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nation of startup flows of a pseudoplastic fluid in pipes under a varying pressure gradi-
ent. Three methods are proposed:

1 A method involving a finite-difference calculation.
2 A method using an approximation of the acceleration term in the equation govern-
ing the phenomenon.

3 An experimental method based on measurements of local velocities by means of
Laser-Doppler anemometry.

The most interesting point of this work is the good agreement observed between the three
methods in the non-Newtonian case.

Introduction

In case of startup flow of an incompressible fluid of Newtonian
behavior in a rigid cylindrical tube, the solution of the momentum
equation can be obtained analytically. The first research worker who
studied this phenomenon seems to be Gromecka who solved the
problem when the fluid is suddenly exposed to a constant pressure
gradient [1]. Later, Szymanski extended the solution to a varying

pressure gradient [2]. Other workers tried to obtain this solution by

use of Laplace transform technique [3, 4]. Let us notice that only one
publication points. out an experimental determination of local ve-
locities [4]. These works can be found in Fig. 1.
As it can be seen in Fig. 1, the Newtonian case is the most studied
. one because the linearity of governing equations allows obtaining an
: analytical solution.

When one considers non-Newtonian fluids, one can see that there
are very few publications including only two in the pseudoplastic case.
Edwards, Nellist, and Wilkinson study pulsed flows and startup flows
under a constant pressure gradient [5] as did also Sestak and Charles
16] who study the same problem of startup flow using a technique
developed by Targ and Slyoskin [7] to solve some problems of New-
tonian transport phenomena.
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Moreover, it is interesting to note that the pressure gradient is
generally taken constant by most authors except by Atabek who
studied the startup of a Bingham plastic [8] and by Etter who con-
sidered an Oldroyd’s fluid [9] (Fig. 2) for nonconstant pressure gra-
dients.

We propose to study by three different methods the startup flow
in pipes of an Ostwaldian fluid submitted to a varying pressure gra-
dient.

Equations Governing the Phenomenon
In case the rheological behavior of the fluid is described by the
power law of Ostwald-de Waele we have

ou {ou|n—1
Try = K == |— (1)
"~ or |or
where
7.2 = shear stress
K = consistency
u = longitudinal velocity
r = radial position
n = behavior index
and the Navier-Stokes equation reduces to
ou op Lo
Ze Loy @)
ot 22 ror
where p is the density and ¢ is the time with the initial condition
u(r,0)=0, Vr (8)
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Fig. 1 Main literature references and different methods used

and the boundary conditions
u(R,t) =0, VYVt (no-slipcondition atthe wall) (4)

R is the tube radius

ou
> =0, Vt (symmetry of the flow about the center line)
r/ r=0
(5)
In addition, the pressure gradient must be prescribed as a function
of time, i.e.,
5 ‘
£ = —paf(t) ®)
oz

where pA is the amplitude of the pressure gradient.
Substituting for 7., into equation (2) from equation (1) and intro-
ducting the dimensionless variables

r 3 u
E=lp pr=—; ur==
R 2 i
where w is the pulsation and
n Rl/n+1
o= (pA)l/n

1+ 83n (2K)V/n

leads to the following system of equations:

ou ou*n—-1
6-5;=Nﬂﬁ)+——- ] (7a)
u*(£,0)=0, V¢ (7b)
u*(1, t*) = v t* (7¢)
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Fig. 2 Functional forms of the longitudinal pressure gradient used in ditferent
works on startup flows in pipes

ou*
- =0, V* d
of (7d)

We notice that there are two new dimensionless parameters
14+ 3n\n
N=2( ﬂ (8)
n
wgl—nR n+l
pr=tt—— ©
27K

The momentum equation (7a) is nonlinear and an analytical so-
lution is impossible, hence we propose the first method of solution.

First Method of Solution

This method involves a finite-difference calculation. The grid used
in the solution is shown diagrammatically in Fig. 3.

The radius of the tube is varied from the value £ = 0 at the tube axis
to the value £ = 1, at the wall of the tube. It is divided into intervals
Af = 0.05.

The second variable t* is varied from the initial value J = 1 toJ =
L corresponding to steady-state conditions. The step At* equals
1073,

Let us write down the partial derivatives of velocity in finite-dif-
ference form. We have

ou* 1’

ot% | At* —— (ukrg ~ u*rg-1) + o(At*) (10)
ou* 1
—a%— = 23—5 (W*rg — u*r—10) + o(Af) (11)

Thus we can write equation (7a) in finite-difference form
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Fig. 3 Grid used in the finlte-difference method

u*rg =u*rg-; + E{{Nﬂt*) +

Af
X (S + Py (W1 — ubra)u* g — u¥pg|nt

1
EAEnHL

A
- (f Yy (Ww*rg ~ wry ) |u*rg — w*r_yg| "'1” (12)

To equation (12), we must add

u*r; =0, VI (initial condition) (13)

u*g =0, VJ (no-slipatthe wall) (14)

However, it is noted that the viscous term in equation (7a) includes
the fraction 1/ and hence it will be undefined when £ = 0, i.e., on the
tube axis, so it is necessary to establish another expression for this

value.
From 'Hopital’s rule, we have
10 ou* * 1 * *)n—
I i L ]-2—5-9”——63-"1} (15)
g0t of |of ot of| of
Proceeding as previously, one obtains
9 {ou* |ou* "‘1]
o512t | o¢
= Apr {w*rer,g ~ u*rg) (u* ey — u*p g vt
— (w*rg ~ wrr )| urrg — wro g (16)

However, it is advisable to use there as boundary condition the

symmetry of flow, i.e.,

U*r-10 = u*re1g 17
Thus we obtain the simplified equation at the tube axis
urrg = u*rg-1 + F{Nf(t*)
+ L (u* —urrp)ju* —u* "1 (18)
N I+1,J LINU 11,0 171
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Fig. 4 Diagram of the experimental selup for the study of startup flows;
transparent pipe with upstream and downstream tanks; Laser-Doppler ane-
mometer and the electronic devices used :

The calculation is started at J = 2 choosing a distribution of near
zero velocities calculated using the expression of velocity for a steady
non-Newtonian flow, i.e.,

n

i/n
= (& — £l/n+1y(10-6
u=—7 1(];’) (1 - E/n+1)(1079)

(19)

Second Method of Solution
According to this method, the acceleration term in equation (2) is
replaced by its mean value taken along the tube radius; see [7].
ou 1 Rou
— = —dr=p(t
2 “RJo ¥ TeW®
Substituting equation (20) into the momentum equation and as-
suming that 9p/0z = — pAf(t), we have
d [, dv|dv|n-1 _PR n+l
d¢ dE d£ Ku»
where v = u/ii and £ = r/R.
Solving this equation with boundary conditions (4) and (5) gives

(20

[e(t) — AF@)] (21)

v(§, t) = ——(ﬁ)1 " (E1H1/m — 1)x(¢) (22)
+11\24
where
x(t) = [e(2) — Af&)]]e @) ~ Af() VP2 (23)

Now, it is necessary to determine the unknown function x(£). To
do this, it is enough to differentiate v (£, t) with respect to time and
to integrate the obtained result with respect to £, i.e.,

ov n [N\i/n dx(t)
— e b 1+1/n paki Rl
ot n+l (2A) ¢ b dt 24
But, from equation (20), we have
j; Sdg== Lot)
O AL dx(t) 141/n
_<p() +1(2A f (£ 1)d§ (25)
Finally, we obtain
dx(t) _ _ 2n+1 (gé)l/n 1 e
dt N [AFE) + x (x> (26)

The solutions of the system formed by this equation and equation
(22) are found numerically using the Runge-Kutta method.

Third Method of Solution

The third used method is an experimental one.

Experimental Model. The main aim of the experimental model
is to apply either a steady, or sinusoidal, or pulsed pressure gradient
at the choosen instant to the fluid at rest (Fig. 4).

This installation is composed of four parts: a rigid tube, a steady

MARCH 1981, VOL. 48 / 3
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Fig. 5 Examples of rheograms for pseudoplastic behavior obtained with
solutions of Na CMC in water; effect of the concentration; comparison with
a Newtonian solution of Pluracol

flow system, a pulsed flow generator, and a starting device which al-
lows accurate timing of the pressure gradient in periods of successive
phases.

The rigid tube is made of plexiglas, it is 3 m long, internal diameter
is 835 mm, and thickness 2.5 mm. It is set horizontally and due to its
transparency it allows visualization of the flow and measure the local
velocities with a Laser-Doppler anemometer. (L.D.A.)

Constant flow rates are obtained by a variable speed pump placed
in the return circuit. i

The pulsed flow generator transforms the rotational movement of
a variable speed motor into a sinusoidal translational movement which
is transmitted to a piston moving in a cylinder.

The starting device allows the pump and the pulsed flow generator
to start simultaneously. The L.D.A. allows the velocity measurement
at a single point of a section of the duct. So, it was necessary to start
the flow always at the same value of the pressure gradient in order to
be able to investigate the whole cross section of the tube. The problem
has been solved using a movable switch allowing the piston to be
stopped always in the same position.

The fluids studied are of two types

1 Agqueous solutions of Pluracol V 10 giving Newtonian flows.
.2 Aqueous solutions of high organic polymers, sodium carboxy-
methyl-cellulose (Na CMC) the behavior of which is non-Newtonian.
Different values of the behavior index n and fluid consistency K can
be easily obtained by varying the concentration of water. The rheo-
grams (shear stress/shear rate curves) have been obtained using a
Shirley-Ferranti cone-plate rheometer (Fig. 5).

The velocity profiles have been determined by a frequency tracker
type Laser-Doppler anemometer Mark 1. For oscillatory or pulsed
flows, the use of a Doppler frequency shift system consisting of a
BRAGG’s acustic-optic modulator allowed accurate measurements
of the phase angle and the direction of the velocity.

The experimental pressure gradient is obtained from the output
of two pressure transducers. The analytical form of the observed
pressure gradient is determined by a graphical method and is used
in the momentum equation (Fig. 8).

Results

First'of all, we compare the results obtained by each method with
the analytical one obtained in the Newtonian case corresponding to
a behavior index n = 1 (see the Appendix).

The use of the finite-difference method shows that a relative error
of about 0.1 percent has been committed (Fig. 6). So it seems that this
method is the best one but it is also the most difficult one to use and
the time of calculation is long.

The second method, using the approximation of the acceleration
term in the momentum equation, does not give such good results in

4 / VOL. 48, MARCH 1981

E 0 0,3 06 09

t (s) FD A FD A D A FD A
1 0,75524 1,75043 u, 72563 | 0,72074 0,30074 | 050163 0,21328 0,21348
2 1,28556 1,28099 1,19522 1,19647 0,89113 089188 0,280670 0,24088
3 1,50352 1,59500 ti40409 | 1,40899 105007 [ 105987 | o,32705 | o372
4 176808 1,77014 1,61778 | 161900 105420 | 1assos | oo.3amR7 | 0,35005

\
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[ 158§ 1,059 | ov.ise0s §o1,7ss20 1,289 | nwr ) 03701 | 0.W03s
7 1,950 | 1,579 | 178208 | 1 78328 125637 | 1a2s7i7 | 037435 | 0,37453

. ]

relative error <0

Fig. 6 Comparison between velocities obtained in transient newtonian flows
by a finite-difference method (FD) on one hand and an analytical Method 1,
on the other

tg=real time / start up time

Fig. 7 Comparison of relative error of the determination of velocity in the
case of the analytical method (V4 ) and the method based on an approximation
of the acceleration term ( V,; ) for different radial position £ in the pipe; variation
of the relative error with flow rate

the Newtonian case as the first one (Fig. 7). One can observe that the
relative error committed in the value of the local velocities is great at
the beginning, but it becomes less than 10 percent shortly after this
beginning. It is interesting to note that the relative error of mean
velocities, therefore of the flow rates is small.

The agreement between analytical and experimental methods is
good. Fig. 8 shows a comparison of results obtained at pulsed pressure
gradient. The continuous lines represent the results obtained by the
analytical method and the points the experimental ones.

Non-Newtonian Case

We have compared the various, methods proposed for the non-
Newtonian case by utilizing Newtonian flow. We present in Fig. 9 the
curves of relative errors between the first and the second method for
different values of pseudoplasticity.

For, when K is a constant, one can see that the error decreases with
the behavior index n. That is to say that the approximation used in
the acceleration term in the momentum equation is increasingly ac-
curate as the pseudoplastic character becomes more pronounced.

This is because the velocity profiles become flatter when the be-
havior index n decreases. So, at every radial position £ the true value
of the acceleration term 2u/dt is nearer to its mean value.

Transactions of the ASME

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Ve

radial position £=0

X 1 T T T

T 41 87 8T t@
2
f:05Hz - QR =250(1-e~03t.055(1-e"03t) cos(M1t.0.5))
n=4010-3P1

v*4 dimensionless velocity

1

1 % 05 0 05 % 1

Fig. 8 Evaluation of flow velocities experimentally and numerically obtained
In case of startup of Newtonian pulsed flows

The next figure shows the evolution for a pulsed pressure gradient
during the startup flow (Fig. 10). The continuous lines represent the
results obtained by the finite-difference method and the points cor-
respond to the experimental results.

Conclusion

A literature survey allowed us to notice the special character of this
problem. There were not many works available in the Newtonian case
and very few in non-Newtonian inelastic case. We tried to solve the
problem by several methods

1 An analytical method in the case of Newtonian flows (see the
Appendix).

2 A finite-difference method solve directly the equations gov-
erning the phenomenon.

3 A method using an approximated acceleration term which al-
lows an analytical solution to be used before the numerical calcula-
tion.

4 An experimental method using Laser-Doppler anemometry.

A comparison of the different methods allows us to notice the very
good precision of the finite-difference method. The method using an
approximated acceleration term, although it is less accurate, also gives
satisfying results. On the other hand, this second method is very in-
teresting because it requires much less calculation time than the fi-
nite-difference method. Moreover, this method gives very good results
when one is only interested in flow rates.

Let us point out at last the good agreement between the results
obtained by the four different methods of calculation.
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APPENDIX

Newtonian Case—Analytical Solution (4)

n = 1 for Newtonian fluids and the consistency K converges to the
dynamic viscosity 7. The momentum equation (7a) becomes linear
and can be written

1 ou*

e Lo
o2 +E;£—~“ Re o0) = —8f(t*) 27

where u* = u/l, it = Ar%/8v where v is the kinematic viscosity
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with the same initial and boundary conditions as in the non-Newto-
nian case.

Solving equation (1) by means of the Laplace’s transform leads us
to the equation

8 1 J()(L VvV Re* SE)
= ———_—— — — 2] F
V) = Rer s [1 JoivReTs) | @8
where
UG, s) = fo T emstuk (g, th)dt ©9)
Fls) = j; " emst(pw)dir (30)

s = the symbolic parameter.
Applying successively both theorems of convolution and residues
to expression (28), we can find the transform inverse of U({, s)

_ 16 2 dofand)
ur{g, t*) = Re* n=1and1(an)

t*
xf f(t* — t)e~VReran2t'gyr  (31)
0

where a,, are the positive zeros of the function Jo, such as Jola,)
=0, Jo, J1 = Bessel’s functions of first kind of 0 and 1 order.
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A Perturbation Analysis of Fluid-
Structure Interactions in a Model
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A perturbation analysis of fluid-siructure interactions in a mode! test system of con-
trolled flexibility excited by a complex hydrodynamic transient is presented. The analysis
demonstrates the important features of the perturbation method and its implementation.
Comparison of predictions with experiment provides a test of the analytical procedure
and its underlying assumptions. The results illustrate the important effect of transient
liquid mass redistribution on the flexible system response.

