and 
rotation; i.e., X = 0. 
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Stabilization of an Unstable 
Linear System by Parametric 
White Noise 

J. E. Prussing1 

In this Note a simple illustrative example demonstrates that an 
unstable deterministic system can be stabilized by parametric white 
noise excitation. Nevelson and Khas'minskii [1] and Nakamizo and 
Sawaragi [2] show that it is impossible for a linear system excited by 
parametric white noise to be stable if the deterministic system is 
unstable. However, these results are based on mathematical white 
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noise rather than physical white noise which is the limiting case of a 
stationary stochastic process for which the correlation time tends to 
zero. For physical white noise the correlation between the noise and 
the system response at the same instant of time must be accounted 
for. 

In the analysis which follows it is shown using the Wong and Zakai 
correction [3] which is a special case of the stochastic averaging pro­
cedure of Stratonovich [4] and Khas'minskii [5] that parametric 
physical white noise can stabilize an unstable deterministic system. 
This fact was first reported by Mitchell and Kozin [6] in Example 4 
of that reference and verified by simulation. The motivation for 
finding a simple illustrative example stems from recent analyses of 
helicopter rotor blade aeroelastic stability in turbulent flow [7-9] for 
which parametric white noise in certain cases stabilizes the system 
[7]. 

Consider a linear autonomous second-order system with parametric 
random excitation: 

X(t) + [c + c£(t)\X(t) +[k + k^(t)]X(t) = 0 (1) 

The variable £(t) is a scalar physical white noise process having zero 
mean value. It is convenient to write (1) in terms of the state vector 
X r = (XX) as 

X(t) = (A + ^(t)P)X(t) (2) 

where A and P are constant matrices containing the deterministic 
coefficients c, k, and the parametric noise coefficients cj, k$, respec­
tively. In the stochastic averaging procedure the state X(t) is ap­
proximated by a Markov process x(t) which is continuous with 
probability one and satisfies an associated Ito equation. This ap­
proximation is valid because the relaxation time of the system (2) is 
large compared to the correlation time of the noise, which is zero for 
white noise. 

To investigate first moment (mean) stability the equation for the 
vector of first moments M(t) = £[x(t)] is calculated to be 

M(t) = (A + 7T*£P
2)M(t) ±BM(t) (3) 

using the Wong and Zakai correction summarized in Appendix A of 
[8]. The variable ${ is the (constant) spectral density of the white noise 
process: £[£(t)£(£ + r ) ] = 27r*f5(r). The matrix B for the system (1) 
is given by 

B = (4) 
0 1 

,7r${Cf/!{ — k ir^jCf2 -

and the Routh-Hurwitz conditions for first moment asymptotic sta­
bility are 

c - ir4>fCj2 > 0 

k — irf>{C^5 > 0 

(5) 

(6) 

The deterministic system is asymptotically unstable if c < 0 or k 
< 0. From the stability criteria (5) and (6) it is evident that since 3>{ 
> 0 the only unstable deterministic system which can be stabilized 
by white noise has c > 0 and k < 0. In addition (6) implies that C(k( 
< 0 for the noise to be stabilizing and (5) implies that a sufficiently 
high noise intensity will destabilize the system. Under these conditions 
the system is first moment stable for the range of noise intensity: 

c(k( 

< 7T*f < " (7) 
ct" 

To investigate second moment (mean square) stability the equation 
for the vector of second moments M(t) having components £[JCI2] , 
£ [ * I * 2 L and £[x22] is calculated to be 

where 

M(t) = BM(t) 

0 2 0 

7T$jC{fef — k 7T«I>{C{2-C 1 

2 T T * { V 2(3wi(c(k( - k) 2(27r* tc t
2 - c) 

(8) 

(9) 
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be considered as accurate within three significant figures, as found 
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noise rather than physical white noise which is the limiting case of a 
stationary stochastic process for which the correlation time tends to 
zero. For physical white noise the correlation between the noise and 
the system response at the same instant of time must be accounted 
for. 

In the analysis which follows it is shown using the Wong and Zakai 
correction [3] which is a special case of the stochastic averaging pro­
cedure of Stratonovich [4] and Khas'minskii [5] that parametric 
physical white noise can stabilize an unstable deterministic system. 
This fact was first reported by Mitchell and Kozin [6] in Example 4 
of that reference and verified by simulation. The motivation for 
finding a simple illustrative example stems from recent analyses of 
helicopter rotor blade aeroelastic stability in turbulent flow [7-9] for 
which parametric white noise in certain cases stabilizes the system 
[7]. 

Consider a linear autonomous second-order system with parametric 
random excitation: 

X(t) + [c + c£(t)\X(t) +[k + k^(t)]X(t) = 0 (1) 

The variable £(t) is a scalar physical white noise process having zero 
mean value. It is convenient to write (1) in terms of the state vector 
X r = (XX) as 

X(t) = (A + ^(t)P)X(t) (2) 

where A and P are constant matrices containing the deterministic 
coefficients c, k, and the parametric noise coefficients cj, k$, respec­
tively. In the stochastic averaging procedure the state X(t) is ap­
proximated by a Markov process x(t) which is continuous with 
probability one and satisfies an associated Ito equation. This ap­
proximation is valid because the relaxation time of the system (2) is 
large compared to the correlation time of the noise, which is zero for 
white noise. 

To investigate first moment (mean) stability the equation for the 
vector of first moments M(t) = £[x(t)] is calculated to be 

M(t) = (A + 7T*£P
2)M(t) ±BM(t) (3) 

using the Wong and Zakai correction summarized in Appendix A of 
[8]. The variable ${ is the (constant) spectral density of the white noise 
process: £[£(t)£(£ + r ) ] = 27r*f5(r). The matrix B for the system (1) 
is given by 
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0 1 
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and the Routh-Hurwitz conditions for first moment asymptotic sta­
bility are 

c - ir4>fCj2 > 0 

k — irf>{C^5 > 0 

(5) 

(6) 

The deterministic system is asymptotically unstable if c < 0 or k 
< 0. From the stability criteria (5) and (6) it is evident that since 3>{ 
> 0 the only unstable deterministic system which can be stabilized 
by white noise has c > 0 and k < 0. In addition (6) implies that C(k( 
< 0 for the noise to be stabilizing and (5) implies that a sufficiently 
high noise intensity will destabilize the system. Under these conditions 
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Fig. 1 Locus of eigenvalues of the second moment stability matrix 0 

The Routh-Hurwitz conditions for second moment asymptotic 
stability are 

3c - 57r*{cj2 > 0 (10) 

2(7r*f)
2cf

3A:£ - i r$ f( /J2£ + 2kc2
( + cc(k() + kc > 0 (11) 

-10(ir$£)3c4
6 + (ir* f)

2c£
3(21cc t + 16k () 

- 27r$?[cJ=
2(7c2 + 3ft) + k((6cc( - ke)] 

+ c(3c2 + 4 /e )>0 (12) 

As an illustrative numerical example of an unstable deterministic 
system which is stabilized by parametric white noise, consider the case 
c = C{ = 1, k = -0 .01 , and k^ = -0 .5 . The first moment stability con­
dition (7) is satisfied for 

0.02 < TT*( < 1.0 (13) 

and the second moment stability conditions (10)-(12) are satisfied 
for the smaller range: 

0.0444 < TT*J < 0.2256 (14) 

where condition (11) determines both the upper and lower bounds 
in (14). The locus of the eigenvalues of the second moment coefficient 
matrix 5 is shown in Fig. 1 with the value of ir$( as a parameter. 

A physical example of a system (1) which has a stochastic spring 
constant with a negative deterministic value (k < 0) is an inverted 
pendulum with random vertical acceleration of the support. This has 
been analyzed by several authors including Mitchell [10] for deter­
ministic damping. For the case of stochastic damping it is difficult 
to cite a realistic mechanical damping model which provides the 
necessary relationship between random damping and support motion 
to provide stability (cjfej < 0). A realistic physical application is in 
aeroelastic problems for which stochastic damping is due to aerody­
namic turbulence [7-9]. 
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Folding of Elastica-Similarity 
Solutions 

C.-Y. Wang1 

I n t r o d u c t i o n 
The folding of thin elastic sheets (paper, sheet metal, cloth, etc.) 

is extremely important in manufacturing processes. If the thickness 
of the sheet is small compared to its minimum radius of curvature, 
the elastica equations may be used [1] 

dd 
EI— = M + Fx' + Gy' 

ds' 

dx' 
B'ds'-

(i) 

(2) 

Here EI is the flexural rigidity, 8 is the local angle of inclination, s ' 
is the arc length, x',y' are Cartesian coordinates, M,F,G are moment, 
vertical force, horizontal force at s' = 0, respectively. Fig. 1 shows three 
different folding processes. In Case 1 the elastica is compressed by 
two parallel approaching plates. In Case 2 the elastica is folded by two 
symmetric rollers moving to the right. In Case 3 it is folded between 
a moving roller and a flat plane. The boundary conditions are 
Case 1 

Case 2 

Case 3 

s' = 0, 6 = ir/2, x' = / = 0 

d8 
s' = L, 6 = ir, — = 0 

ds' 

G = 0 

«' = 0,8 = T/2, X' = y' = 0 

s' = L, 8 = w,y' = 0 

G = 0 

d8 
s' = 0, 0 = — = *' = / = 0 

ds' 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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vertical force, horizontal force at s' = 0, respectively. Fig. 1 shows three 
different folding processes. In Case 1 the elastica is compressed by 
two parallel approaching plates. In Case 2 the elastica is folded by two 
symmetric rollers moving to the right. In Case 3 it is folded between 
a moving roller and a flat plane. The boundary conditions are 
Case 1 

Case 2 

Case 3 

s' = 0, 6 = ir/2, x' = / = 0 

d8 
s' = L, 6 = ir, — = 0 

ds' 

G = 0 

«' = 0,8 = T/2, X' = y' = 0 

s' = L, 8 = w,y' = 0 

G = 0 

d8 
s' = 0, 0 = — = *' = / = 0 

ds' 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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Fig. 1 The three cases of folding 

s' = L,6 = ir,y' = 0 

Here L is the unknown free length of the elastica. 

(10) 

Similarity Solutions 
Since there are no natural length scales we expect similarity solu­

tions, i.e., the shapes of the elastica are invariant. Let us normalize 
all lengths by (EIIF)1/2. 

s = (F/EI)1'2 a', x = (F/EI)1'2 %', y = (F/EI)1'2 y' (11) 

l + gjsinfl 

^ • n 

Equation (1), after differentiating once, and equation (2) become 

<m_ 
ds2' 

dx 

ds ' ds 

Equation (12) can be integrated to give 

i\2 

2\~~ 

where C is a constant of integration. For Case 1, equations (4), (5), and 
(14) give C = 0 and 

1 IdffV 

2\dsj 

Hence 

dd. 