Introduction

Reference [1] outlines a perturbation method for analyzing the
response of fluid-filled flexible structures undergoing complex hy-
drodynamic transients and develops the criteria for the applicability
of this method. In this paper we compare predictions based on per-
turbation method calculations with experimental results obtained
in a simple test system. This paper has three purposes: to demonstrate
the implementation of a perturbation method fluid-structure inter-
action (FSI) calculation in a simple system, to explore the basic
physies of FSI in a system undergoing a complex hydrodynamic
transient, and to provide one set of tests for verifying the numerous
underlying assumptions of the perturbation method. The develop-
ment of a general algorithm for modeling FSI phenomena was not one
of our goals.

Summary of Experiments
Fig. 1 shows a schematic of the cylindrical single downcomer test
system partially filled with water in which our FSI experiments were
"conducted. Detailed descriptions of the test system, experimental
procedure, and results have been documented elsewhere [2]. Only
those experiments and results analyzed in this paper are summarized
here. The test system’s sidewalls and top are made of thick steel and
are effectively rigid. The base consists of an interchangeable alumi-

num plate clamped at its periphery. Changing the base plate thickness -

introduces different degrees of structural flexibility into the system.
The rigid structure system characteristics are obtained by use of a
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ment. Manuscript received by ASME Applied Mechanics Division, January,
1980; final revision, June, 1980.
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1.9-cm-thick base plate. Sidewall taps enable pressure measurements
to be taken at several stations in the liquid pool.

A hydrodynamic transient initiated by the opening of a fast acting
valve is generated by injection of air from a large constant pressure
reservoir or “drywell.” The pressure beneath the plate is maintained
constant at the initial pool surface pressure throughout the transient.
The air injection forces the water out of the downcomer and forms a
bubble that rapidly grows and redistributes the water in the pool
causing the pool to “swell.” Fig. 2 shows the pool swell history traced
from high-speed film records in a geometrically similar rigid plexiglass
system subject to a properly scaled but otherwise identical hydro-
dynamic transient initiated at ¢ = 0. A dimensionless time t* =
t+/g/2a , where a is the pool radius, has been defined in accordance
with the hydrodynamic scaling laws for this system {3].

Typical pressure histories measured along the sidwall 5 cm above
the base plate are presented in Fig. 3 where the measured pressures
have been nondimensionalized by the constant reservoir (drywell)
pressure, Pp. The top oscillogram shows the rigid system pressure
history containing a very rapid rise in pressure at the time the
downcomer is cleared of water followed by a much more gradual
change. The other three oscillograms show the measured pressure
histories for plate thicknesses of 0.2, 0.16, and 0.1 cm [2].

Perturbation Method Analysis

Governing Equations. Fig. 4 shows schematically the governing
equations and boundary conditions used in implementing a pertur-
bation method analysis for our test system. These follow directly from
those outlined in [1]. The shaded liquid region, in which we ignore the

presence of the downcomer, is bounded by four surfaces Sy, . .., S4.
The governing liquid region equations are
P=Pp+P, ’ (1)

V2P, =0

where P is the pressure in the flexible system, Pp is the pressure in
an identical rigid system undergoing an identical hydrodynamic
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Fig. 3 Experimental pressure histories on pool sidewail 5 cm above the base
plate (z/a = 0.7)

transient and P, is the perturbation pressure. The free-surface
boundary condition is

P,=0 on 54,8 2

where S is the pool surface (approximated as horizontal throughout
the transient) and Sy is the bubble surface. The solid wall boundary
conditions are

AP,

~L2=0 on S; (3)
or
P, o%w
—=p— S 4
0z P oz M 74 @

where S3 is the rigid sidewall, Sy is the initial plate-fluid interface,
2 is measured vertically upward from Sy, r is measured radially out-
ward from the center of Sy, w is the downward plate displacement
from Sy, and p is the liquid density. A further approximation is made
here in neglecting the small plate deformation due to the initial hy-
drostatic loading. Hence, S41is taken as being perfectly flat, The dis-
placement w shown in Fig. 4 is exaggerated for clarity.

The governing equation and boundary conditions for the clamped

circular base plate are
DVYw=Ppr+P, on S (8)

w=0 and ow/or=0 at r=a (6)
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ow/or=0 and D ——a Viw=0 at r=0. (7
r

Here D is the plate flexural rigidity and Pg is the hydrodynamically
induced pressure in the rigid system. Experiments have shown P to
be uniform over the base plate [4]—varying only with time. In equa-
tion (5), the plate inertia has been neglected—an assumption easily
justified for our system by the much larger water inertia felt by the
plate through Py. The test system and imposed hydrodynamic tran-
sient are axisymmetric. This leads to boundary condition (7). Equa-
tion (5) enables the plate to be viewed as moving through a series of
quasi-static states.

For solution of (5)-(7), a Green’s function approach is adopted. The
Green’s function for this problem is found to be [5]

Forb <r:
1 [(a2?=r?)(a?+b?) r
dr by =——= | ————" 4 b2 +r)In; (8
(r, b) P—— a2 ( r)na] (8a)
Forbzr

. 1 [(a?—=b%)(a%+r?)
wir, b) = — [——————
8wD 20

Here b is the radial position of an arbitrary annular load. The plate
displacement is then given by

+ b2+ r?)In b] (8b)

mE
a
wir, t) = J; 2b[Pr(t) + Po(r = b,z = 0, )] (r, b)db.  (9)
The plate displacement is also related to the plate acceleration

t ot p2
w(r, t)Ef f —w(r, t)dt dt.
~Jo Jo o2

The complete set of equations to be solved then consists of the
liguid (1) and structure (9) equations, boundary conditions (2)—(4),
and identity (10). Coupling between the fluid and structure equations

(10)
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Fig. 5 Typical fluid domain computation mesh (here for t* = 0.314)

occurs through both boundary condition (4) and the loading in
equation (9). ‘

Computational Model. The technique adopted to solve the set
of governing equations and their boundary conditions is a numerical
time stepping one. A fully implicit second-order accurate five-point
finite-difference scheme utilizing central differencing in an axisym-
metric geometry as presented in [6] is used in the fluid domain. The
radial derivatives are expanded prior to discretization. Appropriate
forms of second-order accurate boundary conditions are used. A de-
tailed description of the scheme employed can be found in [7]. The
finite-difference equations are solved in a two-dimensional time
varying mesh. A typical mesh employed is shown in Fig. 5. Two dif-
ferent axial mesh spacings are used such that the mesh point density
is greater in the lower region of the pool than in the upper region. This
provides a sufficient number of points between the bubble and the
base plate to resolve the pressure gradient at the plate with reasonable
accuracy. The number of mesh points varied with time from about
500 to 600. The location of each mesh point is fixed in time, but points
are removed as the bubble grows and added as the pool rises. Mesh
points are denoted by a pair of indices (i, j),i=1,...,Lj=1,...,
J. The radial (r) and axial (2) mesh spacings are denoted by ér and
6z such that r = ({ — 1)-6r and z = (f — 1)-6z. The derivative boundary
conditions (3) and (4) are approximated by the introduction of a fic-
titious set of mesh points. The perturbation pressure P?’ ; at the point
(i, /) and time step k (the subscript “p” being dropped for brevity)
is set to zero for points that are along the pool or bubble surface or
within the bubble. The equations corresponding to these points are
removed prior to solution. The remaining set of fluid domain simul-
taneous equations can be expressed as

ARPE = Fk (11)

Here, A* is a square, nonsymmetric matrix containing the coefficients
of the unknown P¥ ; arranged along five diagonals and is of order (/)-(/
— 1) — N where Npg is the number of mesh points lying on the surface
of or within the bubble. P is a column vector whose elements are the
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unknown P¥;. F*is a column vector which contains the inhomogenous
terms of the mesh point equations. The equations comprising (11) are
arranged in the order (1, 1), ..., (I, 1), ..., (L, ), ..., (G, ), ...,
@Lp,...,Ld~1,...,,J=1).

The Green’s function solution (9) to the plate equation is numeri-
cally integrated. In general, by selecting the radial locations of the
plate nodes to correspond to those of the fluid mesh, one can express
the downard displacement w’ at node i and time step k as

I ’
wt=% Cii(PH+Ph), i=1,...,1 (12)
i=1

where P} is the value of Pr along the base plate at time step k. The
expressions for C;; depend upon the Green'’s function expression
(8) and the integration scheme. Investigation of the behavior of the
product bt shows that it varies more rapidly with radius than does
the load, P¥; + P}. Thus a Simpson’s rule integration is performed
over a much smaller interval than the mesh spacing (typically 6r/8).
Values of the perturbation pressure between mesh points are obtained
by interpolation using a piecewise quadratic curve fit to the values
of Pﬁfl. The interpolation weights are also accounted for in the values
of Ciy.

The displacement at node i is obtained from the acceleration history
at that node from (10) using a double trapezoidal integration. For zero
initial displacement, velocity, and acceleration, this can be expressed
at time ¢ = k&t (where 0t is the time step size) as

2
wh=pkl4= 5t2(aw) i=1,...,1, (132)
4 o2
where
wh = 512 k—l( ) 13b
El( )atz (13b)

Calculation of the flexible system response involves the simulta-
neous solution of four sets of linear algebraic equations: the fluid fi-
nite-difference equations (11), the plate displacement equations (12),
relation (13),and a discr/etized form of equation (4) which can be ex-

pressed ag

(app) (azw

0z fia ks ot?

These equations are reduced to a single system of equations by com-
bining (12) and (13) and substituting the result by use of (14) into F*
of (11). The resulting expression for F* is a function of P’f,. Rear-
rangement of this set of equations leads to a new set of equations to
be solved for the unknown perturbation pressures

(14)

ArRpE = pik, (15)
The elements of F** are given as
8z
Fik= Sp'é——ZPR Zcmz—~k1 m=1,...,1
F;,f =0, m>I (16)

The elements of A** are given by A,‘,ﬁ,, = Af,,,,, + Cpn,, when both m
<Iandn =Iandby A}, =A% wheneverm =Tornz1.

The matrix A** is banded with a bandwidth of 2T + 1. The presence
of nonzero elements arising from the Cp,; expressions precludes a
solution by a block tridiagonal algorithm. A standard banded matrix
solution routine was used to solve equation (15) for P’f, at each time
step.?2 We did not attempt to develop a more efficient solution algo-
rithm that would take advantage of the many zero elements within
the band of A**. After P is found from (15), wk and (22w /ot are
found from equations (12)—(14).

It is interesting to note a possible interpretation of the effect of
equations (12)-(14) on the fluid equations (11). Using these equations,
the pressure gradient normal to the plate can be expressed as

2 LEQT1B from the International Mathematical and Statistical Libraries,
Inc.—“IMSL.”
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Experimenially observed Mode! input
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2 0.314
3 0.461

Fig. 6 Experimentally observed liquid configurations and corresponding
model inputs at three sample times

(9?—") an
0z i1

The term # ! is known from the history of the plate motion and does
not depend on any quantities at time step k. At any time step, then,
all unknown quantities are expressed in terms of the perturbation
pressure field. The structure can be viewed as imposing a special type
of boundary condition or constraint on the fluid: the normal pertur-
bation pressure gradient at any point of the plate-fluid interface is
a function of the pressure at every point of the interface (17). This is
simply the result of the boundary integral nature of the problem.

Due to the fully implicit nature of the solution algorithm, the time
step size is not limited by a stability criterion. It is limited, however,
by a resolution requirement. That is, 6t must be small enough to ad-
equately resolve the expected frequencies of oscillation. With this in
mind, 8t was selected such that a minimum of about eight time steps
occurred within the experimentally observed oscillation period.

The liguid configuration as a function of time is an input to the
model. The bubble is approximated as an ellipsoid with three pa-
rameters fit by trending from the observed bubble history (Fig. 2).
The boundary is further approximated by taking it to lie along the
mesh lines which are closest to the computed boundary. The change
in the location of the pool surface is computed from continuity once
the change in bubble volume is known and is also approximated to -
lie along a mesh line. A comparison of approximated bubble shapes
and pool heights with those observed is shown in Fig. 6 for three se-
lected times.

Also input. to the model is the experimentally determined rigid
system base plate pressure history (Pg(t) in equation (9)) and the rigid
system pressure history at all other locations at which the flexible
system response is desired. With this information, the complete
perturbation pressure field is calculated at each time step. The pre-
dicted flexible system pressure is then the sum of the computed
perturbation pressure and the rigid system pressure at the location
of interest.

= p—|% CyPh + Pl 3 Ciy— 1Y)
pw(z Pry RZ I

Perturbation Method Predictions and Comparison
With Experiment

The predicted flexible system perturbation pressure amplitudes
vary significantly throughout the pool. Fig. 7 shows the predicted 0.2
cm flexible base plate system pressure history nondimensionalized
by Pp at two sidewall locations and two base plate locations. The 0.1
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Fig. 7 Model pressure history predictions for the 0.2 cm base plate; calcu-
lated values are shown connected by straight lines

cm base plate case exhibits similar behavior. The peak value of the
flexible system pressure varies by about a factor of 2.5 between sta-
tions (a) and (d) of Fig. 7. The perturbation pressures are largest at
the base plate and decrease to zero at all liquid-gas interfaces. In Fig.
7(d) the line or zero ahsolute system pressure is at (P, + Pr)/Pp =
—0.33. The predicted flexible system pressures dip below this value
several times in the central region of the plate. This suggests the
possibility of some cavitation occurring in the experimental tests
which has not been investigated experimentally nor accounted for in
our model. The maximum predicted flexible system pressure at the
plate center represents an overshoot of about 50 percent when com-
pared to the rigid system plate pressure.

Fig. 7 also shows that the predicted perturbation pressure ampli-
tudes decay after their first peak at rates which vary throughout the
pool. That a decay should be predicted at all is at first surprising since
the model does not account for structural damping or fluid viscosity.
The decay is, in fact, the result of the liquid redistribution driven by
the bubble growth. Otherwise identical calculations conducted
without a growing bubble exhibited no perturbation decay.

Figs. 8 and 9 show the predicted perturbation pressure distributions
at two selected times. They illustrate the change with time of this
distribution and thus the relative importance of the perturbations
in various regions of the pool. The figures also include the predicted
flexible system response and measured rigid system pressures along
the sidewall at z/a = 0.7 and z/a = 1.7. The predicted flexible system
pressures at the instants of time at which the Pp, isobars are calculated
are indicated by arrows on the pressure histories. In the region of the
pool at elevations less than that of the bubble, the perturbation
pressures are large (of the same order as the rigid system pressures)
and decrease with elevation roughly linearly. At elevations at or above
that of the bottom of the bubble they are much smaller. Thus it ap-
pears that there are two regions of influence within the pool: one be-
neath the bubble and relatively near the plate in which FSI effects
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are important and a second near and above the bubble in which the
influence of the plate oscillation is much less. As the bubble grows,
its region of influence grows and the large amplitude perturbation
isobars (| Pp/Pp| 2 0.1, say) move closer to the plate. Such behavior
leads to the predicted decay in perturbation amplitudes. (In com-
paring the magnitudes of Pp/Pp in Figs. 8 and 9, it must be remem-
bered that these figures represent different times in the oscillation
cycle.)

Model pressure history predictions on the pool sidewall at z/a =
0.7 are compared with experiment for the cases of a 0.1 cm and a 0.2
cm thick base plate in Figs. 10 and 11. A brief comparison of the
predicted frequency content, peak pressures, and decay rates with
those experimentally observed is presented in Table 1. Values of the
per cycle decay rates, d, are calculated from the formula

Py =Ppoll = d)r (18)

where n is the number of cycles considered, Py o is the amplitude of
the perturbation pressure at the beginning of the first cycle consid-
ered, and P, , is the amplitude n cycles later. The agreement is gen-
erally good. The initiation of a large amplitude decaying oscillation
at the “spike” in the rigid system pressure history is clear in both
calculations and experiment. For both plate thicknesses, an increase
in perturbation frequency with time is predicted and observed ex-
perimentally. For both plates, the predicted frequencies are somewhat
lower than observed experimentally (25-30 percent low for the 0.1 cm
plate and 15-20 percent low for the 0.2 cm plate). For the 0.1 cm plate
the model predicts a slight (2 percent) undershoot in comparing the
peak value of the flexible system pressure history to that of the rigid
system while an overshoot of about 21 percent is observed experi-
mentally. The model predicts an overshoot of about 6 percent for the
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Fig. 11 Comparison of sidewall perturbation calculation with experiment:
0.2 cm base plate, Z/a = 0.7

Table1l Comparison of predicted flexible system side-
wall pressure histories with experiment at z/a = 0.7

0.1 cm base plate 0.2 cm base plate
Predic-  Experi-  Predic- Experi-

tion ment tion ment
P + Pr)max 0.98 1.91 106 1.06
(PR)max
Frequency (Hz)
Average 95 1351 2502 295(2)
Low (single cycle) 90 125 220 275
High (single cycle) 110 145 265 320
Decay rate®
Peak to peak 0.35 0.37 0.18 0.23
Trough to trough 0.15 0.39 0.18 0.23

(1) Averaged over the first 7 cycles (beginning with the first peak in flexible
system pressure occurring after (Pp)may).

) Averaged over the first 12 cycles.

@) Computed from equation {18). The first 4 cycles are used for A = 0.1 cm;
the first 10 cycles are used for A = 0.2 cm.

0.2 cm plate which agrees well with experiment. The predicted model
decay rates are somewhat low but comparable to those observed.

Model predictions at z/a = 1.7 are compared with experiment for
the 0.2 cm plate case in Fig. 12. Both the measured and predicted
flexible system pressure histories differ little from the rigid system
history. They exhibit minor perturbations shortly after the rigid
system history peak and essentially no perturbations at later
times. : B

Discussion

Our calculations and comparisons with experiment illustrate the
essential features of a perturbation method FSI analysis and dem-
onstrate both the simplicity and promise of this method. Relatively
few refinements have been implemented in our calculations primarily
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Fig. 12 Comparison of sidewall perturbation calculation with experiment:
0.2 cm base plate, z/a = 1.7

because the agreement between prediction and experiment is near
the level of experimental repeatability [2, 4]. The comparisons pre-
sented here are not intended to be an exhaustive verification of the
perturbation method, but rather to provide one systematic test of the
procedure and its underlying assumptions. Our predictions illustrate
the important effect that liquid mass redistribution has on both the
frequency content and the amplitude of the flexible system’s pressure
fluctuations. The analysis and results can be contrasted to those of
a lumped parameter model {2} which requires prior specification an
“effective” pool depth (or “added liquid mass”) and is unable to
predict any detailed FSI response features.

The criteria for the applicability of the perturbation method are
evaluated for our test system in Table 2 where p; and pg are the liquid
and gas densities, and ¢; and ¢4 are the speeds of sound in the liquid
and gas, and y is the liquid viscosity. Characteristic length and time
scales used are defined as {1]:

Lp = hydrodynamic length over which velocity
gradients occur

L) = smallest wall oscillation wavelength

L, = gas region dimension

Lo = pool (fluid domain) dimension

Ly, = wall displacement during oscillation (estimated
from the rigid system pressures)

7r = hydrodynamic time (estimated from the rigid
system bulk fluid motion)

7w = longest period for wall oscillation

= minimum excitation time constant

The length scales Lg, Ly, Lo, and L, are all taken to be the plate
diameter. Both 7g and 7. are estimated from the rigid base plate
pressure history. Table 2 shows that all criteria are easily satisfied
except for (1) and (2) for the 0.1 cm base plate system. Thus the per-
turbation method assumptions should introduce negligible error with
the possible exception of some nonlinear coupling effects [1] between
the perturbed and unperturbed motions not being accounted for in
the analysis of the 0.1 cm plate system.

In developing a model for our test system we have made several
additional assumptions not central to the perturbation method.
Omission of the downcomer should introduce negligible error. It is
partly enclosed by the air bubble and is in a region of very small | P, |.
The approximation of the pool surface as flat and horizontal (ne-
glecting the growth of irregular pool surface instabilities; see Fig. 2)
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Table 2 Evaluation of perturbation method criteria
for our test system

Characteristic and physical quantities:

Ly 0.08 cm®™ Ly 14 em p1 1000 kg/m?
0.01 cm®@ 78 0.04 5 pg 0.08 kg/m3 8
Lg 14 cm 7. 0.007 s 1 0.001 kg/ms
Ly 14 cm Tw 0.01 s ¢; 1500 m/s
Lo 14 cm 0.0035 s cg 330 m/s
Value for test system
Criterion® 0.1 cm plate 0.2 cm plate
1) /TR K 1 0.25 0.09
(2= Tw LR Lt 0.25 0.09
(3) Te/Tw = 0.7 2
4) Lo/Ly « 1 0.006 0.0007
(5) Lw/Lo < 1 0.006 0.0007
6) Lw/L <1 0.006 0.0007
() (Lofeira)? <« 1 0.00009 0.0007
(8) (Lafamp)? « 1 0.00009 0.0007
(L /C Tw)2 <K 1 0.002 0.015
(10 p,ﬁ Lt > 1 2,000,000 5,600,000
(11) pgLe/pilo < 1 0.00008 0.00008

(1) For a 0.1 cm base plate.

@ For a 0.2 cm hase plate.

(3 Based on an initial gas (air) pressure of approximately 6 kPa.
) Taken from [1].

should be of minor importance for similar reasons. The initial static
plate deflection due to the weight of the water is an order of magnitude
less than those during pool swell and is easily neglected.

The better agreement between prediction and experiment for the
0.2 cm plate than for the 0.1 ¢cm plate may be largely due to plate
tension effects which have been neglected in the model plate equation.
Neglecting tension relative to bending stress for a circular clamped
plate of thickness h deforming under a uniform load ¢ will introduce
an error that can be estimated from [8]:

G0t 1

64 Dh h 2 h

where W,y is the maximum plate displacement and v is Poisson’s
ratio. The first term on the right-hand side of (19) is due to bending
and the second is due to tension. If we take ¢ to be the maximum value
of P on the plate, the estimated errors in wmay are 21 percent and 0.2
percent for plate thickness of 0.1 cm and 0.2 cm, respectively. Since
tension stiffens the plate, its inclusion in the model would increase
the predicted frequencies—enhancing agreement with experiment
for the thinner plate. Modification of the predicted peak pressure
overshoot should also occur.

The input data—bubble shape and size, Pr on the plate, and Pp
at various sidewall locations—were obtained from several different
experimental runs, and model predictions are compared to data from
yet other runs. To compensate for experimental variability, the time
coordinates of the data were shifted a small amount so that they would
be equivalent in each set of data. Typically this shift was less than 2
percent of the total time period under consideration (¢* < 0.01)—well
within the bounds of experimental variability {4].

To save computation time, the liquid configuration was changed
at each time step only during the initial period of bubble growth. At
later times (¢* 2 0.25), the liquid configuration was modified every
fifth time step for the 0.2 cm plate system. Thus the input bubble
growth lags the experimental records. This results in a maximum errvor
of about 6 percent in bubble “radius.” Such an underapproximation
of bubble size will lower the predicted perturbation frequencies and
decay rates.

The run-to-run experimental initial hqmd depth variation was
about 2 percent [2]. The initial liquid depth used in the calculations
is about 6 percent higher than the nominal experimental value. This
should result in a prediction of frequencies that are about 3 percent
low. )

Based on simple tests of our algorithm we believe the errors intro-

(19)
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duced by the numerical schemes to be at most of the same order as
the other uncertainties previously discussed. As described earlier,
provisions for increased accuracy were made in situations where it was
believed useful such as an increased number of mesh points between
the bubble and the plate and integration of the plate equation over
an interval smaller than the fluid mesh spacing. Due to the finite time
step size, the peak in the rigid system pressure history will be missed
unless it occurs at a time step. For the 0.2 cm plate system model, this
leads to an underestimation of the input rigid base plate pressure peak
by about 2% percent.

Conclusions

The perturbation method is a promising practical tool for modeling
FSI problems involving complex hydrodynamic transients. It allows
the use of both experimental and analytical data from rigid systems
subjected to identical hydrodynamic transients. The implementation
of the perturbation method is much easier than alternate approaches
which involve the simultaneous solution of the nonlinear hydrody-
namic equations and the structural equations.

Our analytical and experimental investigation of F'ST phenomena
in a simple test system of controlled flexibility has demonstrated the
important effects that liquid mass redistribution has on both the
frequency content and the spatial and temporal amplitude distribu-
tions of the perturbation pressures.
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wr-ce= I Nonlinear Response of an Elastic
c...ven I Cylindrical Shell to a Transient

Research Sclentist.
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3251 Hanover Street,

palo Alto, Callf. 94304 Governing equations are developed for the nonlinear response of an infinite, elastic, circu-

lar cylindrical shell submerged in an infinite fluid medium and excited by o transverse,
transient acoustic wave. These equations derive from circumferential Fourier-series de-
composition of the field quantities appearing in appropriate energy functionals, and from
application of the “residual potential formulation” for rigorous treatment of the fluid-
structure interaction. Extensive numerical results are presented that provide under-

standing of the phenomenology involved.

1 Introduction

Although the literature is replete with analytical studies of the
linear dynamic response of submerged structures, the dynamic in-
stability of such structures has received relatively little attention [1].
In 1965, Di Maggio [2] studied the unstable dynamic response of an
infinite flat plate with a sinusoidal imperfection in one direction
subjected to an in-plane static loading in that same direction; the plate
was suddenly released so as to interact with an acoustic medium on
one side of the plate. He found that, in the vast majority of cases, the
acoustic medium may be treated in the incompressible approximation.
In 1972, Deng and Popelar [3] studied the parametric instability of
a submerged cylindrical shell initially undergoing sinusoidal breathing
motions. They also found that the acoustic medium could be accu-
rately treated as imcompressible. References [4-6] report analyses
of dynamically excited, submerged shells that exhibit instability
characteristics. In all of these, however, approximate treatments of
the fluid-structure interaction are used, which raises questions re-
garding the accuracy of the results.

This paper presents a rigorous treatment of the nonlinear response
of an infinite, elastic, circular cylindrical shell excited by a transverse,
transient acoustic wave. The field quantities appearing in appropriate
kinetic-energy, potential-energy, and work-potential functionals are
expanded in circumferential Fourier series, and high-order terms are
eliminated in a consistent manner. The residual potential formulation
[7-9], which constitutes an exact formulation, is used to treat the
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ment, Manuscript received by ASME Applied Mechanics Division, May, 1980;
final revision, July, 1980. Paper No. 81-APM-10.
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fluid-structure interaction. The resulting modal response equations
provide a complete and rigorous description of the dynamic pro-
cesses.

The modal response equations are integrated numerically in time
for excitation by plane waves of rectangular pressure-profile. Tran-
sient response histories are provided that display:

1 Modal response as a function of incident-wave magnitude.

2 'The effects of ambient hydrostatic pressure and “live-load”
forcing terms (i.e., terms that account for finite translations and
rotations of the shell).

3 Shell response at various locations.

4 'The impact of flexural stiffness on mode participation.

2 Governing Equations

Consider the two-dimensional, plane-strain motions of the sub-
merged, infinite, circular cylindrical shell shown in Fig. 1. The shell
is excited by a transient acoustic wave that first contacts the shell at
f = w. The shell is thin and remains elastic at all times; geometric
nonlinearity is considered, however, which introduces the possibility
of dynamic instability.

2.1 Energy Expressions. Kinetic and strain-energy expressions
for the cylindrical shell of Fig. 1 are:

=4 poh f 02+ w2adb

2 h/2
U=} f f ooes dz adh )
0 —h/2

where 0 = 0v/dt, etc., op is the circumferential stress, ¢ is the cir-
cumferential strain, and z is the thickness coordinate. Stress-strain
and strain-displacement relations for the shell are [10}

E

1—1/260
1 {ov 1 ow 2z (02w Ov
g=~—+w|+— -y —— |- 2)
a \of 202 60 a

21002 of
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Fig. 1 Infinite, elastic, circular, cylindrical shell submerged in an infinite
acoustic medium

where only first-order geometric nonlinearities are considered. The
introduction of (2) into (1) then yields
2]2
/]

1 Eh 2w“av 1 {ow
=———————f —twt—[—~
2(1 -2, Jo of 2a \of
h? (02w ov\2
+—|=-=|10 @
12a2(602 aﬂ)l @

An expression for the work potential appropriate to a pressure field -

acting on the surface of a smooth shell has been provided by Cohen
[11). For the present problem, that expression reduces to

2 ov 1{ op
n= + +-( o _ ) 2
0 Ip(a 20 w)w 2\ P
1 d
+'2-pvz+vwa—lg]r= df (4)

where p = p(r, 0, t) denotes the total pressure field. Although Cohen
lists continuity of the pressure field as a requirement for the existence
of the work potential, it is easily shown that a more lenient require-
ment is satisfactory, viz., that the pressure field contain a finite
number of integrable discontinuities.

Now the displacement and pressure fields may be expanded in
Fourier series as follows:

v(d) = i v, (t) sin nf
n=1
w(bt) = i wy(t) cos nf
n=0
p{r,0t) = i Dn(r,t) cos nd (5)
n=0

Also, the n # 0 Fourier coefficents for v and w may be transformed
into extensional and flexural coefficients as follows [9]:

1
vp=ne,——fy
n

wp = e, + fn (6)
The incorporation of (5) and (6) into (1), (3), and (4) then yields

+ 1)fn .

(n2+1)%e,? (7)

1 =
= 2 + =
0 22

n=1

2
(n2+1) 6,2 + (n

Tpoah

U

1
—_— e = 2+_
7Eh/(L — vDa = 9 z
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(Cont.)

where pn® = pn(a,t), 8p,%/dr = (0D, (r,t)/0r)=q, 8n = 2ne, + [(n2 —
1)/1) fr, em—n = Pm—n = 0 for m < n, and the §;; are Kronecker deltas.
Equations (7) constitute the basic energy expressions required for the
present study.