; @ ' = — ( ? ) cos 0 + C 

(12) 

(13) 

(14) 

(15) 

ds 
(0) = V2 (16) 

Since G = 0 we can integrate equations (12), (13), (3), and (16) as an 
initial value problem by the Runge-Kutta algorithm. A mini computer 
(HP 9820A) using a step size As = 0.025 was found to be sufficient. 
The integration terminates at 0 = ir, where we note the value of s, say, 
equal to s*. Thus we find L indirectly by 

(F/EI)l'2L (17) 

For Case 2, a one-parameter shooting method is used. We guess d0/ds 
at s = 0 and integrate until 6 = ir. The initial guess is adjusted until 
y = 0 at 8 = ir. Similarly, for Case 3, we guess the value of (GIF) and 
integrate equations (9), (12), and (13) untily = 0 at 6 = it. After (GIF) 
is found one can compute the maximum moment from equations (14) 
and (9). 

Results and Discussion 
Although the solutions to the elastica equations can be expressed 

in terms of elliptic functions, it is much more convenient and accurate 
to use numerical integration as outlined in this paper. Case 1 was first 
studied by Sonntag [2] using elliptic functions. Cases 2 and 3 was 
formulated in a general way by Born [3], but he had neither numerical 
values nor recognized their application to the folding process. Al­
though the solution to elastica problems may be expressed in terms 

-3 - 2 - 1 0 1 

Fig. 2 The similarity shapes 

Table 1 

Case 1 Case 2 Case 3 

GIF 

Curvature at s' 

Curvature at s' 

= A) 
ds 

= L:f(s*) 
ds 

0 

V2 

0 

0 

1.71018 

-0.96163 

0.45532 

0 

-1.34954 

Arc length integrated: s* 
Maximum width: a(FIEI)1'2 

Maximum height: b(F/EI)m 

Maximum moment: —Imax 
ds 

1.85407 3.14844 5.26292 
y/2 2.67181 2.70745 

1.69443 1.28591 1.34972 

V2 1.71018 1.76301 

of elliptic functions, in some cases the process is extremely inconve­
nient [4], even with up-to-date elliptic tables [5]. 

Table 1 shows our results. For the same force F and rigidity EI we 
see Case 1 has the smallest width, and Case 2 has the smallest height. 
Case 3, having the largest width and largest maximum moment, does 
not compare as favorably. Sontag [2] obtained four figure accuracy 
for Case 1. 

Fig. 2 shows the three similarity shapes in terms of the normalized 
coordinates. The actual dimensions are proportional to (FIEI)~1/2. 
As the elastica is being folded, the force F approaches infinity as the 
inverse square of the dimensions. The present theory, of course, ceases 
to be valid at the final stages of collapse, where the dimensions of the 
loop would be comparable to the thickness of the elastica. 
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to be valid at the final stages of collapse, where the dimensions of the 
loop would be comparable to the thickness of the elastica. 

References 
1 Friseh-Fay, R., Flexible Bars, Butterworth, Washington D.C., 1962. 
2 Sonntag, R., "Zur Theorie des geschlossenen Kreisringes mit grosser 

Formanderung," Ingenieur-Archiv, Vol. 13,1943, pp. 380-397. 
3 Born, M., "Untersuchungen iiber die Stabilitat der elastischen Linie in 

Ebene und Raum unter verschiedenen Grenzbedingungen," Dissertation, 
Gottingen, 1906. 

4 Wang, C. Y., and Watson, L. T., "On the Large Deformation of C-Shaped 
Springs," International Journal of Mechanical Sciences, Vol. 22, 1980, pp. 
395-400. 

5 Fettis, H. E., and Caslin, J. C., Ten Place Tables of the Jacobian Elliptic 
Functions, Aerospace Research Laboratories, 1965. 

Pendulum With a Rotational 
Vibration 

B. A. Schmidt1 

This work involves a pendulum made up of a mass, a pivoted 

1 Assistant Professor, Department of Mathematics, Central Michigan Uni­
versity, Mt. Pleasant, Mich. 48859 

Manuscript received by ASME Applied Mechanics Division, May, 1980; final 
revision, September, 1980. 

200 / VOL. 48, MARCH 1981 Transactions of the ASME Copyright © 1981 by ASME
  Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



BRIEF NOTES 

Fig. 1 The pendulum 

weightless rod, and a spring. The mass is constrained to maintain 
its axial position on the rod, but is allowed to move rotationally on 
the rod under the influence of the spring. The pivot is vibrated ro­
tationally at a high frequency about a vertical axis. It is found that, 
in some conditions, the vibration causes new stable equilibrium 
positions. 

I n t r o d u c t i o n 
The vibrated pendulum has been studied by many investigators. 

Stephenson [1] considered the plane pendulum subjected to a vertical 
vibration applied at the pivot. Lowenstern [2] considered several 
devices including the vibrated spherical pendulum. Phelps and 
Hunter [3] provided a thorough exposition of the plane pendulum with 
a vertical harmonic vibration at an unrestricted frequency. Miles [4] 
considered the stability of the downward vertical position of a 
spherical pendulum subjected to a horizontal vibration. Sethna and 
Hemp [5] studied the gyroscopic pendulum to which a high frequency 
vertical vibration was applied. Several authors including Howe [6] 
and Bogdanoff and Citron [7] have investigated the effects of random 
vertical vibrations applied to plane pendulums. Ryland and Meiro-
vitch [8] considered the plane flexible pendulum with a vertical har­
monic vibration at an unrestricted frequency. 

In this work, the effect of a rotational vibration is investigated. The 
pendulum is allowed to have torsional flexibility so that gyroscopic 
forces can occur. The pendulum is shown in Fig. 1. The mass is a wheel 
whose axis coincides with the axis of the rod. There is a constraint 
which prohibits the mass from moving along the rod but the mass is 
allowed to rotate on the rod under the influence of the spring. A small 
rotational harmonic vibration is applied to the pivot about a vertical 
axis. The frequency of the vibration is large with respect to the natural 
frequency of the motion of the pendulum under the influence of 
gravity, while the frequency of the vibration is not large with respect 
to the natural frequency of the rotational motion of the mass on the 
rod under the influence of the spring. 

The method of averaging [9] is used to replace the equations of 
motion by differential equations which approximately describe the 
motion. These equations are examined to find stable equilibrium 
positions. It is found that there are new stable equilibrium positions 
that occur because of inertia forces caused by the vibration. 

T h e Ana lys i s 
The position of the pendulum is described by the variables 6, 0, and 

\p. 0 is a rotation of the pendulum about 73 and ^ is a rotation of the 
mass about £3. The vibration is given by d = e sin vt. The equations 
of motion are 

(12 + m r2)ij> + (Ig — I\ — mr2) sin 0 cos <j> e2v2 cos 2 vt 

+ Is\j/ sin 0 ev cos vt + mrg sin 0 + c\ 0 = 0 

and 

hiip — tv2 sin vt cos <j> — 0 sin <j> ev cos VT) + c$ + K\p = 0, 

where Ii, 1% and 73 are moments of inertia about axes through the 
center of the mass parallel to ta, 73, and £3, respectively, m is the mass, 
r is the distance from the pivot to the center of the mass, K is the 
spring constant, ci and c<i are damping coefficients, t is time, and the 
dot indicates the derivative with respect to time. 

The problem is restricted so that the amplitude of the vibration, 
e, is positive and near zero and the frequency v is of the order e_1 and 
the spring constant K is of order v2. These restrictions allow the 
equations of motion to be presented in terms of the small parameter 
e. Let r = vt,I = h (h + mr2)-1, k2 = Kh'1 v~2, e28 = mrg (72 + 
mr2)~1v~2, eai = c\v~1(l2 + mr2)-1, ea^ = ci v~r I3-1, and let the 
prime indicate differentiation with respect to T. The equations of 
motion become 

<j>" + t2(I — 1) sin 0 cos 0 cos2 r 

+ el\p' sin (j> cos T + e2 8 sin 0 + 6a i0 ' = 0 

and 

\p" — i cos 0 sin T — e0' sin 0 cos T 

+ k2\p + ea2ip' = 0. (la,b) 

In this representation of the equations of motion, the variables, and 
parameters are dimensionless. The parameter z is restricted to be 
positive and near zero, the parameters 1,8, k2, a\, and 02 are positive 
and independent of e. In this analysis, two other restrictions are im­
posed. They are 

1 k2 is not near 1, i.e., k2 — 1 is independent of e. 
2 The initial conditions i^(0) and i^'(0) are of order e. 
To change the equations of motion, (1), into four equations in the 

standard form for the method of averaging the following transfor­
mation is made. Let 

<j>' = eco 

xp = eu cos kr+ ev sin kr + e(k2 — 1 ) _ 1 cos <j> sin r 

\j/' = —euk sin kr + evk cos kr 

— e(k2 — l ) - 1 4>' sin 0 sin T + e(k2 — 1 ) _ 1 cos <j> cos T. (2 a,b,c) 

Equations (2) transform equations (1) into four first-order differential 
equations in the variables <j>,w,u, and v. Equations (26) and (2c) are 
used with the variation of parameters technique. The third term in 
(26) and the third and fourth terms in (2c) are included to remove 
large terms in the first-order differential equations. Differentiation 
of (2a) and substitution of ( la) , (2a), and (2c) give an equation in­
volving to', 4>,<J>,U, and v. Differentiation of (2c) and substitution of 
(16), (2a), and (2c) give an equation involving u' and v'. This, along 
with the variation of parameters technique gives an equation for u' 
and an equation for v'. Then, if (2a) is included, there are four first-
order equations in the standard form for the method of averaging. 
They are 

60) 

- 6 ( 7 -

— e Ikv 

1) sin 

sin <f> 

— t 8 sin <j> — 

-ek-1 

- a 2 ( f e 2 

to sin 

- 1 ) 

<t> cos 4> cos2 

cos kr cos T 

eai co 

4> COS T + 0 2 
_ 1 COS 0 COS T 

T + elku 

- el(k2 -

ku sin kr 

+ 2(k2 -

sin 

1) 

0 sin k 
_1 sin 0 

— a 2kv cos 

D-_1 co sin 

rcosr 

COS 0 COS2 T 

kr 

0 COS T sin kr. 

(3a-c) 
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(/ = ek~l [u> sin 0 cos T + a2ku sin kr - a2ku cos kr 

— a2(k
2 — 1 ) _ 1 cos 0 cos r 

+ 2(fe2 - l ) - 1 a) sin ^ cos T] cos fer. (3d) 

These equations are in the standard form for the method of averaging. 
Averaging equations (3) gives 

* ' = efi 

fi' = - e \ (I — 1) sin $ cos $ - t\I(k2 — 1) _ 1 sin $ cos $ 

— e5 sin $ — ta i fi 

U' = -da2U 

V' = -t\a2V, (4a-d) 

where $, fi, U, and V are the averaged variables corresponding to 0, 
u, u ,andt ) . 

Equations (4) can be analyzed in a variety of ways. In this investi­
gation, equilibrium solutions are found and stability of these solutions 
is determined. By means of a theorem of Sethna [10] it can be stated 
that there exists an almost periodic solution of equations (3) which 
approaches an equilibrium solution of equations (4) as e —• 0 (for all 
T) and that the stability properties of this solution of equations (3) 
are the same as the stability properties of the zero solution of the 
variation equations. In the remainder of this work, the equilibrium 
solutions of equations (4) are found and stability is judged by the 
variation equations. 