2.2 Elimination of High-Order Terms. It is now appropriate
to eliminate from (7) those terms of order higher than that necessary
for a consistent formulation. For this purpose, the n = 0 pressure
harmonic is taken to be of the order of the critical buckling pressure
for the shell, which is [12]

Eh3

Pe 4(1 — v?)ad ®
Hence po® ~ E(h/a)3, so that the two singly underlined terms in (7),
which govern linear, static, axisymmetric response, yield wg/a ~
(h/a)2. Next, flexural displacements are taken as f,/a ~ h/a, so that
the doubly underlined terms, which govern linear, static, flexural
response, yield p,* ~ E(h/a)%. Finally, the triply underlined terms,
which govern linear, static, nonaxisymmetric-extensional response,
yield e,/a ~ (h/a)?. The use of these order-or-magnitude relations
in (7), followed by the elimination of terms of order (k/a)® and higher,
yields the simplified energy expressions

—w02+ ): (1+ )fn
7 poah

v
7Eh/(1 — vda

:I;MB

+_._
32a? k=

._
T
L

1dpe®
2 ar

where a, = (n? — 1)/n and Apimn = artiam oy [Sge-n0 dpn-nyo +
S~1tm—n) = O+ m=n) = O(k—1yGn+n) + Ogtn)(m+n)]. Note that, be-
cause o = 0, the lower limits of six of the summations in (9) may be
changed from 1 to 2.

A few remarks about (9) are in order. First, nonaxisymmetric-ex-
tensional response fails to appear as a significant energy contributor.
Second, in the reduction of (7) to (9), it has been assumed that
@|dpn2/dr| ~ |pa?| for all n. Third, the last of (9) contains no non-
linear terms involving p,; this implies that the last term in the inte-

A
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grand of (4) is unimportant. Fourth, a nondimensional parameter vy
has been introduced into the flexural strain-energy term to permit
consideration of a sandwich shell consisting of two concentric shells
of thickness h/2 separated by a uniform core of negligible mass and
in-plane stiffness. Such a shell serves as a convenient plane-strain
model for a stiffened shell [7, 13]. With D as the sandwich shell’s
flexural stiffness, v2 = 12(1 ~ v2)D/Eh3, Finally, the simplified ex-
pression for the shell’s strain energy is positive-definite; this is readily
seen by observing that, with w(f,t) = wo(t) + f(,t), it constitutes a
Fourier-series decomposition of the expression [cf. (3)]

1 Eh 2 Lo el)?

“samee o e ]
(‘Yh)
1

where a prime denotes a §-derivative and the asterisk a f-integral. This
corresponds to the use of Rayleigh’s inextensibility assumption, i.e.,
w = —dv/30 for nonaxisymmetric shell response [14].

Tt is interesting to examine results produced by (9) in certain special
circumstances. First, consider the nonaxisymmetric, linear, free vi-
brations of a hydrostatically pressurized shell. In this case, po(r,t) =

f” + f)Z]d0 (10)

Py, pr(r,t) = 0for n # 0, and the flexural displacements are infini-
tesimal. The application of Lagrange’s equation [15)
-——= 11
dt aq) (1)
where L = T' — U — 11, then yields, for q = Wo,
(1 - v?)a?
wy = ————P, 12
0 Eh (12)
For q = f,, the application of Lagrange’s equation yields
1), E (yh)? Wo
1+ =|fnt ———{[=n2+ 2| a2
po( nz)fn 1- V2)a2{ 12a2 a Gn
P
~a -2t (“)} fa=0 (13)

The introduction of (12) into (13), followed by the assumption of si-
nusoidal free vibration, yields the modal natural frequency equa-
tion

co\2 (Yh)?2[ n?
o= (7{) 1242 L,z + 1) (n* =1 = Pu/Pen)  (149)

where co? = E/po(1 — v2) is the plate velocity for the shell material and
Pep = poco? (h/a)(n2 — 1) (vh)2/12a2 is the critical pressure for the
nth flexural mode; note that Pcg = P¢ [cf. (8)]. Equation (14) clearly
corresponds to the flexural frequency equatlon for a pressurized ring
16].

Next, consider the response of an unpressurized shell to nearly
uniform radial impulse-excitation. The application of Lagrange’s
equation, (11), to the simplified energy expressions, (9), yields for
axisymmetric extensional and nonaxisymmetric flexural response

]_ o
(a/eo)? o + wo + ™ > anfa?=0

n=2
yh
)n [( )

w
(az/co)2 Tog2 " +;0]an2fn

@

DD Buin® fiffm =0 (15)

32a2 p=2 = 2m=2

where Apim ™ = Appan + Awinm + Agnim + Aniim and the discussion
following (9) has been utilized.

These equations are similar to equations presented in [17-19] which
treat this particular problem in considerable detail. Equations (15)
are superior, in fact, to the corresponding equations in those references
because only (15) exhibit all of the following characteristics:

1 n = 1 rigid-body motion is decoupled from n = 0 breathing
motion.

2 Linear-vibration frequencies for the flexural modes are given
by the first of (14) with Py = 0.

Journal of Applied Mechanics

3 The associated strain-energy expression is positive-definite.

From this brief examination of two special cases, it is concluded that
(9) are suitable for the present analysis. This suitability derives from
the consistent elimination of high-order terms from appropriate en-
ergy expressions.

2.3 Fluid-Structure Interaction. A rigorous formulation of
the fluid-structure interaction, which must be considered in con-
junction with (9), may be constructed as follows [7-9]. First, fluid
pressure and radial fluid-particle velocity are expressed as derivatives
of a fluid velocity potential as

p=—p¢

u = dp/or (16)

Second, the total acoustic field is treated as the superposition of an
acoustic field for the (known) incident wave and an acoustic field for
the (unknown) scattered wave, i.e.,

e(r0,t) = or(r,0,t) + os(r,0,t) %))

Third, compatibility of radial fluid-particle velocity and radial shell
velocity is enforced at the wet surface of the shell as

ula,0,t) = wib,t) (18)
Finally, the wave equation and radiation condition for each circum-
ferential harmonic of the scattered wave [see (7)] are replaced by the
equivalent residual-potential relation

- +- ¢Sn+ ©sn = (19)

a§0Sn 1 1 1
—¢R
or or r Rn
in which the residual potential ¢, is given by the convolution rela-
tion
¢
ornrt) = = [ ra(rt)) osu(rt =) dt (20)
where the r,, are characterisitic functions that resemble step-expo-
nential functions [7].
Equations (16)-(19) may now be utilized to produce, for each cir-
cumferential harmonic, the fluid-structure interaction relations

Dn®=—p (‘Plna+ ©Sn °)

Opn°
or

= —ply

1, 1 1
Wn +—@sn®+—@sn® = um®+— @pn° (21)
¢ 2a a
where ¢rr® = ¢gn(a,t) is obtained from (20). These equations con-
stitute the optimum form of the information required for a rigorous
treatment of the fluid-structure interaction.

24 Modal Response Equations. Convenient nondimensional
equations may be obtained through introduction of the following
convention: »
w=wla, t=ct/a

P =p®/pck, (22)

Application of this convention to (9) 'yields

el oy GRS A (e LY
=12+ = 3 [1+ =] a2
7pac? (pa o 2 n2=:1 n2 o

poh) (co 2,1 ¢ {(‘Vh)z 2410 27 2
+ = : n®+ ol «
7rpa2c ( )( ) [ wo 2,?;2 1242 o| @
1 © © ® @ '
S5 T dumbiinh
2k=21=2m=2 n=2
II @ 1, &« 1
- =2Pobo+ ¥ Pafn —"Po & 12+ 2o X fn
Tpale n=1 2" a=2 n 2 n=1

(23)
where by = dibo/dt, fr, = dfn/dt, po’ = [8p0/0F]s=1, and the discussion
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following (9) has been utilized. In like fashion, nondimensionalization
of (21) and (20) yields

Dn = _'(‘Toln + (EPSn)
Dn’ = —1,
.. 1, . .
Wn + @sn + E‘PSn =0+ @rn
@Rn = —fp ﬁ?’Sn (24)

where the asterisk denotes temporal convolution. Note that all non-
dimensional acoustic-field quantities in (23) and (24) pertain to the
wet surface of the shell.

The application of Lagrange’s equation, (11)-(23), followed by the
appropriate utilization of (24) and the second of (6) with e,, neglected,
yields the nondimensional modal response equations for the sub-
merged shell

@ n2__1

. 1 2 N N
uido + uﬁwo + Z /Jﬁ ) fnz —@Se = ©ro
n

=2
n?+1.. n?2—-1

2 ..
o [

. . .- B o e . .
X (@10 + ¢s0) — wO}fn +EE S S 5 Aun® fufifm = @sn = Pin
32 k=21=2m=2

. 1
o + ¢so + Ewso = Uro + ¢Ro

R . 1
fot @sn+ EWSn =umt+ ¢rn

@Rn = ~T'n * ©Sn (25)

where all circumflexes have been dropped, and where u = poh/pa, 8
= (co/c)? and § = (yh)2/12a2. The nondimensional critical buckling
pressure for the shell is, from (8), Pc =3 u B £.

Equations (25) constitute the modal response equations neeeded
for a rigorous analysis of the nonlinear dynamic response of a sub-
merged, infinite, elastic, circular, cylindrical sandwich shell excited
by a transverse, transient acoustic wave. They lend themselves to
step-by-step numerical integration in time, producing modal response
histories that, through (6) with e, neglected and through (5), yield
corresponding shell response histories. From (2), (5), and (6) with e,
neglected, extensional and flexural strain response histories may be
obtained as

€ =w +l
0 075\

nZ—1 2
fr sin nd

=1"

&l =2 i (n?2-1)f, cos nf (26)
n=1

where z is nondimensional [see (22)]. For the sandwich shell described

after (9), the distance from the neutral axis to the outer shell fiber is

given by

h 4
. |z|max=z[1+ 1+§(72_1)] (27)

3 Numerical Resulis
The numerical results presented in this section have been generated
by the application of fourth-order Runge-Kutta numerical integration

to the first four of (25) and the use of trapezoidal integration for the .

last of (25). A variable incrementing procedure with 0.002 < At < 0.2,
has been used. Results have been obtained for two steel shells sub-
merged in sea water, all characterized by po/p = 7.72, co/c = 3.53, and
a/h = 100. The two shells differ in terms of their y-values, which are
5 and 10; these values correspond to moderate and heavy stiffening
of a uniform homogeneous shell. The shells are excited by plane
acoustic waves of rectangular pressure profile that make initial contact
at time ¢ = 0 along the line § = 7. The generalized excitation functions
for these waves are given by
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o: P;=.0.017P
C

o: Pi=P

' PI=2$C

+: Py =3P

T - T
20.0 30.0 10.0
t

Fig.2 n = 0displacement of the 'y = 10 shell to rectangular incident waves
with T =10

Prmlt) = (~1)n+1‘—"P,f"g(t— 1+ cos {) cosn{df
m )

um(®) = (~1)n1 2 py f"g(t — 1+ cos {) cos feos n{di (28)
T ]

where ¢, = 1 forn = 0and ¢, = 2forn > 1, Py is the maximum value
of the incident-wave pressure profile, and g(¢) = H(t) —~ H@ - T),
where H(¢) is the Heaviside step-function and 7' is the pulse duration.
Note that all of the preceding quantities are nondimensional, having
been normalized in accordance with (22).

3.1 Modal Response. Fig. 2 shows displacement response
histories for the (n = 0) breathing mode of the -y = 10 sandwich shell
when excited by broad, rectangular, incident waves of duration T' =
10. The pressure magnitudes of these waves vary from 1-300 percent
of the critical buckling pressure for the shell [see (8), or the discussion
following (25)]. Note that all responses are normalized to the magni-
tude of the incident wave, so that coalescence of response histories
implies linearity of response. In this connection, it is seen that the
response for Py = Pc and Py = 2P¢ are virtually coincident with the
(linear) response for Py = 0.01 Pg¢; nonlinear effects are discernible
for Pr = 3P¢, but they are relatively unimportant. ,

Velocity response histories for the (n = 1) translational mode are
shown in Fig. 3. Nonlinear effects are barely discernible. This implies
that the last term in the last of (28) is of negligible importance because,
without it, the n = 1 mode is totally uncoupled from the other modes
and is governed by purely linear equations [see (25) and the second
of (24)].

The n = 2 lobar mode is the one that exhibits significant nonlinear
behavior, as shown by the displacement response histories of Fig. 4.
The response may be conveniently described as occuring in four
phases: an “envelopment phase,” which extends from ¢t = 0to ¢ = 2,
a “pressurization phase,” which extends from ¢t = 2tot = T, a “de-
velopment phase,” which extends from ¢ = T tot = T + 2, and a “free
vibration phase,” which extends onward from ¢ = T' + 2. During the
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f1(t)/Py

Fig. 3 n = 1 velocity response of the y = 10 shell to rectangular incident
waves with T= 10

envelopment phase, in which the incident wave front is passing over
the shell, the response is essentially linear. The pressurization phase,

-in which the shell is essentially hydrostatically pressurized by the
incident wave, is characterized by either oscillatory or exponential
response, depending upon the magnitude of P;. During the develop-
ment phase, in which the back of the rectangular incident wave is
passing over the shell, the response exhibits sudden, but modest re-
versal. Finally, the free-vibration phase is characterized by low-fre-
quency sinusoidal motion. Clearly, the appearance of response over-
shoot during the free vibration phase depends upon exponential
growth experienced during the pressurization phase, which, in turn,
depends upon the magnitude of Py.

Displacement response histories for the n = 3 lobar mode are shown
in Fig. 5. The preceding description of n = 2 response is applicable
here also. Especially visible in the n = 3 response histories is the vir-
tually undamped nature of the sinusoidal motions during the free-
vibration phase. This indicates that the surrounding fluid provides
very small acoustic-radiation damping for these motions, which is to
be expected when the characteristic structural wavelength 2ra/n is
-much smaller than the acoustic wavelength c¢/f, where f is the fre-
quency of oscillation [1]. The n = 4 and n = 5 lobar modes have been

" included in these -y = 10 shell calculations, but exhibit peak dis-
placements substantially smaller than that of the n = 3 mode. Hence
response histories are not shown for these modes. )

It is instructive to examine dynamic instability of the flexual modes
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-, (t)/P;

Fig. 4 n = 2 displacement response of the y = 10 shell to rectangular in-
cident waves with T = 10

0.3

f3(t)/P,

Fig.5 n=3 displacement response of the iy = 10 shell to rectangular in-
cident waves with T= 10
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Fig. 8 n = 2 displacement response of the -y = 10 shell to a rectangular
incident wave with T = 10, P, = 2P,

during the pressurization phase. During this phase, n = 0 displace-
ment is approximately equal to the hydrostatic value

P
wolt) ~ — —=

uB

Also, flexural response is relatively slow, so that ¢ s, < ¢s, and, from
the last of (25) and {7],

(29)

b 1
PRn & —@sn ‘I; ra(t')dt’ = _(n - 5) PSn (30)

Hence the fourth of (25) yields, withu;, = 0forn 2,2t =T
{ol,

: 1,
Psn = ——fn (31)
n
Equations (29) and (31), along with the approximations ¢go = 0,
Wo =~ 0 and neglect of the triple summation in the second of (25), yield
for flexural response during the pressurization phase
n?+1
e e

+ %) ot 02=1) Pea=Pfa=0  (32)
where Pc, = (n2 — 1)uf¢. This equation exhibits the effect of added
fluid mass associated with low-frequency shell response; it also indi-
cates that shell response is oscillatory for P; < P¢,, and exponential
for P; > Pcy, as seen in Figs. 4 and 5. It is worth noting that, with the
removal of Py, (32) also governs flexural mode response during the
free-vibration phase. A

Modal response histories for excitation by incident step-exponential
waves with decay constant A = 1 are provided in [20]. These exhibit

20 / VOL. 48, MARCH 1981

behavior similar to that observed in Figs. 2-5, with significant non-
linear effects appearing only in the n > 2 harmonics.

3.2 Ambient Hydrostatic Pressure and Live Load. It is inter-
esting to examine the effects of ambient hydrostatic pressure on the
shock response of the v = 10 shell. The modifications in (25) required
for such an examination merely involve the replacement of wo by wy
— Py/up and of ¢ro by @10 — Py where Py is the magnitude of the
hydrostatic pressure. With these replacements, the first of (25) re-
mains the same, except that it now pertains to breathing motions
about a static equilibrium radius of 1 — Py/uB. The second of (25)
changes only to the extent that the term £(n? — 1)2 is now multiplied
by (1 — Pu/Pc¢y,), where Pgy, is given after (32).

For static stability, Py must be less than the smallest of the Pcy,
which is Pcg = P¢ = 3uf3£. Hence the reduction in static equilibrium
radius cannot exceed 3£, which is very small. Thus the principal effect
of ambient hydrostatic pressure is the reduction of flexural stiffness,
which is a destabilizing influence.

It is also interesting to examine inaccuracies introduced into
transient response computations by the neglect of the “live-load”
terms in (4). These terms account for the effects of finite translations
and rotations of the shell on the work done by the normal pressure
loading as referenced to the undeformed shell surface. All the terms
in (4) except p - a - w are live-load terms; when processed through the
Fourier-decomposition and term-elimination operations of Subsec-
tions 2.1 and 2.2, they appear in nondimensional form as the last two
summation terms in the last of (23). Following the application of"
Lagrange’s equation (11) and the introduction of the fluid-structure
interaction equations (24), live-load effects manifest themselves as
the terms [(n2 — 1)/n?] (g0 + @s0) and g in the second of (25).

Response computations designed to demonstrate the effects of
ambient hydrostatic pressure and live load have been performed for
the v = 10 sandwich shell excited by both T' = 10, P; = 2P¢ rectan-
gular and (in [20]) A = 1, P; = 5P¢ exponential incident waves. As
would be expected, n = 0 and n = 1 response is unaffected by the in-
troduction of ambient hydrostatic pressure or the omission of live-load
terms in (25). In contrast, the response behavior of the n = 2 flexural
mode is substantially affected, as indicated in Fig. 6. It is clear from
this figure that ambient hydrostatic pressure and live load are both
significant destabilizing influences for this mode.! The higher modes
are much less influenced, however, as indicated by the n = 3 response
histories of Fig. 7.

3.3 Shell Response. Modal response histories for 0 < n <5
have been superposed in accordance with (5) and (26) to construct
the shell response histories of Fig. 8-10, which pertain to excitation
by a T' = 10, Py = 2P¢ recntangular incident wave, Shown in Fig. 8 are
deformational displacement histories, which constitute displacement
histories with rigid-body motion removed, i.e., wp(8,t) = w(8,t) — f1(t)
cos 0. It is seen that the effects of ambient hydrostatic pressure and
live load are significant for excitation by the rather hroad rectangular
pulse; they are less significant, however, for narrower pulses.

Fig. 9 shows radial velocity histories at two points on the shell. The
effects of the ambient hydrostatic pressure and live load are clearly
negligible. Strain response histories are shown in Fig. 10 at locations
selected to emphasize flexural and nonlinear-exteénsional contribu-
tions to total strain. The coincidence of the wg and ¢y°-histories in the
figure demonstrates that the nonlinear-extensional term in the first
of (26) is minuscule. This, along with the smallness of the flexural
strain history, demonstrates that the strain response of the shell is
dominated by the n = 0 breathing mode. Hence, peak strain in the
shell is accurately estimated as

If!m&xz (Pl_llw()lmax)'NPC (33)
where N = Py/Pc. For the shell of Fig. 2, for example, Pr=!|wo| max

L A development like that which produced (32), but which includes ambient

- hydrostatic pressure and excludes live-load terms, leads to a prediction of the

coalescence, for 0 < ¢t < 10, of the response histories of Fig. 10 with the circle
and triangle designators.
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Fig. 9 Radial velocity response of the -y = 10 shell to a rectangular incident
wave with T =10, P, = 2P¢

= 1.125 and P¢ = 3ufE, = 2.405 X 1073; hence | €| max ~ 0.27N percent,
as suggested by Fig. 10.

3.4 Flexural Stiffness Effects. It is informative to compare
the response behavior of a moderately stiffened (v = 5) shell with that
of the heavily stiffened (y = 10) shell of Fig. 2-10. As the flexural
stiffness of a sandwich shell is proportional to 2 [see the discussion
preceding (10)], the Pc-value for the moderately stiffened shell is only
one-quarter of that for the heavily stiffened shell. Hence, in order to
maintain proper calibration between the excitation levels for the two
shells, Py-values of 0.04 Pg, 4 Pc, 8 P, and 12 P are used for the
moderately stiffened shell.

Figs. 11-14 show modal response histories for the v = 5 shell. A
comparison of the first of these with Fig. 2 indicates that nonlinear
effects in n = 0 response are more pronounced for the v = 5 shell than
they are for the v = 10 shell; even so, they remain relatively unim-
portant. Rigid-body n = 1 response of the v = 5 shell is virtually a
duplicate of Fig. 3 in which nonlinear effects are barely discernible.

Fig. 12, which pertains to n = 2 response, displays significant
nonlinear behavior, as does Fig. 4 for the v = 10 shell. For the same
value of P; = P¢, an n = 2 response peak during the free-vibration
phase for the ¥ = 5 shell considerably exceeds its counterpart for the
v = 10 shell. This is suggested by (32), which predicts exponential
response growth for Py > Peg = P¢ during the pressurization phase.
For example, for the y = 5 shell with Py = 12 P¢, the stiffness coeffi-
cient multiplying fg is —3- 11 - P¢c = —99 - u8 -25 h2/12a2, which ex-
ceeds in magnitude its counterpart for the v = 10 shell with P; = 3
Pe, whichis —3.2.Pc = —18 - uf3 - 100h2/12a2.

Tt is clear that the nonlinear response of a flexural mode to rec-
tangular-wave excitation depends critically upon the “initial condi-
tions” for the pressurization and free-vibration phases and the value

MARCH 1981, VOL. 48 / 21

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



%107
B.0

o
W _—
a: o
o: -Eg(3w/4)
f
o -
2 A €y (n,zmax)
(=)
_
=
<
4
-
w o
N
o
o
o® P
N _a
<
T T T T T
0.0 10.0 20.0 30.0 40,0 50.0

Fig. 10  Strain response of the -y = 10 shell to a rectangular incident wave
with T =10, P, = 2P¢

= a: Pp= 0.04 P

3

-2 o: Pr=4P

% A P‘=8P$
42 PI='|2 C

-0.2

50.0

Flg. 11 n = 0 displacement response of the 'y = 5 shell to rectangular In-
cident waves with T = 10

22 / VOL. 48, MARCH 1981

L
..
5 .
2 +
el ,'
Y
IS + \
Pl
‘\
\
Y
=) A .
< ’ y's B~
\
£ ’3\l
\

~f(t)/Py

+
~
+ o0
- o
—t
wRouon

50.0

Fig. 12 n = 2 displacement response of the y = 5 shell to rectangular in-
cident waves with T = 10

of the pressurization-phase “stiffness” parameter in (32). With P; =
NP¢, (32) predicts exponential growth during the pressurization
phase for those modes whose modal index satisfies the inequality n
< (3N + 1)!/2, Hence a large value of N implies that many flexural
modes may contribute significantly to shell response, while a small
value of N implies that only the lowest flexural modes need be con-
sidered. This is illustrated in Fig. 13, which shows that the n = 4 mode
of the v = 5 shell responds strongly, especially for P = 12 P¢. This
is in contrast to n = 4 response for the y = 10 shell, which is so small
that it is not even included in the discussion of Subsection 3.1.

The increased participation of the higher flexural modes in the
response of the y = 5 shell suggests that flexural strain might now play
a much more important role than that portrayed in Fig. 10 for the vy
= 10 shell. This is not the case, however, as shown in Fig 14, because
the increase in flexural mode response is essentially negated by the
decrease in the distance between the outer fibers of the shell. There
is a discernible nonlinear-extensional contribution to total strain, but
it is hardly significant.

The preceding comparison of v = 5 and 7y = 10 shell response il-
lustrates the dissimilarities between the response behavior of mod-
erately stiffened and heavily stiffened shells to a given incident wave.
The contrast between an unstiffened shell and a moderately stiffened
shell is even greater. For example, P; = 8 P¢ for v = 5 corresponds
to Pr = 200 Pc for v = 1. Thus, for this incident-wave magnitude, (32)
predicts exponential growth during the pressurization phase for the
n < 25 flexural modes of the y = 1 shell, while it predicts such growth
for only the n < 5 flexural modes of the v = 5 shell. Experimental
observations of short-structural-wavelength instability are reported
in [21, 22].
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Conclusions

This study has dealt with the dynamic instability of an infinite,
elastic, submerged, circular cylindrical shell excited by a transverse,
transient acoustic wave. Circumferential Fourier decomposition of
the field quantities appearing in appropriate energy functionals,
followed by consistent elimination of high-order terms, has led to
rather simple shell response equations with satisfactory attributes.
The fluid-structure interaction has been treated rigorously in accor-
dance with the residual potential formulation, which has been used
successfully in a number of previous studies.

Numerical results have been presented in the form of transient
response histories pertaining to excitation by plane waves of rectan-

gular pressure-profile. Examination of these results has led to the
following conclusions:

1 Dynamic instability effects are significant only with respect to -

flexural shell response.

2 The dynamically unstable flexural response that occurs while
the incident-wave profile passes over the shell profoundly affects
subsequent free-vibration flexural response.

3 For peak total strains smaller than 1 percent, only the lowest
flexural modes of a heavily stiffened shell experience dynamic in-
stability; if the degree of stiffening is reduced, however, higher flexural
modes exhibit such instability until, in the limit of an unstiffened
shell, numerous flexural modes are involved. Hence, the response of
an unstiffened shell to a given incident wave is significantly different
than that of an appreciably stiffened shell to the same wave.

4 n = 0breathing motion dominates strain response, and quasi-
linear (especially » = 1 translational) motions dominate velocity re-
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Fig. 14 Strain response of the Yy = 5 shell to a rectangular incident wave
with T= 10, P, = 8P¢

sponse; nonlinear flexural motions are important only with regard to
deformational displacement response, i.e., displacement response
exclusive of rigid-body translation.

5 As a consequence of the preceding conclusions, live-load forcing
terms and ambient hydrostatic pressure substantially affect defor-
mational displacement response, but have minor impact on velocity
and strain response.

6 The live-load terms in the surface-pressure work potential that
involve pressure gradients may be neglected [see (4)].

Acknowledgments

The authors express their appreciation to their colleagues B. O.
Almroth, F. A. Brogan, and P. G. Underwood for their valuable sug-
gestions regarding both theoretical and computational aspects of this
study. Additional thanks are due Dr. Nicholas Basdekas of the Office
of Naval Research for sharing his knowledge of the literature. This
study was sponsored by the Defense Nuclear Agency under Contract
No. DNA0001-78-C-0029.

References

1 Geers, T. L., “Transient Response Analysis of Submerged Structures,”
Finite Element Analysis of Transient Nonlinear Structural Behavior, Be-
lytschko, T., Osias, J. R., and Marcal, P. V,, eds., AMD, Vol. 14, ASME, New
York, 1975, pp 59-84. ,

2 DiMaggio, F. L., “Effect of an Acoustic Medium on the Dynamic Bucklin
of Plates,” ASME JOURNAL OF APPLIED MECHANICS, Vol. 23, June 1959, pp.
201-206.

3 Deng, Z.-F., and Popelar, C. H., “Dynamic Stability of a Cylindrical Shell
in an Acoustic Medium,” Journal of the Acoustical Society of America, Vol.
52, No. 5, Nov. 1972, pp. 14301436,

4 Mnev, Y. N., and Pertsev, A. K., Hydroelasticity of Shells, FTD-MT-
24-119-71, Foreign Technology Division, Wright-Patterson Air Force Base,
Ohio, Aug. 1971.

5 Grigoliuk, E. I., and Gorshkov, A. G., Nonstationary Hydroelasticity
of Shells, Sudostroenie, Leningrad, 1974, translated by M. D. Friedman,
LMSC-D567983, Lockheed Missiles and Space Company, Sunnyvale, Calif.,
Nov. 1977.

MARCH 1981, VOL. 48 / 23

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



6 Longhitano, R., and Klosner, J. M., “Nonlinear Dynamics of Submerged
Hemispherical Shells,” AE/AM Rpt. No. 74-4, Polytechnic Institute of New
York, New York, Feb. 1974,

7  Geers, T\ L., “Excitation of an Elastic Cylindrical Shell by Transient

Acoustic Wave,” ASME JOURNAL OF APPLIED MECHANICS, Vol. 36, Sept.

1969, pp. 459-469.

8 Geers, T. L., “Residual Potential and Approximate Methods for
Three-Dimensional Fluid-Structure Interaction Problems,” Journal of the
Acoustical Society of America, Vol. 49, No. 5, May 1971, pp. 1505-1510.

9 Geers, T. L., “Scattering of a Transient Acoustic Wave by an Elastic
Cylindrical Shells,” Journal of the Acoustical Society of America, Vol. 51, No.
5, May 1972, pp. 1640-1651. .

10 Sanders, J. L., “Nonlinear Therories for Thin Shells,” Quarterly of
Applied Mathematics, Vol. 21, No. 1, Apr. 1963, pp. 21-26.

11 Cohen, G. A., “Conservativeness of a Normal Pressure Field Acting on
a Shell,” ATAA Journal, Vol. 4, No. 10, Oct. 1966, p. 1886.

12 Brush, D. O., and Almroth, B. O., Buckling of Bars, Plates, and Shells,
MecGraw-Hill, New York, 1975.

13 Forrestal, M. J., “Response of an Elastic Cylindrical Shell to a Transverse

Acoustic Pulse,” ASME JOURNAL OF APPLIED MECHANICS, Vol. 35, Sept.

1968, pp. 614-616.
14 Lord Rayleigh, Theory of Sound, 2nd ed., Vol. 2, Dover Press, New York,
1975.