Equations (4) indicate there is equilibrium if 

0 = fie 

0 = (13 cos $,, + 5) sin $<, 

0=Ue 

0=Ve, . (5a-d) 

where $ e , Qe, Ue, and Ve are equilibrium values of $, fi, U, and V, 
and j3 = \ (I — 1 + I(k2 — 1)_1). Prom equations (5) it can be seen that 
equilibrium requires that sin $ e is zero or 

P cos * e + 8 = 0. (6) 

Equilibrium is considered when Qe, Ue, and Ve are all zero and 

1: * e = 0, 

or 

2: * e = r, 

or 

3: $ e is an angle described by equation (6) with $ e ^ 0, 7r. 

Equilibrium when sin $ e = 0 and /3 cos $ e + 5 = 0 is not considered. 
For this case, Sethna's theorem does not apply and the variation 
equation is not useful. Stability could be judged, however, by analysis 
of the right-hand side of equation (5b). 

Stability of these equilibrium positions and of the corresponding 
almost periodic solutions of equations (3) can be determined by ex­
amining the variation equations. The variation equations are 

* i ' = efii 

fit' = - «(/8 COS 2 $ e + <5 COS $ e ) $ i - fOifii 

Ui' = - ei a2Ui 

Vi' = -da2Vl, (7a-d) 

where $ i , fii, U\, and Vi are the variations of $ , fi, U, and V from 
their equilibrium values <f e, fie, Ue, and Ve. Since the zero solutions 
for (7c) and (Id) are stable they need not be considered further. 
Stability depends only on equations (7a) and (76) and since the 
coefficient of fix in (76) is negative, stability depends only on the 
coefficient of $ i in equation (76). If it is negative, there is stability. 

For the equilibrium position in Case 1, i.e., $ e = 0, the coefficient 
of $ i is - ((/3 + 8) and then the requirement for stability is 

P>-8 

For the equilibrium position in Case 2, i.e., $ e = TV, the coefficient 
of $ i is — e(/S — 8) and then the requirement for stability is 

P>8. 

Consider the equilibrium positions mentioned in Case 3. Equation 
(6) indicates that if/? < —8, there is equilibrium in either the first or 
fourth quadrants and if fl > 8, there is equilibrium in either the second 
or third quadrants. Using equation (6) to remove $ e from the coeffi­
cient of $ i , in equation (7), this coefficient becomes 

e(5 -j0)(g + j3) 

For $ e in the first or fourth quadrants, i.e., /5 < —5, this coefficient 
is negative which indicates stability. For $<, in the second or third 
quadrants, i.e., /3 > 8, the coefficient of $ i is positive which indicates 
instability. 

It can be noted that Ue = 0 and Ve = 0 implies an equilibrium value 
for \p: \pe = 0. Then in summary, it can be said that the stable equi­
librium positions are 

1: \pe = 0, * e = 0, when /3 > -8 
2: \pe = 0, $ e = TV, when /3 > 8 

and 

3: \pe = 0, $ e is a first or fourth quadrant angle given by 
equation (6) when /3 < —8. 

The unstable equilibrium positions are 

1: fe = 0, * e = 0, when /? < -8 
2: \pe = 0, *G = 7T, when /? < 8 

and 

3: i/'e = 0, $ e is a second or third quadrant angle given by 
equation (6), when (3 > 8. 

From Sethna's theorem, it is known that there are almost periodic 
solutions of (3) (or (1)) which approach these equilibrium solutions 
as e ->- 0. 

Conclusion and Remarks 
The analysis shows that, depending on the frequency of the vi­

bration, the spring constant, the moments of inertia, the radius, 
gravity, and the initial conditions, there can be stable motion near 
several fixed positions. They are (a) the downward vertical position; 
(6) the upward vertical position; and (c) two downward nonvertical 
positions (first and fourth quadrants of </>). The positions mentioned 
in (6) and (c) are caused by two inertia forces created by the vibration. 
One of these is centrifugal in nature. The other could be described in 
gyroscopic. 

The first of these inertia forces, the centrifugal force, is shown by 
the first term on the right of equation (46) and it comes from the term 
(̂ 3 — I\ — mr2) sin <j> cos <j> e2 v2 cos2 VT in the first of the original 
equations of motion. This force has a stabilizing effect on the positions 
at <t> = 0,7r if mr2 < I3 —12, i.e., if the pendulum is short and wide, and 
it has a destabilizing effect on these positions if the pendulum is long 
(mr2 > I3 —12). Also, this force has a stabilizing effect on the positions 
in the first and fourth quadrants of if> if the pendulum is long (mr2> 
Is ~ I2) and it has a destabilizing effect on these positions if the 
pendulum is short (mr2 <h — I2). 

The gyroscopic force is shown by the second term on the right of 
equation (46). This comes from the term tvl^ sin (j> cos VT in the first 
of the original equations of motion, This force can be a much stronger 
influence than the centrifugal force because of k2 — 1 in the denomi­
nator. The quantity k2 — 1 can be close to zero but it is restricted to 
be independent of t. If k2 — 1 were of order e a different analysis would 
be needed. The gyroscopic force has a stabilizing influence on the 
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positions at r/J = 0, 7r if k 2 > 1 and a destabilizing influence on these
positions if k 2 < 1. The gyroscopic force has a stabilizing influence on
the positions in the first and fourth quadrants of r/J if k 2 < 1 and a
destabilizing influence on these positions if k 2 > 1.
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Stress Distribution Around a
Circular Hole in Square Plates,
Loaded Uniformly in the Plane,
on Two Opposite Sides of the
Square

M. Erickson1 and A. J. Durelli2

The complete stress distribution around a circular hole, located in
the center of a square plate, has been determined photoelastically
for the case of the plate loaded uniformly on two opposite sides. The
study was conducted parametrically for a range of the ratio D/W of
the diameter of the hole to the side of the square from 0.20 to 0.83.
The results obtained permit the determination of the stresses for
any biaxial condition and verify a previous solution obtained for the
case of the pressurized hole. The experimental procedure is briefly
described.

Introduction
The classical problem of the stress distribution around a circular

hole in an infinite plate subjected to a uniaxial uniform loading in the
plane of the plate was solved by Kirsch [1] in closed form. The ap­
preciably more complicated case of the finite plate with the circular
hole was solved by Howland [2] using an infinite series solution, but
results were evaluated only for D/W < 0.5, D being the diameter of
the hole and W the width of the plate. The distribution of stress for
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Fig. 1 Loading device used to apply uniform pressure to two opposile sides
of a square plate

Fig. 2 Typical Isochromatic pallern around a circular hole In a square plate
subjected to uniform pressure on two opposite sides

the cases when D/W > 0.5 was obtained experimentally by Wahl and
Beeuwkes [3]. The stress-concentration factors referred to both the
gross area and the net area. for the total range of D/W values are given
in [4]. The case of the very large hole in the plate, when D/W ap­
proaches one presented some problems of interpretation. which have
been dealt with in [5].

The stress distribution for the case of a square plate with a circular
hole was solved experimentally [6] when a uniform pressure is applied
inside the hole, or what is equivalent [7], when the four sides of the
square are subjected to uniform pressure. The problem of the square
plate with a circular hole, subjected to in-plane uniform pressure
applied to two opposite sides of the plate, has not been solved. The
problem is important and if the solution were available, the solution
of the previously mentioned problem for any ratio of biaxiality could
be obtained as a special case by superposition. That is the problem
dealt with in this Note. The solution is obtained photoelastically for
a range of D/W values from 0.20 to 0.83.

Test Procedure
The analysis was conducted in a 3-in-sq. ~-in-thick (Homalite 100)
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positions at r/J = 0, 7r if k 2 > 1 and a destabilizing influence on these
positions if k 2 < 1. The gyroscopic force has a stabilizing influence on
the positions in the first and fourth quadrants of r/J if k 2 < 1 and a
destabilizing influence on these positions if k 2 > 1.
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Stress Distribution Around a
Circular Hole in Square Plates,
Loaded Uniformly in the Plane,
on Two Opposite Sides of the
Square

M. Erickson1 and A. J. Durelli2

The complete stress distribution around a circular hole, located in
the center of a square plate, has been determined photoelastically
for the case of the plate loaded uniformly on two opposite sides. The
study was conducted parametrically for a range of the ratio D/W of
the diameter of the hole to the side of the square from 0.20 to 0.83.
The results obtained permit the determination of the stresses for
any biaxial condition and verify a previous solution obtained for the
case of the pressurized hole. The experimental procedure is briefly
described.

Introduction
The classical problem of the stress distribution around a circular

hole in an infinite plate subjected to a uniaxial uniform loading in the
plane of the plate was solved by Kirsch [1] in closed form. The ap­
preciably more complicated case of the finite plate with the circular
hole was solved by Howland [2] using an infinite series solution, but
results were evaluated only for D/W < 0.5, D being the diameter of
the hole and W the width of the plate. The distribution of stress for
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Fig. 1 Loading device used to apply uniform pressure to two opposile sides
of a square plate

Fig. 2 Typical Isochromatic pallern around a circular hole In a square plate
subjected to uniform pressure on two opposite sides

the cases when D/W > 0.5 was obtained experimentally by Wahl and
Beeuwkes [3]. The stress-concentration factors referred to both the
gross area and the net area. for the total range of D/W values are given
in [4]. The case of the very large hole in the plate, when D/W ap­
proaches one presented some problems of interpretation. which have
been dealt with in [5].

The stress distribution for the case of a square plate with a circular
hole was solved experimentally [6] when a uniform pressure is applied
inside the hole, or what is equivalent [7], when the four sides of the
square are subjected to uniform pressure. The problem of the square
plate with a circular hole, subjected to in-plane uniform pressure
applied to two opposite sides of the plate, has not been solved. The
problem is important and if the solution were available, the solution
of the previously mentioned problem for any ratio of biaxiality could
be obtained as a special case by superposition. That is the problem
dealt with in this Note. The solution is obtained photoelastically for
a range of D/W values from 0.20 to 0.83.

Test Procedure
The analysis was conducted in a 3-in-sq. ~-in-thick (Homalite 100)
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Fig. 3 Stress distributions on inner boundary of a round hole in a square plate 
subjected to uniform pressure on two opposite sides (average stress on the 
net section used for comparison) 

specimen (Fig. 1). The uniform pressure is applied by means of a 
specially built device as described in [8], Two rubber hoses, one placed 
on each of the opposite sides of the plate are used. The deformation 
of the pressurized hose is restrained by Plexiglass sheets. The loading 
frame had to be calibrated to determine the amount of pressure ac­
tually applied to the specimen. For this purpose, a strain gaged load 
cell was specially designed. The' average fringe order was computed 
using the applied pressure and the fringe value of the material and 
a check obtained by algebraically averaging the areas above and below 
the zero axis for those specimens with high D/W. 

Seven specimens were used with the inner hole diameter varying 
from 0.6 in. to 2.5 in. giving D/W values from 0.2 to 0.83, where D is 
the hole diameter and W the width of the specimen. Dark field and 
light field photographs were taken in a diffused light polariscope of 
the seven specimens, subjected to pressure sufficient to produce a 
maximum of about 5 fringes (Fig. 2). Fractional fringe orders were 
recorded using Tardy's method of compensation at every 10° at the 
edge of the hole from 0° (horizontal) to 90° (vertical). Readings were 
also taken on the outer edge of the plate at the 0° and 90° points. A 
calibration test on a 2.5-in-dia round disk of the material gave a ma­
terial constant of 156 lb/in./fringe. 