24 / VOL. 48, MARCH 1981

15 Slater, 4. C., and Frank, N. H., Mechanics, McGraw-Hill, New York,
1947.

16 Liessa, “Vibration of Shells,” NASA SP-288, National Aeronautics and
Space Administration, Washington, D.C., 1973.

17 Goodier, J. N., and Mclvor, I. K., “The Elastic Cylindrical Shell Under
Nearly Uniform Radial Impulse,” ASME JOURNAL OF APPLIED MECHANICS,
Vol. 31, June 1964, pp. 259-266.

18 Lindberg, H. K., “Stress Amplification in a Ring Caused by Dynamic
Instability,” ASME JOURNAL OF APPLIED MECHANICS, Vol. 41, June 1974,
pp. 392-400.

19 Hubka, W. F., “Dynamic Buckling of the Elastic Cylindrical Shell
Subjected to Impulsive Loading,” ASME JOURNAL OF APPLIED MECHANICS,
Vol. 41, June 1974, pp. 401-411. )

20 Geers, T. L., and Yen, C.-L., “Dynamic Instability of an Elastic Cylin-
drical Shell Excited by a Transient Acoustic Wave,” DNA 50267, Defense
Nuclear Agency, Washington, D.C., July 1979.

21 Anik’ev, L. L, Vorotnikova, M. 1, and Kononenko, V. Q., “Some Exper-
imental Results on the Effect of a Lateral Shock Wave in Water on Cylindrical
Shells,” Prikladnaia Mekhanika, Vol. 7, No. 9, 1971, pp. 106-109.

22 Anik’ev, I. K., and Vorotnikova, M. 1., “An Experimental Method for
Investigating Nonsteady-State Deformation of Shells Acted on by a Shock
Wave,” Izv. ANSS R, Mekhanika Tverdoge Tela, Vol. 10, No. 6, 1975, pp.
141-145.

Transactions of the ASME

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



M. J. Forrestal
D. B. Longcope
F. R. Norwood

Sandia Natlonal Laboratories
Albuquerque, New Mex. 87185
Mems. ASME

A Model to Estimate Forces on
Conical Penetrators Into Dry
Porous Rock

A model to predict the forces on conical-nosed penetrators for normal impact into dry
rock targets is developed. The target medium is described by a linear hydrostat, a linear
shear failure-pressure relation, and the material density. A cylindrical cavity expansion
approximation to the target response permits one-dimensional wave propagation calcula-
tions in the radial coordinate. The equations of motion are reduced, via a similarity trans-
formation, to a nonlinear ordinary differential equation. This equation is solved numeri-
cally by a shooting technique which employs an asymptotic expansion to the solution near
the wave front. Results include stress wave profiles in the target and curves for the stress
on the penetrator nose as a function of its velocity for a wide range of realistic target pa-
rameters. Finally, results from the theory are compared with the deceleration history of
a penetrator in a field test and reasonable correlation is observed.

Introduction ) .

The penetration of projectiles into targets has been studied for a
wide range of applications, many of which are discussed in {1-3}. For
geological targets interest is usually focused on the prediction of
penetration depth, penetrator deceleration history or stresses on the
nose. For the calculation of these quantities, recent solution tech-
niques may be grouped into three main categories:

1 Empirical equations for final depth of penetration based on full
scale test data [4-6].

2 Models which use a cylindrical [7, 8] or spherical [9, 10] ex-
pansion approximation to the target response and allow for one-
dimensional wave propgation.

3 Detailed numerical solutions which employ two-dimensional
wave codes {2, 11].

All of these approaches have advantages and limitations which must
be considered for a given application.

The present investigation falls into category (2) and is concerned

with the prediction of forces on conical-nosed penetrators during
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normal impact into dry rock targets. The cylindrical cavity expansion
approximation considers the target as thin independent layers normal
to the penetration direction and allows only radial target motion,
which is reasonable for sharply pointed penetrators. The constitutive
description of the target contains minimum detail; a linear hydrostat
and a linear shear failure-pressure relation. This material description
matches closely triaxial test data of cored field samples [12, 13] from
the Sandia Tonopah Test Range, Nevada. The present material de-
scription is different from that used in the other cavity expansion
solutions which model the targets with locked hydrostats.

Results of this study include stress wave profiles in the target and
families of curves for the stress on the penetrator nose as a function
of its velocity for a wide range of realistic target parameters. Target
wave profiles indicate that the stress diminishes rapidly with distance
from the penetrator nose when shear strength is significant. Finally,
results from the theory are used to calculate the rigid-body deceler-
ation history of a full-scale penetrator which entered a layer of Mt.
Helen welded tuff. This prediction is compared with measurements
from two on-board accelerometers [14] and reasonable agreement is
found.

Formulation of the Problem

A rigid projectile with a conical nose penetrates a uniform target
medium with normal incidence. The problem is axisymmetric and is
further simplified by applying the cylindrical cavity expansion ap-
proximation. As shown in Fig. 1, this approximation considers the
target as thin layers normal to the direction of penetration and
simplifies the analysis to one-dimensional wave propagation in the
radial coordinate. This model assumes that all motion in individual
target layers is one-dimensional, radial, and independent of any other
layer.
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Fig. 1

Geometry of the problem

The target medium is described by a linear hydrostat, a linear shear
failure-pressure relation [15], and density. Many rock materials with
low water content can be modeled with these idealizations; e.g., see
the data for Mount Helen welded tuff shown in Figs. 2 and 3. These
hydrostat and shear failure data were obtained from static triaxial
tests of cored field samples from the Sandia Tonopah Test Range,
Nevada. Additional data at high strain rates with gas gun experiments
[16] have shown rate effects to be negligible.

An idealized layer of target material is expanded by a conical nose
with half cone angle § as shown in Fig. 1. The equations of momentum
and mass conservation in cylindrical, Lagrangian coordinates are

oZu do, d
porgt—z——(r+u);—(ar—uc)5(r+u) (1a)
ou
por = p(r +u) (1 + ——) (1d)
or

where po,p are the initial and current densities, 1 is the radial dis-
placement, and ¢, o, are the radial and circumferential components
of Cauchy stress, taken positive in compression. Elastic strains are
neglected and the material is described by the hydrostat

p=K(1 - po/p) = Kn (2a)
and the shear failure-pressure relation
T= gp = 0, = uD (2b)
where p is the hydrostatic pressure
p ="(or + 20c) (2¢)

In equation (2c) it is assumed that ¢, = ¢, during a penetration event,
which matches the physical situation for triaxial tests [12]. Equations

(2b,¢) are combined to give
o= (1 + 2u/3)p. 2d)

Equations (2a, b, d) are used to eliminate the stress components
from equations (1a, b) which become

0 3 9 R unn

ou)
r

> ou
n+—a—;-‘+5(1+i—‘)=o (3b)

r or
The conical penetrator traveling at constant velocity V, begins to open
a circular cavity in a given layer at time ¢ = 0. This displacement at
the cavity wall, Lagrangian coordinate r = 0, is given by

u(0, t) = Vi, V=V,tan#. (4)

The other boundary condition requires that the radial displacement
at the wave front is zero and the formulation of the cavity expansion
problem is complete.

Analyses

Similarity Solution. In this section equations (3a, b) are solved
by the similarity method which reduces the partial differential
equations to nonlinear ordinary differential equations. As discussed
in [17], similarity transformations have been previously applied to
problems in gas dynamics with the Eulerian spatial description.
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Following the procedures outlined in [17], the dimensionless variables

i, £ are introduced
u(r, t) = ctu(f) (5a)
E=r/et, (5b)

The wave-front velocity ¢ for the medium described by equations (2a,

c?=(1+2u/3)K/po
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_b, ¢) is obtained from the momentum and mass conservation equa-
tions across the wave front [15]. The dimensionless radial coordinate
£ ranges from £ = 0 corresponding to the position of the expanding
cavity to £ = 1 which is the location of the wave front. Equation (2a)
indicates that » is dimensionless and no transformation is required
for this variable. With these transformations the equations of motion
and mass conservation become

d% _.dy ( 3u ) ( dﬁ)
St (f+T) — +|——|y{1 +—| =0 6
gdgi’ (& u)dg svom T (6a)
di @ d
n+ = 5(1+—’7)=o (6b)
a¢ & d
The boundary conditions at the cavity wall and wave front are
u(0) = V/e, (1) =0. (6¢)

During the analysis phase of this study it was found that the ad-
ditional transformation

uE=UE) —¢ )

could condense the length of equations and a single equation in U is
given by

¢-TNT [0, @]d0 (O
( ) +[£+U] dE (1+/,L)(d?) = () (8a)

U |dg?
in which
B=3u/(3+2u) (8b)
The boundary conditions are
To) =V, TL=1 (8¢)
and the radial stress in the medium is given by
: Udu
= (1+ 2u/3)Ky, =]1-—— 9)
or = (1+2u/3)Kn 7 EdE

Numerical Procedure and Results. Equation (8a) is a nonlin-

ear, ordinary differential equation and its solution is obtained nu-

" merically by a Runge-Kutta integrating subroutine [18]. For this
numerical procedure the equivalent system :

dU
ES— = (10a)
NETIN2 — re 2
dN _ (1 +p){UN _E(u + E9N (10b)
d¢ & -0

is introduced. The integrating routine requires initial values of U and
N specified at an end point, but for this application boundary con-
ditions are specified at £ = 0 and £ = 1. Consequently, an iterative
shooting method is used. The usual procedure is to guess a value of
N at the starting point, perform the integration, and compare the
computed value of U at the other end of the interval with the specified
value. If necessary, the process is repeated with a new value of N until
agreement is reached in the computed and specified values of U. This
process is modified in the solution of equations (10a, b) because of the
singularity at £ = 1 in equation (106).

Special treatment is given to the end points, £ = 0 and £ = 1.
Equation (8a) has an apparent singularity at £ = 0 which is removed
by the choice of equations (10a, b). An actual singularity exists at the
wave front £ = 1 and numerical values from asymptotic expansions
are used to start the integration at a point near the wave front. Ex-
pansions for 0 < 1 — § « 1 which satisfy the condition U (1) = 1
are

U=(+AQ-8F+...., §—1 (11a)
N=1/¢[1~-BAQ - HF-1 4. ], E—1 (11b)
B=0B+p/2 (11c)

where A is an undetermined constant and . . . indicates higher-order
terms. Equation (11e) indicates a singularity in the second derivative
of U for g < 1 (u < 3) which is a practical range for this study. These
expansions are determined in the usual way by assuming T =T — £
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Fig. 4 Radial stress profiles tor V/(K/p,)'/2 = 0.047

} 0.1
172
Vztan 6/ (Klpo)

Fig. 5 Radial stress component on the conical nose

“has the form (1 — £)# and substituting into equation (8a) to determine

B.

An expression is derived which gives a crude, but adequate initial
estimate of A to start the numerical procedure. A three term Taylor
series for U about £ = 0 which satisfies condition (8¢) is developed.

U=V/c+BE+. .., £—>0 (12)

where B is an unknown constant. Then U and its derivative from
equations (11a and 12) are matched at an appropriate point, £ = V/e,
to determine A and B. The resulting expression for 4 is

. V/ie
2(1 = V/e)f-11~ (1 - B/2)V/c]

The strategy for the numerical solution is to use the asymptotic
expansions to start the solution at a point slightly less than £ = 1 and
integrate toward £ = 0 where the numerical integration is well be-
haved. Using equation (12) an initial value of A is estimated, and U
and N are evaluated at £ = 1 — 1076 from equations (11a, b). Next,
the numerical integration of equations (10a, b) is performed up to the
point £ = 1076, although it can be performed arbitrarily close to £ =
0. Depending on the difference U — V/c at £ = 1075, a new estimate
for A is made and the process repeated until the difference in U — V/c
is less than 1076,

Computed values of U, dU/d£ and equations (9} are used to produce
the results of Figs. 4-6. The stress profiles in Fig. 4 are for a single
cavity expansion velocity and three values of the shear strength pa-

(13)
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rameter. These profiles show the wave-front stresses are zero, as in-
dicated by equations (9, 11a), and that the radial stress increases
monotonically from the wave front to the cavity boundary. Fig. 4 also
shows the effect of shear strength and that radial stress diminishes
rapidly with distance from the penetrator nose when shear strength
is important. Figs. 5 and 6 give generalized curves for the radial
component of stress at the cavity surface as a function of the cavity
expansion velocity for a realistic range of values of the target shear
strength parameter for dry rock targets. As discussed in the next
section, the curves in Figs. 5 and 6 may be easily used to predict stress
on a penetrator nose.

Force on the Penetrator and Deceleration. The similarity
solution for this problem indicates that the radial stress component
at the cavity wall or the surface of the conical penetrator is constant
for a given velocity V. Thus the stress distribution on the conical nose
is spatially constant. The incremental radial ring force on the conical
nose for a thin target layer with thickness dz is

dF, = 270, (0)R(2)dz (14a)
and the incremental axial force is
dF, =dF,tan§ (1456)
thus
l
F, = 2710,(0) j; z tan? 0 dz = nF2%0,.(0) (15)

where 7 is the radius of the penetrator aft body, ! is the nose length,
and o(0) can be obtained from Figs. 5 and 6.

As will be discussed later, acceleration-time is measured in field
tests. Convenient formulas for acceleration as a function of time or
penetration distance can be obtained by linearizing the data in Figs.
5 and 6. These data have only slight curvature and can be linearized
without substantial loss of accuracy. For linear curves which pass
through the origin, the radial stress and axial resisting force can be
written as

o, = aV, tan 8(Kpg)1/2
F, = anF?V, tan 6(K po)'/2

(16a)
(16b)

where « is the slope of the linear fit to the curves in Figs. 5 and 6.
The axial velocity V, is now permitted to vary with time. From
equation (16b) the equation for rigid-body motion of the penetrator
with mass m is
dv
m-—— = ~bp,
dt
Equation (17) with the initial condition v(¢t = 0) = Vj has solu-
tions

b= anF?tan 8(Kpo)1/? amn
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s = mVo/b[1 — exp (—bt/m)] (18a)
v = Voexp (—bt/m) (18b)
= —bVo/m exp (—bt/m) (18¢c)

for distance, velocity, and acceleration. From equations (18a, b, ¢)
v = Vo[l — sb/mVy) (18d)
= —=bVy/m[l — sb/mVy| (18e)

which describe velocity and deceleration as a function of penetration
depth.

Comparison With a Field Test

There is currently only one penetrator test into a natural, undis-
turbed rock layer for which acceleration-time data have been suc-
cessfully retrieved [14] and the appropriate material data are avail-
able. The target was a layer of welded tuff located at the Sandia, To-
nopah Test Range, Nevada. Details of the site characterization and
the material properties required to apply the predictions derived in
this study are presented in [12]. For this test, the penetrator had total
length 1.52 m (60.0 in.), outer diameter 0.165 m (6.50 in.), an ogive nose
profile with 9.25 CRH (caliber radius head), nose length 0.495 m (19.5
in.), and mass 182 kg (400 1b). The penetrator was accelerated to a
vertical velocity of 411 m/s (1350 ft/s) with a Davis Gun [19]. A 53.2
kg (117 1b) pusher plate which fits the internal diameter ¢f the gun
barrel is attached to the end of the penetrator and follows the pene-
trator until the pusher plate impacts the rock surface. Two acceler-
ometers (Endevco 225-MZ piezoelectric and Kistler 805 A quartz)
were packaged within the penetrator and these acceleration-time data,
filtered to 500 Hz, are shown in Fig. 7. The data were filtered in order
to estimate the rigid-body motion of the penetrator and eliminate the
vibrations associated with mounting the instrumentation package.