The results obtained are given as stress distributions along the 
inside and the outside boundaries (Figs. 3 and 4), and as stress con­
centrations at the intersection of the longitudinal and transverse axes 
with the boundary of the hole. All values are given parametrically as 
functions of D/W. These results permit, by superposition, the de­
termination of stresses for any ratio of biaxial loading of the plate. The 
case of equal biaxiality was computed and is shown in Fig. 5. The 
values obtained verify those previously published for the case of the 
hydrostatically loaded hole [6], using the transformation explained 
in [7]. 

It may be noted that, in the present problem, Kt increases as D/W 
increases while for the case of circular holes in long rectangular plates, 
Kt decreases as D/W increases. 
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Fig. 4 Stress distributions on outer boundary of a square plate with a round 
hole subjected to uniform pressure applied to two opposite sides of the plate 
(average stress on the net section used for comparison) 

I I i"t|i I t t 

Fig. 5 Stress-concentration factors for a round hole in a square plate 
subjected to a uniaxial uniform pressure and computations for the biaxial 
case 
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Plana r Motion of a Rigid Body 
With a Frict ion Rotor 

E. V. Wilms1 and H. Cohen2 

We consider a rigid body in planar motion which is free of all ex­
ternal forces. A rigid rotor of radius r is inserted in a cylindrical cavity 
inside the body and is acted upon by a normal force, and a friction 
force at the circumference. The combined system is illustrated in Fig. 
1, and the forces acting on the rotor are indicated in Fig. 2. The system 
has similarities to those considered in [1, 2], except that in the present 
study the analysis is exact, and not dependent on a small angle ap­
proximation. The present problem has possible application in the 
damping of spacecraft rotations. 

The center of mass of the outer body is at point 0, and the centers 
of mass of the entire system and of the rotor are at points G and A, 
respectively. The *y-axes are attached to the outer body. The angular 
velocity of the outer body is </> and that of the rotor is 4> + 6. Since there 
are no external forces applied, the point G remains fixed, and the 
angular momentum h with respect to G is a constant. We then 
have 

h = $1+ 8IA- (1) 

Here / = moVo2 + WAVA2 + -fo + I A, where )jo and T)A are the distances 
indicated in Fig. 1, mo and m,A are the masses of the outer body and 
of the rotor, respectively, I a and I A are the moments of inertia of the 
outer body and the rotor with respect to 0 and A, respectively. 

The equations of motion of the rotor are then 

N(cos \p + fis sin \f/) = TUA^A <t>2, 

N(sm \p - /is cos \p) = —ITIAVA 4>, 

IAQ> + 8) = fiNrs. 

Here fi is the coefficient of friction, and s = sgn 8. 
Combining equations (2a) and (26) 

N-- mAi)A 

(1 + M 2 ) 1 / 2 

Combining equations (1), (2c), and (3) 

.. firmAriA 

(ft + 04)1/2. 

Equation (4) may be written 

s(ft + j)4)1'2. (4) 

(5) 

where 

lxrmAr]A 

' I'd + M2)1 /2 ' 
I' = I-IA, (3 = a / ( l - a 2 ) 2U/2 

Equation (5) indicates that we will obtain real solutions for ij> only as 
long as /? is real. This will be true only as long as a < 1. Physically it 
is always possible to construct a system so that this inequality is vio­
lated. The difficulty encountered is an illustration of Painleve's 
paradox, some of the earliest examples of which are found in [3, 4]. 
The need for further study of problems of this kind was suggested by 
Klein in [4]. The difficulty arises because the Coulomb friction law 
is not always compatible with the equations of rigid-body dynamics, 
and some elasticity must be taken into account. 

Equation (5) may be solved to yield 
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Fig. 1 The system 

/jLNsqnB 

Fig. 2 The forces acting on the rotor 

(6) 

(7) 

, o- • ( 8 ) 

1 - sfo0t 
Here 6Q is the initial value of 8. Equation (8) is valid only if s is constant 
over (0,£). 

We rewrite equations (6) and (8) as 

(2a) 

(zb) 

(2c) 

(3) 

1 - s/30ot' 

Here <j>o is the initial value of 0 at i = 0 . 
Equations (2a), (2b), and (5) yield 

* / P + fl 
tan w = s . 

Equations (1) and (6) yield 

lA(e-e0) = -s mV 

l-st' 

St' 

1 -st' 

(9) 

(10) 

where 

t' = foot and 8' •• 
Ho 

There are 3 cases which must be considered. We will take <j>o > 0 
throughout with no loss in generality. 

Case 1: d'<, > 0. Then equations (9) and (10) become 

io >,. i . t' 
, - - „ (ID 

1-t' 1 - t ' 
Equations (11) indicate that 8' = 0, when t' = B'o/1 + 8'0. At this time 
<t> = 0o(l + ^'o). After this time the system rotates with a constant 
angular velocity and no relative motion between the rotor and the 
outer body. 

Case 2: 6\ < — 1. Then equations (9) and (10) become 

4, = - i ° _ ; 6' = 8'0 + — . (12) 
i + f i + t' 

Equations (12) yield 8' —• 1 + 8'0 and 4> — 0 as t — °°. 
Case 3: - 1 < 0'o < 0. Equations (12) indicate that 8' = 0 and 4> 
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= 0o(l + O'o) when t' = —O'o/l + 8'o- After this time the two bodies 
rotate with no relative motion. We see that the behavior is quite dif­
ferent in Cases 2 and 3. 
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Fig. 1 Elastic frequency response function with resonance poles 

Viscoelastic Responses of Finite 
Bodies by Quadrature Form of 
Correspondence Principle1 

G. Dasgupta2 

Alternative forms of the elastic-viscoelastic analogy for numerically 
obtained frequency response functions have been reported for solids 
of similarly and dissimilarly viscoelastic in bulk and shear in [1,2], 
respectively. It is herein demonstrated that the same integrals can 
be numerically evaluated to obtain viscoelastic responses of finite 
bodies even though the harmonic response functions have singu­
larities at the resonance frequencies. Crucial aspects of the algorithm 
regarding the truncation of numerical quadrature in the neighbor­
hood of the poles are addressed in this Note. 

Introduction 
The frequency response functions for field variables, such as 

stresses, displacements, etc., of mechanical systems of practical en­
gineering interest, are generally computed with time harmonic inputs 
using computer codes based on spatial discretization methods. These 
functions grow indefinitely at the resonance frequencies for bounded 
elastic systems, as depicted in Fig. 1. In fact, it is customary to un­
dertake a separate eigenvalue search to evaluate numerically the 
resonance frequencies to a satisfactory degree of accuracy. For the 
purpose of design-analysis it is essential to obtain the frequency re­
sponse functions with various damping characteristics of the system. 
The classical form for the elastic-viscoelastic analogy cannot be em­
ployed directly since a closed-form solution for the response function 
is seldom available for bodies of arbitrary shapes. It is, therefore, 
computationally economical to implement the numerical form of the 
elastic-viscoelastic correspondence principle rather than perform 
fresh computations of the entire system with different damping 
properties. 

The form of the quadrature expressions in [1, 2] suggests that the 
poles, which are introduced by the kernel to transform the elastic 
solutions to the viscoelastic domain, will be inside the bottom half of 
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the complex plane. For infinite and semi-infinite bodies the response 
functions decay rapidly as the frequency increases indefinitely. These 
functions are also smooth and bounded. There is no computational 
difficulty encountered in implementing the numerical integration 
along the real line, say by employing a Simpson-type rule. However, 
for finite bodies the response functions will have singularities in the 
form of poles at the resonant frequencies, refer to Fig. 1. A straight­
forward numerical integration in the neighborhood of the poles on 
the real axis can incur undesirable computational errors. A pertinent 
step in this context is to determine the contribution of the kernel in 
the computation of the residue arising out of the resonance poles. The 
objective of this Note is to demonstrate that reliable viscoelastic re­
sponses can still be obtained via the quadrature forms of the corre­
spondence principle if adequate care is taken to select the limits of 
the numerical integration in the neighborhood of the resonance poles. 
The local antisymmetry of frequency response functions yields zero 
net contribution when the quadrature is interpreted as the Cauchy 
principal value. The analysis is presented in the following section. 

Effects of Poles 
The kernels for the alternative representations of the elastic-vis­

coelastic correspondence principle for complex shear modulus [1], and 
for the complex Poisson's ratio [2], associated with solids similarly 
and dissimilarly viscoelastic in bulk and shear, respectively, have very 
similar structures. In this Note only the first case, i.e., with a fre­
quency-dependent complex shear modulus, fi*, is illustrated for 
brevity. A general nondimensional elastic frequency response function 
is indicated by /(to), in which co is the nondimensional frequency of 
excitation associated with the elastic shear modulus fi. An n-degree-
of-freedom system has 2rt real resonance frequencies at ± Ay, 7 = 1 
to n. It will be assumed, without any loss in generality, that the fre­
quency response function can be represented in the following form: 

/(«)' -F(u)/U\ 
j-i 

• v (1) 

in which F(w) is an infinitely smooth real function. It is recognized 
in the aforementioned form that the only singularities for the fre­
quency response function are due to the resonance frequencies and 
they occur symmetrically about the origin. 

Now the nondimensional viscoelastic response function /*(u>) can 
be obtained in the form 

f*(<i>) = /(a)*) [classical analogy] 

= | f{u>) • K{a>, a,/3)dw [alternative analogy] (2) 
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Alternative forms of the elastic-viscoelastic analogy for numerically 
obtained frequency response functions have been reported for solids 
of similarly and dissimilarly viscoelastic in bulk and shear in [1,2], 
respectively. It is herein demonstrated that the same integrals can 
be numerically evaluated to obtain viscoelastic responses of finite 
bodies even though the harmonic response functions have singu­
larities at the resonance frequencies. Crucial aspects of the algorithm 
regarding the truncation of numerical quadrature in the neighbor­
hood of the poles are addressed in this Note. 

Introduction 
The frequency response functions for field variables, such as 

stresses, displacements, etc., of mechanical systems of practical en­
gineering interest, are generally computed with time harmonic inputs 
using computer codes based on spatial discretization methods. These 
functions grow indefinitely at the resonance frequencies for bounded 
elastic systems, as depicted in Fig. 1. In fact, it is customary to un­
dertake a separate eigenvalue search to evaluate numerically the 
resonance frequencies to a satisfactory degree of accuracy. For the 
purpose of design-analysis it is essential to obtain the frequency re­
sponse functions with various damping characteristics of the system. 
The classical form for the elastic-viscoelastic analogy cannot be em­
ployed directly since a closed-form solution for the response function 
is seldom available for bodies of arbitrary shapes. It is, therefore, 
computationally economical to implement the numerical form of the 
elastic-viscoelastic correspondence principle rather than perform 
fresh computations of the entire system with different damping 
properties. 

The form of the quadrature expressions in [1, 2] suggests that the 
poles, which are introduced by the kernel to transform the elastic 
solutions to the viscoelastic domain, will be inside the bottom half of 

1 Research is sponsored by a grant of the National Science Foundation 
ENV77-22524. 

2 Assistant Professor of Civil Engineering and Engineering Mechanics, Co­
lumbia University, New York, N.Y. Mem. ASME. 

Manuscript received by ASME Applied Mechanics Division, June, 1980; final 
revision, September, 1980. 

the complex plane. For infinite and semi-infinite bodies the response 
functions decay rapidly as the frequency increases indefinitely. These 
functions are also smooth and bounded. There is no computational 
difficulty encountered in implementing the numerical integration 
along the real line, say by employing a Simpson-type rule. However, 
for finite bodies the response functions will have singularities in the 
form of poles at the resonant frequencies, refer to Fig. 1. A straight­
forward numerical integration in the neighborhood of the poles on 
the real axis can incur undesirable computational errors. A pertinent 
step in this context is to determine the contribution of the kernel in 
the computation of the residue arising out of the resonance poles. The 
objective of this Note is to demonstrate that reliable viscoelastic re­
sponses can still be obtained via the quadrature forms of the corre­
spondence principle if adequate care is taken to select the limits of 
the numerical integration in the neighborhood of the resonance poles. 
The local antisymmetry of frequency response functions yields zero 
net contribution when the quadrature is interpreted as the Cauchy 
principal value. The analysis is presented in the following section. 

Effects of Poles 
The kernels for the alternative representations of the elastic-vis­

coelastic correspondence principle for complex shear modulus [1], and 
for the complex Poisson's ratio [2], associated with solids similarly 
and dissimilarly viscoelastic in bulk and shear, respectively, have very 
similar structures. In this Note only the first case, i.e., with a fre­
quency-dependent complex shear modulus, fi*, is illustrated for 
brevity. A general nondimensional elastic frequency response function 
is indicated by /(to), in which co is the nondimensional frequency of 
excitation associated with the elastic shear modulus fi. An n-degree-
of-freedom system has 2rt real resonance frequencies at ± Ay, 7 = 1 
to n. It will be assumed, without any loss in generality, that the fre­
quency response function can be represented in the following form: 

/(«)' -F(u)/U\ 
j-i 

• v (1) 

in which F(w) is an infinitely smooth real function. It is recognized 
in the aforementioned form that the only singularities for the fre­
quency response function are due to the resonance frequencies and 
they occur symmetrically about the origin. 

Now the nondimensional viscoelastic response function /*(u>) can 
be obtained in the form 

f*(<i>) = /(a)*) [classical analogy] 

= | f{u>) • K{a>, a,/3)dw [alternative analogy] (2) 
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BRIEF NOTES 

= J G(co)da), say (2) 
(Cont.) 

in which <o* = y/[n*/fi]-u = a - i/3; a, ft > 0, i = v ^ T . 
The kernel, K(co, a, fi), is given by 

K(w, a, /3) = ^ 
TTJ/?2 + [a - o>]2) 

and is defined on the bottom half of the complex plane. The integral 
in (2) when interpreted as the Cauchy principal value can accom­
modate the singularities produced by the form of the frequency re­
sponse function in (1). The error due to truncation in the neighbor­
hood of a resonant singularity, Ay is 

Ij= f ' *'f(w) • K(o>, a, (3)dco 
JXj-tj 

This is evaluated as a line integral along a semicircular arc of radius 
tj centered at Ay on the lower half of the complex plane leading to 

Ij = Real [(i/2 X;) • Qj] 

in which 

. F(\j)-K(\j,a,P 
Wj 

II (Ay2-A„2) 

Thus, from the foregoing two equations, Ij is an imaginary number; 
hence, zero contribution of the kernel is due to a resonant frequency. 
The fact that a numerical scheme is possible employing the quadra­
ture representation (2) to compute the viscoelastic response is thus 
established. 

Error Estimation 
In a numerical evaluation of the integral in expression (2) the 

computation is to be terminated at a distance t from the pole. It is, 
therefore, desirable to obtain an error bound for such a truncation. 
The integral in (2) is examined between two closely spaced truncation 
points, as illustrated in Fig. 1, ey1 and ey2, ey2 > ey1, in the neighbor­
hood of a pole Ay, and will be indicated by Dj. As dictated by the 
Cauchy principal value definition the sum is computed from either 
side of the pole. This leads to 

D .... Qy (2Ay + ey*) (2Ay - ey2) 

' 2Ay S(2Ay + e y 2 ) ( 2 A ; - f ;
1 ) 

The limiting value of the aforementioned expression as ey1 tends to 
0 and ey2 tends to tj is 

2Ay (2Ay + tj) 

and the error term 

e(A) = 2fly(Ay) [for all poles] 

This suggests that in order to improve upon the accuracy the con­
tribution of the kernel in the neighborhood of the singularity, e(A), 
could be added to the numerical sum with truncated limits. 

Conclusions 
The alternative quadrature form of the elastic-viscoelastic analogy 

is formally extended to account for the singularities of the frequency 
response function pertaining to bounded elastic continua. It has been 
demonstrated that leaving equal intervals of the real axis on either 
side of the poles (due to the resonance phenomenon) errors due to 
numerical quadrature can be avoided. It is further illustrated that an 
estimated compensation due to the truncation can be incorporated 
in the viscoelastic responses so obtained by employing a numerical 
integration. Thus the alternative form of (2) can be reduced to 

/*(a») = S{fly(Xy)+fly(-Ay) + ry) 

in which 
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G(a))do>+ j G(o>)dco 

with the anticipation that A„+i is infinity (i.e., numerically set to a 
large number). 

The aforementioned quadrature formula avoids the singularities 
on the real axis and contains an estimated correction factor. The form 
suggests that the expression holds for a more relaxed condition on the 
elastic frequency response function, f(w). Piecewise continuous 
functions with finite jumps may be allowed between the resonant 
poles in the description of/(co); even then [1, 2] remain valid. 
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How to Optimally Support a 
Plate 

W. H. Yang1 

In practical applications, plates are often not supported along their 
boundaries. Properly located interior supports can greatly increase 
the load-carrying capacity of a plate. The optimal locations of N 
point symmetrical support for a uniformly loaded circular plate are 
calculated to substantiate the claim. The solutions are obtained for 
1 <N < <» under the theory of limit analysis of plates. The collapse 
load in each case is maximized by a search for the optimal support 
location. 

The Problem 
Optimal structural design [1] including optimal load and support 

distributions are nonlinear problems. Plasticity [2] of materials plays 
an important role in the optimal solutions. The limit analysis for 
plates is used in this Note as the basis such that the collapse load as 
a measure of load-carrying capacity of a plate is maximized by a search 
of optimal support location. 

The problem considered is a uniformly loaded circular plate with 
a constant yield moment Mo, resting on a set of symmetrically located 
point supports. We seek the optimal support location in terms of the 
distance, d, from a support to the center of the plate such that the 
limit load <?o is maximized. 

The number, N, of supports starts with one at d = 0, and increases 
to <= as the points approach a line support along a circle of optimal 
radius d. For each N, the optimal support location and the maximum 
limiting load q\ are obtained. 
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large number). 

The aforementioned quadrature formula avoids the singularities 
on the real axis and contains an estimated correction factor. The form 
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functions with finite jumps may be allowed between the resonant 
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In practical applications, plates are often not supported along their 
boundaries. Properly located interior supports can greatly increase 
the load-carrying capacity of a plate. The optimal locations of N 
point symmetrical support for a uniformly loaded circular plate are 
calculated to substantiate the claim. The solutions are obtained for 
1 <N < <» under the theory of limit analysis of plates. The collapse 
load in each case is maximized by a search for the optimal support 
location. 

The Problem 
Optimal structural design [1] including optimal load and support 

distributions are nonlinear problems. Plasticity [2] of materials plays 
an important role in the optimal solutions. The limit analysis for 
plates is used in this Note as the basis such that the collapse load as 
a measure of load-carrying capacity of a plate is maximized by a search 
of optimal support location. 

The problem considered is a uniformly loaded circular plate with 
a constant yield moment Mo, resting on a set of symmetrically located 
point supports. We seek the optimal support location in terms of the 
distance, d, from a support to the center of the plate such that the 
limit load <?o is maximized. 

The number, N, of supports starts with one at d = 0, and increases 
to <= as the points approach a line support along a circle of optimal 
radius d. For each N, the optimal support location and the maximum 
limiting load q\ are obtained. 
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BRIEF NOTES 

Mode 1 Mode 2 

Fig. 1 Circular plate and support configuration 

The method of analysis involves the standard upper bound for­
mulation and a minimization procedure over a set of test functions 
or collapse modes. The upper bound formulation begins with the 
virtual work statement, 

SS wV • (V • M)dA = q0 SS wdA (1) 

D D 

where M(x, y) is a 2 X 2 moment matrix function in D, V = (d/dx, 
d/dy) is a vector operator and w(x, y) is any kinematically admissible 
function [4]. If we integrate the left-hand side of (1) by parts using 
the divergence theorem and denote the scalar product operator of two 
matrices by: [3], equation (1) can be rewritten as a quotient, 

qo(M) = CCM:VVwdA I C(wdA (2) 

provided that JJwdA ^ 0 and M and w satisfy certain boundary 
D 

conditions [3], w(x, y) in (3) is now restricted to a class of functions 
which satisfy the kinematical boundary conditions and its second 
derivatives contained in the Hessian matrix VVu; are defined in the 
sense of distributions (such as line delta functions). The functions in 
this class are continuous and its first derivatives may possess finite 
jumps. 

An upper bound to qo(M) can be obtained by replacing M in (2) 
with a constitutively admissible one which is associated with a 
kinematically admissible w such that they together produce the 
largest integral in the numerator of (2). For a specific yield function, 
||M||2 — Mo ^ 0, this upper bound has the form, 

q0(M) < jj d
2w 

d£2 + d2w 

dv
2 \\J\dtdn/ 

\SS w\J\dl;dr) <q*(w) (3) 

where IIA/H2 is the Euclidean norm of M, (£, if) is the principal coor­
dinate of M along which M is diagonal and J is the Jacobian of the 
transformation from (x, y) to (£, rf). M 0 = 1 is assumed. 

Since q*(w) is a function of w only, the least upper bound q\ can 
be obtained by minimization in the space of kinematically admissible 
functions. The mathematical operations described thus far can be 
written in the form of a minimax problem 

<?/, = mm max 
M l 1=1 »M||2=1 ss M:VVwdA (4) 

where ||iu|i = |JJifdyl|, which is not a norm, only serves to nor-
D 

malize the kinematically admissible functions. 
The choice of w in (4) is still very wide. For regularly shaped plates 

in applications, the possible collapse modes as kinematically admis­
sible functions can often be enumerated. If the complete set of possible 
collapse modes \u>i \ i = 1,2,. . ,1} is identified, the search for mini-

Mode 3 Mode 4 

Mode 5 

EDGE MODES 

Mode 6 

CENTER MODES 

Fig. 2 Collapse modes 

mum of (4) over w is in a finite (/) dimensional space. The problem 
becomes computationally feasible. 