The theory derived in this study is for a penetrator with a conical
nose; whereas, the penetrator used in the field test had an ogival nose
shape. Based on several hundred full-scale soil penetration tests,
Young [4, 5] presents nose performance coefficents for several ogival
and conical nose shapes. These deceleration and final depth of pen-
etration data indicate that a 9.25 CRH (caliber radius head) nose and
a conical nose with half-conical angle # = tan™! (1/4) are nearly
identical. The analysis used for comparison with this rock penetration
test assumes that the ogival nose is equivalent to a conical nose with
6 = tan—! (1/4). Material data required for application of the theory
are
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po=197X10%kg/m? K =852 X 10° MPa, u=4/3;

as deduced from Figs. 2 and 3.

With the foregoing data the resisting stress on the penetrator nose
can be obtained from Fig. 5; V, tan 6/(K/po)? = 0.047, ¢./K = 0.037.
From equation (18¢) with a = 0.80 the deceleration-time profile can
be calculated and this prediction is compared with the field mea-
surements in Fig. 7. For this calculation, it is assumed that no decel-
eration takes place until 0.329 m (1.08 ft) which corresponds to the
distance of full nose penetration of the assumed conical nose shape.
After nose penetration, equation (18¢) predicts an exponential decay.
At 1.52 m (5.0 ft) the pusher plate impacts the target surface, and is
removed from the penetrator; this sudden mass change causes a de-
celeration jump. At this position s = 1.52 m (5.0 ft), a new initial value
problem is begun without the pusher plate mass. As indicated by the
data in Fig. 7, the penetrator comes to rest suddenly at s = 2.6 m (8.6
ft). At this distance the penetrator does not have enough kinetic en-
ergy to open a cavity as large as the penetrator aft body. The analytical
model presented herein does not predict this phenomena.

Summary and Discussion

A model to estimate forces on penetrators for normal impact into
hard geological targets is presented. The target medium is described
by a linear hydrostat, a linear shear failure-pressure relation and the
material density. These simple constitutive laws represent triaxial
test data [12, 13] on two different dry rock layers at the Sandia, To-
nopah Test Range, Nevada. The mathematical solution for the model
is obtained by similarity methods and generalized solution curves for
a wide range of practical parameters are presented. Finally, a com-
parison of this theory with a field test into a natural, undisturbed rock
layer is presented and reasonable correlation is observed.

The model provides a quantitative estimate of force on the pene-
trator nose with minimum detail about the constitutive description
of the material. Along with the previously stated approximations to
the problem, the Coulomb frictional stresses tangent to the penetrator
nose are neglected. Measurements of dynamic friction between rock
and steel were performed with a rotating steel wheel arrangement [20]
and data obtained for velocities up to 30 m/s which is an order-of-
magnitude lower than the velocity range required for this application.
No attempt was made to quantify Coulomb frictional effects in this
study, but the inclusion of this effect would produce larger predicted
accelerations than those shown in Fig. 7.
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This paper demonstrates the capability to perform three-dimensional computations for
explosive-metal interaction problems with complex sliding surfaces. An analysis is per-
formed for an explosive device which accelerates a metal liner known as a self-forging
fragment. Results are presented to show the effects of off-center detonation, asymmetric -
liner thickness, and asymmetric explosive density for an otherwise axisymmetric device.
These three-dimensional conditions have little effect on the linear velocities, but they do
introduce significant angular velocities to the self-forging fragment. Unlike projectile-
target impact computations, which require only a single sliding surface between the pro-
Jjectile and the target, the explosive devices have multiple, intersecting, three-dimension-
al sliding surfaces between the expanding explosive gases and the various metal portions
of the devices. Included are descriptions of the specialized “search routines” and the

“double-pass” approach used for the explosive-metal interfaces.

Introduction

Recently there has been much interest in explosive devices which
accelerate a metal liner known as a self-forging fragment [1-4]. Unlike
a conical-shaped charge, which forms a high velocity jet consisting
of multiple particles [5], a self-forging fragment remains essentially
intact and eventually forms a relatively rigid body as it travels at a
constant velocity after being accelerated by the explosive. The pri-
mary uses for such devices involve military and mining applications
where it is desirable to deliver a large amount of kinetic energy to a
distant location. Many of these devices are axisymmetric, such as that
shown in the upper portion of Fig. 1. Although the dynamic formation
of such devices has been accurately simulated in two dimensions [1-4],
little is known about the effect of three-dimensional, asymmetric,
variations from a baseline axisymmetric configuration.

This paper contains two related items of interest; a numerical
technique for explosive-metal interaction problems with complex
sliding interfaces, and an analysis of three-dimensional asymmetric
variations for an explosive device. Although the EPIC-3 computer
code has been used to simulate high velocity impact problems in-
volving projectile-target interaction [6], for the explosive-metal de-
vices in Fig. 1, the sliding surface computations are significantly more
complicated. The analysis examines the three-dimensional effects
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of off-center detonation, tapered liners, and variable density explosive,
as shown in the lower portion of Fig. 1. These variations are £10
percent of the nominal conditions and are generally greater than
would be experienced in the fabrication of actual devices.

Computational Approach

A description of the basic EPIC-3 code is given in reference [6]. It
is based on an explicit, finite-element, Lagrangian formulation which
uses constant strain tetrahedral elements. The additional features
for explosive-metal interaction are described herein.

Explosive Formulation. For explosive detonation, the hydro-
static pressure is obtained by a procedure similar to that used in the
two-dimensional HEMP code [7]. The pressure, determined by the
Gamma law, is given by

P=F(y-1E/NV (1)

where F' is the burn fraction (0 < F < 1.0), v is a material constant,
and E is the internal energy per initial unit volume. The relative
volume is V = V/V,, where V and V| represent the current and initial
element volumes, respectively. Other, more accurate expressions for
the pressure can also be used, such as the JWL equation of state [8],
if the appropriate material constants have been determined and are
available.

The explosive is effectively initiated with the burn fraction, which
is dependent on the time for the detonation wave to arrive and travel
through the element, or the compressed state of the element. The burn

fractions for these two conditions are

P t — ts)bD + b/2 (2)
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In equation (2a), t is the current time and £, is the time required for
the detonation wave to reach the center of the element when traveling
at the detonation velocity, D. A reference distance, b = 2V}, is used
to spread the wave front over a limited number of elements. Equation
(2b) gives the burn fraction in terms of the compressed state, where

Ve = v/(v + 1) is the Chapman-Jouquet relative volume. This allows
‘a converging detonation wave to travel at a velocity greater than D.
The maximum value of F from equations (2a) and (2b) is selected,
.if it is within the limits, 0 < F < 1.0. If F is negative or greater than
“unity, then F is set to 0 or 1.0, respectively. ‘

(2b)

Sliding Surfaces. Since the explosive gas expands significantly

and eventually vents at the intersection of the liner and the confine-
ment shell, it is necessary to allow for sliding to occur between the
explosive and the confinement shell. For the explosive-metal interface,
the formulation is based on a double-pass approach. For the first pass,
the metal is designated as the master surface and the explosive is
designated as the slave surface. After the equations of motion are
applied to the nodes of both surfaces in the usual manner, each slave
node is checked to determine if it has passed through the master
surface. Before this check is made, it is necessary to search through
the master surface until the proper triangular plane (tetrahedral side)

is identified. These “search routines” can be very complicated and

will be described later. ‘

If the slave node is found to pass through a triangular plane on the
master surface, it is brought back to the surface of the plane and the
normal velocities of the slave node and the three master nodes are
adjusted. The adjusted velocities are obtained by conserving linear
momentum normal to the plane, and angular momenta about the two
axes contained in the plane. The fourth imposed condition is that the
normal velocity of the slave node is equal to the normal velocity of the
master plane at the slave node position. The formulations for the
velocity adjustments are given in reference [6]. The velocity match
is often altered as subsequent slave nodes are processed since each
master node can be affected by more than one slave node. Therefore,
the process must sometimes be repeated to provide an acceptable
velocity match throughout the interface.

The second pass consists of redefining the explosive as the master
surface and the metal as the slave surface. This insures that there is
no intrusion of the metal material into the explosive material as could
occur if the spacing of the explosive nodes was significantly larger than
that of the metal nodes, or if the metal surface was convex toward the

Journal of Applied Mechanics

STEEL CONFINEMENT \

EXCESSIVE
SLAVE NODE
SPACING

CONVEX
MASTER
SURFACE

DISCONTINUOUS
MASTER
SURFACE

Fig. 2 Potential sliding surface problems associated with omission of the
second pass

explosive. The double-pass approach also allows the expanding ex-
plosive to slide off the end of the metal surfaces without the use of

- artificial extension surfaces.

Fig. 2 shows some of the problems which occur if the second pass
is omitted. For illustrative purposes, these conditions are shown in
two dimensions only; the x-z plane at y = 0. The inner surface of the
steel confinement shell is the master surface and the outer surface of
the explosive is the slave surface. The common phenomenon associ-
ated with each of these conditions is that the master material intrudes
into the slave material. The upper portion of Fig. 2 shows excessive
slave node spacing; the distance between adjacent slave nodes S; and
Sy is significantly greater than the spacing of the associated master
nodes. The result is that master node M is not directly resisted by
either of the slave nodes. Due to the intensity of these loading con-
ditions, the material tends to flow along the path of least resistance.
In this case, node M would probably move into the slave material, the
grid would overlap, and the computation would soon become mean-
ingless.

A similar situation exists when the master surface is convex toward
the slave surface. Generally this condition is not self-correcting; in-
stead the master node continues to intrude, and slave nodes S; and
Sg remain on either side of the master node M. When the edge of the
master surface is encountered, as shown in the lower portion of Fig.
2, slave node Sy is no longer contained by the master surface and
rapidly expands, effectively leaving master node M intruding into the
slave material. Improper treatment of this area has been shown to lead
to erroneous results [4].

All of these undesirable conditions can be corrected by using a
double-pass approach. Since the second pass consists of interchanging
the master and slave surfaces, node M becomes a slave node and is
therefore placed back on the new master surface defined by nodes S,
and Ss. As a result, it is no longer possible for one material on the in-
terface to intrude into the other material. '

The preceding discussion regarding the placement of the slave node
into the master surface, and the subsequent adjustment of nodal ve-
locities, has been for a specified slave node and the three corre-
sponding master nodes which define the master surface at the slave
node location. The identification of the appropriate triangular master
plane for a specified slave node can be a very complex process, how-
ever. :

There are two types of search routines; specialized and generalized.
The specialized routines require much less computer time and should
be used whenever possible. They can generally be used if the initial
and deformed geometry of the master surface can be expressed as a
single valued function of any two principal coordinates (i.e., any line
parallel to the third principal axis must not pass through the master
surface at more than one point). Under these conditions, the master
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surface projects onto a principal plane as an arrangement of triangles
with no crossover of one triangle onto another. Then the projection
of each slave node is checked to determine if it falls within the trian-
gular projection of any master plane. As soon as a master triangle is
found, the search is discontinued since the slave node can be associ-
ated with no other master triangle. The check for containment within
the triangle is done by determining the distance from the slave node
projection to each of the three lines of the master triangle projection.
If all three distances are positive, then the slave node is contained
within the triangle {9]. (This requires a specified sign convention and
consistent designation of the three master lines.) This specialized
approach can be used for many projectile-target impact problems [6,
9]. It can also be used for the sliding interface between the liner and
explosive as shown in Fig. 1; this interface can be projected onto the
y-z plane, where x is a single-valued function of y and z.

For the interface between the explosive and cylindrical steel con-
finement, however, the generalized approach must be used. Before
stating a general rule for finding the proper master triangle, several
definitions are required. 8, is the normal distance between the slave
node and the master plane. 6ref = VoAt where At is the integration
time increment and Ve is an input velocity (positive) which is greater
than any relative velocity difference expected in the simulation. ;¢
is then a positive reference distance greater than the relative move-
ment of any two nodes during one integration cycle. Another distance,
Oedge, 18 the distance between the slave node projection and the pro-
jection of one line of a master triangle. Since all projections cannot
be made onto the same principal plane for the generalized approach,
“the principal plane selected is that plane which is most nearly parallel
to the master plane. This can be readily determined from the normal
direction cosines of the master triangle.

The selection is now based on the following: If a slave node is con-
tained in the triangular projection (onto a principal plane) of one or
more master surface triangles, and if it is close to the triangular plane,
85 < Oref, then the master plane closest to the slave node is selected.
If the slave node projection is not within any master triangular pro-
jections but is close normally to at least one triangular plane, 8, < et
and if the distance from the slave node projection to the master tri-
angular projection is small, dcdge < Oref, then the master triangle with
the smallest dedqe is selected.

Fig. 3 shows examples of the search logic. Again, for clarity, theil-

lustrations are shown in two dimensions only, the y-z plane at x = 0.
Case A demonstrates the importance of the reference distance, dyef.
For this case the explosive is the master surface, and it is desired to
determine which master triangle (line in two dimensions) slave node
S should be associated with. The triangle containing master nodes
M1 and M3 is projected onto the x-y plane since it is more nearly
parallel to this plane. (The absolute value of the direction cosine in
the z-direction is greater than those in the x and.y-direction.) It can
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be seen that slave node S; falls within the projection of My and M,
on the x-y plane. However, the normal distance, ,, is significantly
greater than ,e¢ so the triangular plane containing nodes M7 and My~
is not the proper plane. The master plane containing nodes M3 and
M 4 also projects onto the x-y plane and contains the projection of the
slave node. Since 6, is less than 6., this is the proper plane. Slave
node S1 is therefore placed onto the master triangle containing nodes
Mg and My, and the velocities are adjusted as described in reference
[6].

Cases B and C show special instances which can arise when adjacent
master triangles are projected onto different planes. In Case B, the
explosive is the slave material and slave node S2 has crossed over the
master surface. The triangular plane containing master nodes M5 and
Mg is projected onto the x-y plane and the triangular plane containing
master nodes Mg and M7 is projected onto the x-z plane. Neither
projection contains slave node Sg. Since the normal and edge distances
are less than ye¢, and since 857, is less than 658, then the slave node
is correctly associated with the triangular plane containing master
nodes Mg and M7,

In Case C the explosive is the master material. Here, slave node S3
is contained within the projections of two different planes. In addition,
the normal distance to the two planes is less than d.es. Therefore, slave
node S3 is correctly associated with the triangular plane containing
master nodes Mg and M1 since it is closer normally to that plane; 631
< 889,

Results

The preceding explosive and sliding surface options have been in-
corporated into the EPIC-3 code [6] such that numerical solutions
can be obtained for the four different configurations in Fig. 1. The
steel confinement and copper liner have plastic flow stresses of 0.35
GPa and 0.48 GPa, respectively. The octol explosive is represented
by v = 2.85, E = 8860 J/cm3, pp = 1.80 g/cm?, and D = 8377 m/s. For
the sliding interfaces between the explosive and metal parts, the ex-

“plosive is slave for the first pass and master for the second pass. The

finite-element model contains 1288 nodes and 4392 tetrahedral ele-
ments. The coarse grid was selected to hold the computer time within
acceptable levels. Each of the four conditions requires about 3 hr of
CPU time on a Honeywell 6080 computer. The coarse grid, together
with the simple Gamma law for the explosive, is not adequate to ac-
curately simulate all the details of the problem. It does, however, show
the relative magnitude of the various three-dimensional effects.