The algorithm used in the next section begins with a set of assumed 
collapse modes \u>i(r, 6, d)\i = 1, 2, . . , /) where (r, 8) is the polar 
coordinate and d the radial position of a support is regarded as a pa­
rameter. Each mode produces necessarily an upper bound to q*L such 
that 

ql ^ Qt (d) max 
\\Mh< Jjor-M:VVu>i(d)dA SS ibidA = 1 

(5) 

The minimum envelope of the set \qf\i = 1, 2, . . , I) is a function 
of d. The maximum of the envelope function gives the collapse load 
at the optimal d. Formally we can summarize the entire procedure 
described in this section as a max-min-max problem 

Qi = max min max 
d i | |M||2=i 

P f M:VVuJ;dA , CCwidA = 1 (6) 

D D 

assuming that |u>,-|i = 1, 2, . . , 1} is the complete set of all possible 
collapse modes. 

Optimal So lu t ions 
Let the dimensions be normalized with respect to the radius of the 

plate, a. The dimensionless support distance d = d/a and the angle 
do = ir/N are shown in Fig. 1. Six possible collapse modes are shown 
in Fig. 2. In each mode, the VVui assumes either a jump discontinuity 
such that 

llvv, "Ml2; |[du)/dn]| (7) 

along some yield lines with normal n or a constant curvature on a 
conical surface such that 
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30 

opt 

Fig. 3 Minimum envelope 

||VVi2>||2= - (8) 
r 

where [ ] denotes the jump and A is the height of the cone. For the 
remaining area VVu> = 0. 

The solution for each mode can be obtained by integrating (3). They 
are functions of d and N. 

it = M/ ,3 s ; n l \ _ \p\ 

q\ = sin 8i "/[I 
2 12 

_ _'o sin Bo 

qj = 6[d + (1 - d) cos 0Q] /id3 cos2 0O - 3d g ° C ° S ° + 21 
/ \ s in0 o / 

qt = 12/(d2 cos2 B0) 

qt = 6/(d3 - 3d + 2) 

qt = 12/d2 (9) 

where \ = d cos do, fi = VTT—"X2 , and qj = qfa2/Mo. 
The least upper bound solution q(d) over the set \qf\ 

q(d) = mm \qt(d)} (10) 
i 

is the minimum envelope shown in Fig. 3 schematically. The optimal 
solution can be obtained by a one-dimensional search on q(d). 

For each N, qopt and dop t are computed. qopt is always the inter­
section of two or more modal solutions qf. Some modal solutions 
approach °° at d = 0 or d = 1. These points which are of little interest, 
should be avoided in the computation. 

The gop t and the associated dopt are shown in Fig. 4 as functions of 
N. These are discrete functions. The curves between the function 
values only serve to connect the solutions with common mode com­
bination. For N = 1, modes 1,2,3,5 intersect. The N = 2 case involves 
modes 1 and 3. For N = 3 through N = 7, modes 2 and 3 prevail. For 
N > 8, the active modes are 3 and 6 with additional modes 4 and 5 as 

20 

Mo 

10 

(qrf/M0)„=24.55263037 

10.80 

0.78 

(d/a)„=0.69910372 

i i i I 

0.76 

d/a 

0.74 

0.72 

0.70 

10 

N 
15 20 

Fig. 4 Optimal solutions 

N -* =>. The intersection of qt and qt gives the asymptotic solu­
tions 

(9oPt)- = 24.55263037 

(dopt)- = 0.69910372 

The gaps between the connecting curves indicate mode changes 

(11) 

Final Remark 
Internal supports greatly increase the load capacity of a plate. A 

mere three point support optimally located provides 24.3 percent more 
load capacity than a simply supported plate along its entire boundary. 
A plate with a ring support of radius r - (dopt)- can ultimately carry 
more than twice the load of the same plate clamped along its boundary 
and more than four times of a simply support one. 

Intuitively, the benefit of internal support is obvious as many 
structures are built with them. But the exact locations of the supports 
to achieve maximum benefit are not known. Experimentally, these 
locations are not easy to find. First of all, the tests are destructive. 
Many specimens are needed to find the location for just one case. 
Second, the minimum envelope forms a cusp at dopt. The maximum 
load capacity falls sharply away from that point. 
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I An Application of Mixture 
Theory to Par t icu la te 
Sedimentation1 

E. M. Tory2 and D. K. Pickard.3 Constitutive equations for 
dispersions suffer from an inability to describe individual behavior. 
Even uniform spheres show a tremendous diversity of velocities, 
especially in dilute dispersions where cluster settling is important. 
(Much of the massive evidence of this diversity is summarized in [1].) 
Only the mean is important in many applications [2,3], but variability 
and autocorrelation of velocity are necessary to explain diffuse in­
terfaces, depletion of upper levels, and the difference between the 
mean velocity and that of the interface [4]. 

The variability of particle velocity occurs at all concentrations [1-3]. 
It does not emerge from the instability of some ordered arrangement, 
but is born with the random initial dispersion. Slurries may be uni­
form in the large, but their densities vary considerably from region 
to region. In very dilute dispersions, it is the paired particles which 
settle most quickly. The nonuniformity of spacing, reflected in vari­
ability of velocity, leads to a decrease in velocity (with increasing 
concentration) which is proportional to ij> rather than 01 '3 as it would 
be for any ordered arrangement [5[. At if> — 0.001, the mean sedi­
mentation velocity increases with time [6] as the suspension evolves . 
from its original randomness to a "demixed" state [6[. The mechanism 
proposed for this "demixing" is a gradual buildup of cluster size as 
pairs overtake singles, triplets overtake pairs and singles, etc. [7]. In 
these instances and at higher concentrations, it is precisely the dense 
regions which have the highest velocity. Particle flux occurs pre­
dominantly in the denser regions and return flow in the regions of 
lower density. This effect is so great that mean velocities for 0.001 < 
</> < 0.03 exceed the Stokes velocity [8,9], At higher concentrations, 
there is more interaction among particles [1]; associations are more 
transient [1] and times to traverse a fixed distance reflect this aver­
aging effect by becoming much less variable [9]. The variability and 
autocorrelation of velocity (which arise from the formation, persis­
tence, and breakup of clusters) are incorporated in a Markov model 
for sedimentation [1-4]. 

The alleged instability of sedimentation under small perturbations 
in concentration arises from the assumption that u = f((p) where / is 
monotone decreasing. Neither the assumption nor the view of per­
turbations holds in general. Though fluctuations in small regions can 
be substantial, global concentrations in a cylindrical section of a large 
tank change only slightly [3], With small cylinder/particle diame­
ter-ratios, global fluctuations are much larger [3] and there is little 
opportunity for cluster settling because wall effects for large clusters 
are huge [8]. Thus small columns provide the best opportunity to 

1 By C. D. Hill, A. Bedford, and D. S. Drumheller, and published in the June, 
1980, issue of ASME JOURNAL OF APPLIED MECHANICS, Vol. 47, pp. 261-
265. 

2 Professor of Mathematics and Computer Science, Mount Allison University, 
Sackville, N. B., E0A 3C0, Canada. 

3 Associate Professor of Statistics, Harvard University, Cambridge, Mass. 
02138. 

observe instabilities. The column which verified Jackson's predictions 
[10] had a diameter ratio of only 20. 

Despite the caveats just noted, there is ample scope for the appli­
cation of a deterministic version of a stochastic model for sedimen­
tation. We commend the authors for smoothly merging the gravita­
tional and diffusive aspects of sedimentation into a useful form. 
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Authors ' Closure 

The authors wish to thank Professors Tory and Pickard for their 
interesting comments and for bringing to our attention their work on 
a statistical theory of sedimentation. We anticipate that the contin­
uum and statistical approaches to the analysis of sedimentation will 
both continue to be useful. The field of gas dynamics provides an 
excellent analogy. The molecules of a gas also exhibit a "tremendous 
diversity of velocities," and large local variations in concentration as 
well, yet this has not prevented the continuum theories of gases from 
providing useful predictions when characteristic dimensions are large 
compared to the mean free path. The statistical theory of gases also 
continues to provide new results and insight, particularly at low 
densities. Neither approach shows the slightest tendency to supplant 
the other. 

In our paper we applied a very simple continuum theory for a liq­
uid-particle mixture to the problem of particle sedimentation. We 
included concentration gradients in the theory, which several authors 
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DISCUSSION 

have conjectured—and we concur—can model the effects of parti­
cle-particle impacts, or diffusivity. Given the simplicity of the theory, 
we consider the agreement with experiment which we presented in 
Fig. 2 of our paper to be very encouraging. We regard the relative 
smoothness of the experimental data that was obtained by Whelan, 
et al. (reference [29] and Fig. 2 of our paper) to be one indication of 
the appropriateness of a continuum approach. 

Professors Tory and Pickard observe that the simple theory which 
we have used cannot model such phenomena as the formation and 
breakup of clusters of particles, which occur particularly at low par­
ticle concentrations. Thus the continuum theory which we used would 
not be expected to be applicable to low concentrations, i.e., in the 
neighborhood of the cell interface. It is therefore interesting that the 
prediction of the experimentally observed cell interface position is 
so accurate (Fig. 3 of our paper). 

We note parenthetically that, in addition to the clumping which 
occurs due to hydrodynamic effects in the sedimentation of inert 
particles, red blood cells also collect into stacks (rouleaux) as a result 
of as yet undetermined physical or chemical processes. The theory 
we have used is certainly deficient in not modeling the effects of such 
clumping. However, in light of the current intense development of 
continuum theories having internal state variables and microstruc-
tural content, we do not believe that such effects are beyond the scope 
of a continuum theory. 

With regard to their comments on our result concerning stability, 
what we have shown is that the equations of the continuum theory 
are stable under perturbations of the state of uniform sedimentation 
when the coefficient of the diffusivity term is sufficiently large and 
are unstable otherwise. (We do not understand their comment about 
the velocity being assumed to be a monotone decreasing function of 
the concentration. Our stability result does not depend on such an 
assumption either explicitly or implicitly.) The perturbations, in order 
to have meaning in the context of the continuum theory, must have 
wavelengths which are large compared to the distances between 
particles. They cannot correspond to the local fluctuations mentioned 
by Professors Tory and Pickard. 

In closing, we reiterate our belief that the statistical and continuum 
approaches will be mutually complementary in the study of sedi­
mentation. 

Constitutive Equations of 
Elastoplastic Materials With 
Elastic-Plastic Transition1 

Y. F. Dafalias.2 The author presented a constitutive model 
which falls within the general framework of the "Bounding Surface" 
plasticity theories [1-6]. It will be instructive if the model can be 
viewed within this framework and this will be attempted here together 
with an effort to inform the interested reader about other publications 
of similar content. 

The salient feature of the paper under discussion is that if G rep­
resents the inverse plastic modulus associated with the so-called fully 
plastic state and determined by the consistency condition for the yield 
surface, the inverse plastic modulus G for points on loading surfaces 
within the yield surface (subyield states) is given by G = UG for 
metals, equation (19a), and G = G (G, U, u) for soils, abbreviated 
symbolic form of equation (196), with G (G, 0, u) = 0 and G (G, 1,0) 
= G. The variables U and u change within the range 0 < U < 1 and 
u<0as0<R<l, where R represents the ratio of the size of the 
loading to that of the yield surface. 

1 By K. Hashiguchi, and published in the June, 1980, issue of the ASME 
JOURNAL OP APPLIED MECHANICS, Vol. 47, pp. 266-272. 

2 Associate Professor, Department of Civil Engineering, University of Cali­
fornia, Davis, Calif. 95616. 

The foregoing is a particular case of the general formulation in [2-5], 
where if K = l/G and K = 1/G a relation of the form K = K(K, b, bin) 
was postulated (the notation here is changed slightly to conform with 
that of the author's). The 8 represents the distance in stress space 
between the stress point within the bounding surface (which is called 
a yield surface by the author) and a corresponding image point on the 
bounding surface, and 5,„ is the value of 5 at loading initiation. The 
K satisfies the conditions K (K, 5,„, <S,„) = °° and K (K, 0, o,n) = K, 
with K always obtained from the consistency condition for the 
hardening bounding surface. If yield initiates always from the center 
of the bounding surface and the actual and "image" stress points lie 
on the same radius emanating from the center [3, 5], 5;„ represents 
this radius and one immediately has the correspondence R •* 1 — 
(5/5;„). This particular form of the bounding surface formulation 
assumes that any stress point within the surface is at a quasi-elastic 
state, i.e., plastic deformation occurs always for stress rates directed 
"outward" with respect to the center and elastic unloading for "in­
ward" direction [3, 5, 7]. A finite purely elastic range for any direction 
can be easily introduced [5] as pointed out also by the author. On that 
basis and with the aforementioned definition of K, K and corre­
spondence between R and 5/6,„, the author's formulation is entirely 
equivalent to the bounding surface formulation. In fact, equation (33) 
of [2] can be recasted here as 

K^K + h (1) 
bin - b 

with h a material function. For metals K > 0 and by writing h = Kh 
[2], one has a complete correspondence between equation (19a) of the 
paper and equation (1) with 

l + h- -~U~HR) (2) 
bin - 0 

The form (1) for metals has been recently interpreted by means of 
statistical dislocation mechanics [7], and the importance of an asso­
ciated kinematic hardening rule has been demonstrated by linking 
it to the "back" residual dislocation stresses, contrary to the author's 
comment in his discussion about the relative unimportance of such 
hardening. 

Coming now to soils, the form (1) with zero kinematic hardening 
was used in a series of papers for a critical state bounding surface soil 
plasticity [3-5] with both qualitative and quantitative predictions of 
experimental results. The inclusion of G = l/K in the loading criterion 
by the author, equation (24) of the paper, in order to account for 
softening behavior when G < 0, has been already presented in [3-5]. 
In relation to this point observe from equation (1) that with K < 0 for 
a contracting bounding surface and stress ratios above the critical 
state line (shear loading at heavily overconsolidated state), it is pos­
sible to have a K varying from positive to zero to negative and zero 
again values as 5 diminishes and K —• 0 from negative values, indi­
cating unstable softening behavior (rising and falling stress-strain 
curve) until critical failure [3-5]. Thus, despite the difference in 
functional form, but not in essence, between equation (196) of the 
paper and equation (1) the author's model formulation and response 
for soils is essentially that of a bounding surface formulation. 

It is encouraging that Mr. Hashiguchi has independently reached 
a formulation within the general concept of the bounding surface 
which seems to offer a unifying approach for the characterization of 
materials with bounding states. In this sense it is hoped that the 
present discussion can be proved useful to the interested reader. 
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have conjectured—and we concur—can model the effects of parti­
cle-particle impacts, or diffusivity. Given the simplicity of the theory, 
we consider the agreement with experiment which we presented in 
Fig. 2 of our paper to be very encouraging. We regard the relative 
smoothness of the experimental data that was obtained by Whelan, 
et al. (reference [29] and Fig. 2 of our paper) to be one indication of 
the appropriateness of a continuum approach. 

Professors Tory and Pickard observe that the simple theory which 
we have used cannot model such phenomena as the formation and 
breakup of clusters of particles, which occur particularly at low par­
ticle concentrations. Thus the continuum theory which we used would 
not be expected to be applicable to low concentrations, i.e., in the 
neighborhood of the cell interface. It is therefore interesting that the 
prediction of the experimentally observed cell interface position is 
so accurate (Fig. 3 of our paper). 

We note parenthetically that, in addition to the clumping which 
occurs due to hydrodynamic effects in the sedimentation of inert 
particles, red blood cells also collect into stacks (rouleaux) as a result 
of as yet undetermined physical or chemical processes. The theory 
we have used is certainly deficient in not modeling the effects of such 
clumping. However, in light of the current intense development of 
continuum theories having internal state variables and microstruc-
tural content, we do not believe that such effects are beyond the scope 
of a continuum theory. 

With regard to their comments on our result concerning stability, 
what we have shown is that the equations of the continuum theory 
are stable under perturbations of the state of uniform sedimentation 
when the coefficient of the diffusivity term is sufficiently large and 
are unstable otherwise. (We do not understand their comment about 
the velocity being assumed to be a monotone decreasing function of 
the concentration. Our stability result does not depend on such an 
assumption either explicitly or implicitly.) The perturbations, in order 
to have meaning in the context of the continuum theory, must have 
wavelengths which are large compared to the distances between 
particles. They cannot correspond to the local fluctuations mentioned 
by Professors Tory and Pickard. 

In closing, we reiterate our belief that the statistical and continuum 
approaches will be mutually complementary in the study of sedi­
mentation. 

Constitutive Equations of 
Elastoplastic Materials With 
Elastic-Plastic Transition1 

Y. F. Dafalias.2 The author presented a constitutive model 
which falls within the general framework of the "Bounding Surface" 
plasticity theories [1-6]. It will be instructive if the model can be 
viewed within this framework and this will be attempted here together 
with an effort to inform the interested reader about other publications 
of similar content. 

The salient feature of the paper under discussion is that if G rep­
resents the inverse plastic modulus associated with the so-called fully 
plastic state and determined by the consistency condition for the yield 
surface, the inverse plastic modulus G for points on loading surfaces 
within the yield surface (subyield states) is given by G = UG for 
metals, equation (19a), and G = G (G, U, u) for soils, abbreviated 
symbolic form of equation (196), with G (G, 0, u) = 0 and G (G, 1,0) 
= G. The variables U and u change within the range 0 < U < 1 and 
u<0as0<R<l, where R represents the ratio of the size of the 
loading to that of the yield surface. 

1 By K. Hashiguchi, and published in the June, 1980, issue of the ASME 
JOURNAL OP APPLIED MECHANICS, Vol. 47, pp. 266-272. 

2 Associate Professor, Department of Civil Engineering, University of Cali­
fornia, Davis, Calif. 95616. 

The foregoing is a particular case of the general formulation in [2-5], 
where if K = l/G and K = 1/G a relation of the form K = K(K, b, bin) 
was postulated (the notation here is changed slightly to conform with 
that of the author's). The 8 represents the distance in stress space 
between the stress point within the bounding surface (which is called 
a yield surface by the author) and a corresponding image point on the 
bounding surface, and 5,„ is the value of 5 at loading initiation. The 
K satisfies the conditions K (K, 5,„, <S,„) = °° and K (K, 0, o,n) = K, 
with K always obtained from the consistency condition for the 
hardening bounding surface. If yield initiates always from the center 
of the bounding surface and the actual and "image" stress points lie 
on the same radius emanating from the center [3, 5], 5;„ represents 
this radius and one immediately has the correspondence R •* 1 — 
(5/5;„). This particular form of the bounding surface formulation 
assumes that any stress point within the surface is at a quasi-elastic 
state, i.e., plastic deformation occurs always for stress rates directed 
"outward" with respect to the center and elastic unloading for "in­
ward" direction [3, 5, 7]. A finite purely elastic range for any direction 
can be easily introduced [5] as pointed out also by the author. On that 
basis and with the aforementioned definition of K, K and corre­
spondence between R and 5/6,„, the author's formulation is entirely 
equivalent to the bounding surface formulation. In fact, equation (33) 
of [2] can be recasted here as 

K^K + h (1) 
bin - b 

with h a material function. For metals K > 0 and by writing h = Kh 
[2], one has a complete correspondence between equation (19a) of the 
paper and equation (1) with 

l + h- -~U~HR) (2) 
bin - 0 

The form (1) for metals has been recently interpreted by means of 
statistical dislocation mechanics [7], and the importance of an asso­
ciated kinematic hardening rule has been demonstrated by linking 
it to the "back" residual dislocation stresses, contrary to the author's 
comment in his discussion about the relative unimportance of such 
hardening. 

Coming now to soils, the form (1) with zero kinematic hardening 
was used in a series of papers for a critical state bounding surface soil 
plasticity [3-5] with both qualitative and quantitative predictions of 
experimental results. The inclusion of G = l/K in the loading criterion 
by the author, equation (24) of the paper, in order to account for 
softening behavior when G < 0, has been already presented in [3-5]. 
In relation to this point observe from equation (1) that with K < 0 for 
a contracting bounding surface and stress ratios above the critical 
state line (shear loading at heavily overconsolidated state), it is pos­
sible to have a K varying from positive to zero to negative and zero 
again values as 5 diminishes and K —• 0 from negative values, indi­
cating unstable softening behavior (rising and falling stress-strain 
curve) until critical failure [3-5]. Thus, despite the difference in 
functional form, but not in essence, between equation (196) of the 
paper and equation (1) the author's model formulation and response 
for soils is essentially that of a bounding surface formulation. 

It is encouraging that Mr. Hashiguchi has independently reached 
a formulation within the general concept of the bounding surface 
which seems to offer a unifying approach for the characterization of 
materials with bounding states. In this sense it is hoped that the 
present discussion can be proved useful to the interested reader. 
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Analysis and Performance of Fiber Composites. By Bhagwan D. 
Agarwal and Lawrence J. Broutman. John Wiley & Sons, Inc., 
New York. 1980. Pages xi-355. Price, $24.50. 

REVIEWED BY C. W. BERT1 

As the composite materials field unfolds, there is a need for text and 
reference books with more diversified viewpoints. Many of the early 
books were overbalanced in favor of the materials aspects, later books 
were perhaps overbalanced in favor of the mechanics aspects. This 
book aims to reach the middle ground between these two viewpoints. 
Thus it is more mechanics-oriented and less "descriptive" than 
Broutman and Krock's early text (Modern Composite Materials, 
Addison-Wesley, Reading, Mass., 1967), yet it is definitely oriented 
more toward materials and less toward structural mechanics than 
Robert M. Jones' more recent text (Mechanics of Composite Mate­
rials, McGraw-Hill, New York, 1975). 

This book was commissioned and reviewed by the Society of 
Plastics Engineers and is part of its monograph series. Thus it is un­
derstandable that it is perhaps most suitable as a textbook in an in­
troductory course on composites for undergraduates majoring in 
materials science, aerospace, mechanical, or civil engineering, rather 
than as a reference book or textbook for graduate students in me­
chanics. 

The first chapter is a very general introduction. Chapter 2 covers 
the strength, failure modes, and thermal expansion of unidirectional 
composites. Chapter 3 is devoted entirely to short-fiber composites, 
which is believed to be unique to this book. This topic is especially 
timely due to the current strong interest of the automotive industry 
in this kind of composite, due to its potential for large-volume, low-
cost production. Chapter 4 treats the elastic stiffness of a single 
orthotropic layer and its behavior under in-plane biaxial loading. 
Chapter 5 is concerned with the small-deflection, linearly elastic be­
havior of a thin laminate, based on the Kirchhoff hypothesis. 

Chapter 6 is a pot pourri: laminated behavior after first-ply failure, 
free-edge effects, fracture mechanics (including the recently proposed 
Whitney-Nuismer criteria), and an elementary treatment of the de­
sign of adhesive and mechanical joints. Chapter 7 is a very extensive 
treatment of the critically important topic of material damage due 
to fatigue, impact, and environmental interaction. In Chapter 8 is 
presented what is believed to be the first treatment in a textbook (as 
opposed to a reference book) of the usually neglected, yet truly im­
portant, topic of experimental characterization. 

The book is both well written and well illustrated. It is especially 
gratifying to see some of the failure modes introduced by means of 
actual microphotographs, supplemented by the usual schematic di­
agrams and mathematical analyses. Example problems suitable for 
individual attack or classroom assignment are interspersed 
throughout the book. For persons with less background in applied 
mathematics and advanced mechanics, there are Appendices on 
matrices and tensors and on the theory of elasticity. 

This book is highly recommended as an introductory textbook on 
the analysis and prediction of performance of composites. It is espe­
cially suitable for those persons with only an elementary background 
in solid mechanics. However, by the same token it may not contain 
much information of a reference nature for the experienced researcher 
in the field. Those interested in the structural analysis of compos­
ite-material plates must still turn to the aforementioned book by 
Jones or to a more recent book by Richard M. Christensen (Mechanics 
of Composite Materials, John Wiley & Sons, Inc., New York, 
1979). 

Similarity, Self-Similarity and Intermediate Asymptotics. By 
G. I. Barenblatt. Plenum Publishing Corp., New York. 1979. 
Pages xvii-218. Price $35. 

REVIEWED BY J. D. COLE2 

Have you ever wondered why some authors can write down simi­
larity forms for solutions (to p.d.e's say), based on simple dimensional 
considerations, others have to struggle to find the right form, to use 
deep analysis to uncover the critical exponents. This question is the 
starting point of the study by Dr. Barenblatt in a book which is an 
excellent translation from the earlier Russian edition. 

In a series of short chapters the author develops a general classifi­
cation for self-similar solutions illustrating his points by means of 
concrete examples, the only practical way here. The logical thread is 
the following: 

The basic concepts of dimensional analysis (II-theorem) are care­
fully presented first and used throughout. The examples of funda­
mental solution of the one-dimensional heat equation, and the 
propagation of a strong blast wave due to a point explosion are given 
as examples where pure dimensional analysis works to give self-similar 
solutions. Self-similarity is defined by u(r, t) = u0(t) f (r/r0(t)). The 
idea that these solutions are intermediate asymptotics valid after some 
time for a finite source, but for not too long or far (due to boundaries 
or weak shocks) is explained next. It is pointed out that the limit from 
the general solution (nonself-similar) to intermediate asymptotic 
(self-similar) is, more often than not, not uniform. This means that 
pure dimensional analysis does not suffice to characterize the self-
similar solution. Examples for this are one-dimensional heat flow with 
diffusivity K if du/dt > 0, K.\ if du/dt < 0, or the point explosion with 
energy release at the shock front. In the first case the self-similar so­
lution can no longer be interpreted as that due to a point source Q but 
rather Qla = constant; / = characteristic length of initial distribution, 
a = exponent found from a nonlinear eigenvalue problem and 

Ql« 
(K t)l+«/2 

Kl 

Kt K 

Self-similar solutions are classified as follows: the first kind—passage 
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to the limit (as the crucial II —»• 0) yields complete self-similarity and 
dimensional analysis works; the second kind—the limit is irregular, 
the critical exponent must be found from a nonlinear eigenvalue 
problem and the scale of the solution is unknown from similarity 
reasoning alone. Progressive waves V = V(x - At + c) are connected 
to self-similar solutions by, V = log u, x = log £, t = log T, and solutions 
of the first and second kind also exist. Self-similarity is identical with 
invariance for solutions under the affine group. It is next shown how 
to widen the concept of stability to apply to self-similar solutions. The 
example of Sternberg and Koiter of the elastic stress in a plane wedge 
angle (2a) is used to illustrate transition from solutions of the first 
kind to second kind at a critical parameter value, (a = a J. The final 
chapters deal with similarity and turbulence, and are quite different 
since there are really no basic equations. 

A criticism is that some of the problems seem physically artificial; 
in pratical cases it is very often easy to tell if the similarity is complete 
or incomplete. For problems nonlinear in highest order it is clear that 
point singularities characterized by delta functions are suspect. The 
reviewer would have liked to see discussion of more general similarity 
solutions u = u0(t) f (£), £ = £ ( * , t), based on group theory, and the 
connection with the ideas presented here. 

In summary the book is a unique and very useful contribution to 
the literature of similarity. It is to be recommened as partial text for 
a graduate course on dimensions and similarity. The book is self-
contained, the writing is clear, and it is a good introduction to the 
extensive Russian literature. Applied scientists in various fields would 
also benefit from reading this book and making connections with their 
own work. 

Dislocations in Solids: Moving Dislocations. Vol. 3. Edited by F. 
R. N. Nabarro. North-Holland Publishing Co., 1980. Pages 353. 
Price $61. 

REVIEWED BY T. MURA3 

This is the third of five volumes devoted to the behavior of dislo­
cations and their influence on the properties of solids. It contains four 
review papers concerned with the effects of moving dislocations. The 
author, title of paper, and summary of contents of each of these papers 
are listed as follows: 

J. Weertman and J. R. Weertman, "Moving Dislocations," pp. 
1-59. Moving dislocations that are straight and remain straight 
during their motion are treated. The velocity of a dislocation may be 
subsonic, transonic, or supersonic. They show the basic equation of 
motion, its solution, the associated energy calculation, and the force 
on the dislocation in each case. The stress field of a screw dislocation 
is contracted in the direction of motion. This distortion is analogous 
to the contraction and expansion of the electric field surrounding a 
moving electron. 

The interaction between two moving dislocations, the dislocation 
mass, smeared-out dislocation (continuous distribution of disloca­
tions), and dislocations in a discrete crystal lattice are also discussed. 
Several models for the stress-displacement relation on slip planes are 
discussed for the moving smeared-out dislocation. 

G. Schock, "Thermodynamics and Thermal Activation of 
Dislocations," pp. G4-1G3. This chapter reviews the thermodynamic 
properties of dislocations in crystalline solids and the various prob­
lems of thermal activation involving dislocations. 

The quantity of interest to describe solids with defects under iso­
thermal conditions is the Gibbs free energy of a body. The free energy 
is minimum for the equilibrium state. 

3 Professor, The Technological Institute, Department of Civil Engineering, 
Northwestern University, Evanston, 111. 60201. 

The free energy is calculated for a separation of two partial dislo­
cations, for an evaluation of volume change due to a dislocation, an 
elastic entropy of a dislocation, a configuration entropy of a disloca­
tion, etc. 

The movement of dislocation through a crystal lattice is controlled 
by thermally activated process. Various theories of thermal activation 
are reviewed: the transition-state theory, dynamic theory, diffusion 
theory, and quantum-mechanical theories. 

When dislocations move in their glide planes they will often find 
randomly positioned localized obstacles which can only be overcome 
with the aid of thermal activation. The author reviews quite exten­
sively these localized dispersed obstacles since he sees considerable 
confusion in existing literature about the thermodynamic interpre­
tation and the connection between the theoretical and the experi­
mental parameters. 

J. W. Christian and A. G. Crocker, "Dislocations and Lattice 
Transformations," pp. 165-249. The main topics discussed in this 
chapter are the dislocation description of coherent or semicoherent 
grain or interphase boundaries, and the ways in which lattice dislo­
cations interact with these boundaries. Fully coherent boundaries 
arise in twinning and in a few martensitic transformations. Semico­
herent boundaries include low-angle grain boundaries and many 
martensitic boundaries. The first part of the chapter describes the 
mathematical treatment of finding an affine transformation which 
will carry one set of lattice points into another. The concept of a fully 
coherent interface then requires that one plane be invariant during 
this deformation, and the conditions for this are examined. When a 
coherent interface is geometrically impossible, the misfit at a planar 
interface may be described formally in terms of dislocations. 

The last main topic to be considered concerns the generation and 
multiplication of twinning and transformation dislocations. A single 
partial dislocation moving across a glide plane leaves a stacking fault 
in its wake. A group of partial dislocations moving across adjacent 
parallel glide planes may convert the crystal into its twin, or may cause 
a phase transition. 

J. C. Savage, "Dislocations in Seismology," pp. 251-339. This 
chapter shows how the methods of dislocation theory may be applied 
on a large scale (Burgers vectors of the order of a meter) to the analysis 
of earthquakes and to problems of plate tectonics. According to the 
author, however, at the present time the usefulness of dislocation 
theory in seismology is restricted by the absence of detailed knowledge 
of either the tectonic stress or the fault plane resistance and by the 
absence of detailed observations of deformation preceding, accom­
panying, and following an earthquake. 

The first part of the chapter introduces the terminology used to 
describe faulting and outlines current thinking on how faulting occurs. 
The faulting problem may be approached either by prescribing the 
distribution of dislocations and calculating the consequent stress 
distribution or by prescribing both the tectonic stress and the slip law 
on the fault and calculating the dislocation distribution as done by 
J. Weertman. Weertman has suggested a slip law which may be im­
portant in priming a fault for catastrophic failure. The author further 
introduces Burridge and Halliday's solution for the longitudinal 
faulting in a half space, three-dimensional models of faulting, and 
dynamic solutions. 

Analysis of Mechanisms and Robot Manipulators. By Joseph 
Duffy. Halstead Press (John Wiley & Co.). 1980. Pages 419. Price 
$114.95. 

REVIEWED BY B. ROTH4 

This book presents a unified method for the analysis of planar, 
spherical, and spatial linkwork. The main problem treated in the book 
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is that of obtaining input-output equations for closed loop sys­
tems. 

Duffy starts with a chapter on planar mechanisms and then goes 
on to develop the equations for spherical and spatial triangles that 
are basic to his methods. 

The rest of the book is essentially a compilation of the spatial 
analysis work which Duffy and his students have published over the 
past 10 years. This material comprises the last 6 chapters of this 10 
chapter book and runs for about 250 pages. The book is a good pre­

sentation of Duffy's techniques and is a consolidated source of results 
that were heretofore scattered in the literature. A special feature of 
the book is the inclusion of mechanical manipulators. These systems 
are analyzed by the same methods as the closed loop linkages. 

This book is the most complete compilation of spatial analysis 
equations presently available. As such, it should be of interest to re­
searchers and practicing engineers dealing with the kinematics, dy­
namics, and control of closed loop mechanisms and open loop chains 
of links. 

ERRATUM 

Erratum for "On the Influence of a Rigid Circular Inclusion on the 
Twisting and Shearing of a Shallow Spherical Shell," by E. Reissner, 
and published in the September, 1980, issue of the ASME JOURNAL 
OF A P P L I E D M E C H A N I C S , Vol. 47, No. 3, pp. 586-588. 

The factor "2" in equation (16) as well as the factor "8" in equation 
(17) should be replaced by factors "4." 
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