The dynamic formations of the various configurations are shown -
in Fig. 4. The cross-sectional results are at the x-z plane of symmetry
aty = 0. The y-z plane at x = 0 is also a plane of symmetry, and the
asymmetric conditions are relative to the z-axis. The axisymmetric
condition at the top of Fig. 4 is included to provide a reference point
for the other three conditions. It also provides a check for the sliding
surface formulation. Even though this problem is essentially sym-
metric about the x axis, the sliding surface procedure is not inherently
symmetric; when there is node to node contact on a sliding surface,
the adjustments to the two nodes must be made in a direction normal
to one of the triangular master planes which contains the master node.
Since the selected triangular plane is the first one (which contains the
slave node) encountered in the search, and since the triangular planes
are not ordered in a symmetric manner, the symmetric slave nodes
are not necessarily adjusted in a symmetric manner. The high degree
of symmetry in the results indicates that this condition is probably
self-correcting.

The initial cross section for the axisymmetric case is shown in Fig.
1. The first deformed shape in Fig. 4 is shown at 35 us after detonation.
The explosive has expanded significantly and is venting between the
steel confinement and the copper liner. It can be seen that there is no
intrusion of one material into another on the sliding interfaces, and
that the upper and lower portions are essentially symmetric. A more
detailed check indicates the velocities at the top and bottom edges
of the liner are 1719 m/s and 1715 m/s, respectively. At 35 us, the ex-
plosive has a negligible effect on the liner and is therefore removed

‘from the simulation. The dynamic formation of the liner is shown from

50 us to 200 us after which there is limited plastic flow and the basic
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shape of the liner has been established. The axial velocity of 1890 m/s
is essentially identical for all four conditions. A further check on the
sliding surface formulation is provided by noting the low vertical
off-axis velocity of 0.4 m/s and rotational velocity of 35 rad/s.

The second condition considers an off-center detonation where the
explosive is detonated at a point 1.06 cm above the center line. During
the initial stages of the response, the explosive pressure first reaches
the upper portion of the liner and the liner achieves a clockwise ro-
tational velocity of 4840 rad/s at 7.6 us. Since this causes the upper
portion of the liner to move away from the explosive at a faster rate
than the lower portion, the explosive pressure is relatively decreased
at the top and increased at the bottom. The increased pressure at the
bottom eventually causes the final rotational velocity to be counter-
clockwise; 1073 rad/s at 200 us. The effect of rotation is particularly
significant for fragments where the length is much greater than the
diameter, since the effect on the target is dependent on the orientation
at the time of impact. :

The next condition considers the effect of a tapered liner where the
thickness varies linearly from 0.9 £ at the top to 1.1 £g at the bottom.
The total mass of the tapered liner is equal to that of the constant
thickness liners. This condition results in a significant rotational
velocity of 2722 rad/s. At a linear velocity of 1890 m/s, the resulting
rotation is 1.44 rad/m.

Journal of Applied Mechanics
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Fig. 5 One-dimensional, center-line strains, from node M to node M,;, at
the plane of symmetry, 200 us after detonation

The final condition demonstrates the effect of a variable density
in the explosive. It varies linearly from 1.1 pg at the top to 0.9 pp at the
bottom. The total amount of explosive energy is equal to that of the
other conditions. As expected, the denser explosive imparts a higher
velocity to the upper portion of the liner and the resulting angular
velocity is 962 rad/s.

Fig. 5 gives an indication of the relative distortions in the deformed
liners. The internal strain distributions are important inasmuch as
they can be used to give an indication of fracture; if the fragment
breaks into several pieces, the effect on the target can be significantly
altered. The one-dimensional strain along the center row of nodes,
from node My to M3, is shown as a function of the initial liner ge-
ometry. The strains are plotted at the midpoints of the adjacent nodes.
The same general pattern exists for all four conditions.

Several additional comments should be made about, the computed
results. First, the asymmetric conditions are generally more severe
than would be expected in actual devices. An approximation would
be to linearly interpolate the results for less severe asymmetric con-
ditions. An additional numerical solution for a tapered liner with a
+5 percent variation indicates the rotational velocity of the liner is
53 percent of the velocity achieved with the £10 percent variation
shown in Fig. 4. This appears to indicate that the results could be
interpolated. However, more solutions should be obtained to deter-
mine if this is true for the other conditions.

The rotational results are presented in terms of angular velocities
for clarity. It is the angular momentum, however, which is conserved
from 35 us to 200 us. Therefore, if the rotational inertia is significantly
increased, as it would be for a long slender fragment, the rotational
velocity would decrease accordingly. Vertical off-axis velocities were
also experienced for the final three conditions. Generally, they were
very low; 21 m/s, 4 m/s, and 9 m/s (all downward) for the off-center
detonation, tapered liner and variable density explosive, respec-
tively.

Referring back to the axisymmetric condition, it was previously
stated that the results were essentially symmetric on the x-z plane
of symmetry at y = 0. This symmetry condition does not exist as ac-
curately around the periphery, however. Fig. 6 shows a three-di-
mensional view of the axisymmetric condition. It can be seen that
jagged edges exist on the venting explosive at intervals of 7/4 rad. This
effect also occurs to a much lesser degree on the expanding confine-
ment shell. This is due to the change in the orientation of the elements
at these points, which is required to represent an expanding grid from
the center of the device. This effect would probably be significantly
reduced with a finer grid.

Another factor, relating to the sliding surface approach, is the ac-
curacy of the velocity match between the explosive and metal portions
of the device. It was previously stated that the velocity match between
a slave node and the master surface could be altered as subsequent
slave nodes were processed. For the results presented herein, a second
velocity matching iteration is included for the first pass only. Fig. 7
shows a comparison of the normal velocities, at the interface of the
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explosive and confinement shell, for the axisymmetric condition. Since
the detonation wave does not arrive at the confinement shell until
about 6 us, the confinement is rapidly accelerated between 6 us and
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Fig. 7 Normal velocities at the explosive-confinement interface for the
axisymmetric condition
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A Correct Definition of Elastic and
Plastic Deformation and lts
Computational Significance

The plastic part of an elastic-plastic deformation is that remaining when the stress, and
hence the elastic strain, is reduced to zero. Elastic deformation is that produced in this

purely plastically deformed material by the action of stresses up to yield. The associated
exact finite-deformation kinematics shows the almost universal assumption that the total
rate of deformation is the sum of elastic and plastic rates to be in error. An incremental
elastic-plastic theory is developed using the nonlinear kinematics. The theory is contrast-
ed with that in common use and anomalies in the latter are discussed.

1 Introduction

The kinematics of elastic-plastic deformation at finite strain was
incorporated into elastic-plastic constitutive relations by means of
the matrix analysis of sequential deformations [1-3]. The configu-
ration of a body in its undisturbed reference state at uniform tem-
perature fy is specified by the Cartesian position coordinates X = (X,
X5, X3) of the body’s material points. After loading beyond the elastic
limit the body takes on the configuration x at time ¢ given by the

mapping
x =x(X, t) (99

For elastic-plastic analysis the deformation is appropriately expressed
in terms of the deformation gradient matrix

F(X, t) = 0x/0X, (Fiy= 3x;/0X,) 2)

In order to define appropriate variables in which to express elas-
tic-plastic analysis, the body is considered to be destressed and re-
duced to the initial temperature g at time ¢ thus releasing the ther-
moelastic strains. The configuration is then specified by the map-
ping

a=alX,t) 3)

Since after elastic-plastic deformation a body is commonly left in a
state of residual stress when loads are removed and the temperature
is reduced to the base value, destressing may require the body to be
divided into infinitesimal elements so that the mapping (3) may then

1 Dedicated to the memory of Suresh Chandra who was studying this problem
before his untimely death.
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be discontinuous and not one-one [3, 4]. However a local “deformation
gradient” FP(X, t) can be defined in each element which specifies the
deformation after the macroscopic stress, and hence the thermoelastic
strain, has been removed. F? thus expresses the plastic deformation
which has taken place. It corresponds directly to the deformation
which would be associated with the migration of dislocations through
unstressed crystal lattices according to the physical theory of plas-
ticity. It also corresponds directly to the method of measuring the
onset of plasticity through a proof stress test which determines the
loss of reversibility to zero strain, and hence of purely elastic behavior,
when the stress is cycled back to zero.

A similar local deformation gradient Fe specifies the mapping from
the unstressed plastically deformed configuration a, (3), to the elas-
tically-plastically deformed configuration x, (1), and constitutes the
elastic deformation gradient. Since e is not in general a continuous
one-one mapping, Fé(X, t) is, like F?, a point function and not the
partial derivative ox/da (which usually does not exist).

The configurations of a material element in the neighborhoods of
X, a(X, £} and x{X, t) are related since the sequence of transformations
X — a(X, t) followed by a(X, t) — x(X, t) is equivalent to the mapping
X — x(X, t), so that the chain rule determines

F(X, £) = Fe(X, O)FP(y, 0) @

This expresses a simple but generally noncommutative coupling
between elastic and plastic deformation.

But plasticity is an incremental or flow-type phenomenon so that
increments or rates of deformation must be incorporated into the
formulation of the theory. The gradient of the particle velocity

v = Ox/dt|x (5)
in the current configuration at time ¢ is given by
ov. ovoX .
—=— s =fFl=lL (6)
Ox OX Ox
where F = OF/dt|x. L can be decomposed into its symmetric part D
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(the rate of deformation, velocity strain or stretching tensor) and its
antisymmetric part W (the spin tensor):

L=D+W ()]
Substituting (4) into (6) gives
L=FF!=FeFe! + FegPFP iR = Le + FeLppe! (8)

in which L€ = E¢Fe™" corresponds to the velocity gradient of the purely
elastic deformation, and LP = EPFP™! corresponds to the velocity
gradient of the purely plastic deformation.

Equation (8) clearly demonstrates, as was pointed out in [3], that
in general for strain rates expressed by D, D¢, and DP (the symmetric
parts of L, L¢, and LP)

D+ D=+ DP 9)
Relation (9) with an equality sign, or equivalently by multiplying by
At to obtain strain increments,

Ae = Ae® + Ae? (9a)
is the almost universal assumption in finite-element elastic-plastic
computer codes and as a basis for incremental measurements of
elastic-plastic material characteristics. For a recent reiteration and
elaboration of the rate summability concept, see Nemat-Nasser [14].
This anomaly is examined in [4] where it is shown that the adoption
of (9a) implies that certain elastic strain increments contribute terms
then categorized as plastic. In the present paper we show that a
careful development based on the kinematics expressed in (8) gen-

-erates a new incremental theory, using the finite-strain elasticity

" constitutive relation, which exhibits the appropriate structure and
symmetry properties to be incorporated into Hill’s rate-potential,
finite-deformation, variational principle [5] and hence into finite-
element computer codes.

We shall agsume isotropic elastic and plastic response to stress
throughout the deformation and invariant elastic properties since
these generate a relatively transparent analysis which is sufficient to
contrast with the commonly accepted approach. Such isotropy implies

that the plastic strain rate, based on normality with an isotropic yield

surface, and the Euler or Almansi elastic strain have the same prin-
cipal directions as the stress tensor.

It has been pointed out [3] that the component deformation gra-
dients F¢ and FP are not uniquely defined because arbitrary local
material element rotations in the unstressed state give alternate un-
stressed configurations. For analytical convenience, and with no basic
loss of generality, we take the elastic deformation gradient Fe, asso-
ciated with destressing, to be rotation free and hence given by V¢, a
symmetric matrix.

Fe=ve (10)

(8) then takes the form

L=Veve + ve(DP + wP)ye™! = yeye !t 4 yeppye ! 4 yewpye™!
(11)

and since V¢ has the same principal directions as the elastic Euler
strain, and hence also the same principal directions as stress and DP,
the multiplications in VDPVe™ are commutative so that, taking
symmetric and antisymmetric parts, gives

D = D¢+ DP + (VewPye g (12)

W =We+ (Vvewpve ), (13)

where the subscripts S and A indicate the symmetric and antisym-
metric parts, respectively.

Thus, in rate form, the elastic-plastic coupling appears to be more
involved than the deformation gradient relation (4). An interpretation
of the significance of (12) is presented in [4]. The last term in (12)
expresses a rate of strain contribution associated with elastic des-
tressing, followed by rotation and elastic restressing, although it ap-
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pears as a contribution associated with L?, and constitutes a residual
strain increment following application and removal of a stress in-
crement [4]. This may appear to be artificially associated with plastic
flow because of the choice (10), but the additional strain-rate term,
which contributes an increment of residual strain, arises from rotation
of the body relative to the stress tensor and would still appear if the
choice (10) had not been made. The theory must be sufficiently
flexible to incorporate arbitrary rotation with elastic-plastic defor-
mation if it is to be used as a vehicle for finite-element implementa-
tion. As explained in [4], such an elastic residual strain increment has
commonly been categorized as contributing to plasticity.

Instead of utilizing the first term on the right-hand-side of (8) to
give the elastic strain-rate D¢, the approach developed in this paper
is to combine it with the last term in (12) to yield a more cogent sep-
aration of elastic and plastic effects. Moreover use of the exact kine-
matic relation (12) eliminates anomalies associated with hypothe-
sising an equality sign in (9), i.e., that the total strain-rate is the sum
of elastic and plastic strain-rates.

2 The Elastic-Plastic Constitutive Relation

First, let us consider elastic response to stress. Since, without loss
of generality, we define elastic deformation by the strain recovery on
destressing without rotation, F¢ = v¢, (10), and using the Truesdell-
Noll notation [6 p. 52] the right and left Cauchy-Green tensors, C¢ and
B® respectively, are equal

ce = Fe'Fe = (Vo) = pepe’ = Be (14)

Thus the stress deformation relation for an isotropic thermoelastic
material (equation (18} of [3] or equation (84.11) of [6]) takes the
form
T =2C¢ —a—‘p—
QCe
where 7 is the Kirchoff stress (det (F¢) times the Cauchy stress) and
Y is the free energy per unit undeformed volume (equal to poy as de-
fined in [3]). The deduction of (15) depends on the fact that, for an
isotropic body, V¢, €¢ and dy/dC* all have the same principal axes
so that products of the matrices are commutative.

Since the incremental or flow-type structure of the plasticity law
demands that the elastic-plastic relation appear in rate form, (15)
must be expressed in terms of the velocity gradients developed in the
previous section.

(15)

€e = veve 4 yeve = (veye)T 4 yeye = 3(veye)g (16)

so that
pe = (Veve-l)s = (ve—lvevgve—l)s
' _ § 1 .
= yel(yeye)gye! =-2—v'v"‘c*~’ve“1 an

Thus the elastic terms in (12) can be rewritten as
-1 1 i -1 -1 -1
D? + (VeWPVe)s = —veTigeyeTt 4 veTlvevewr)gye

1 .
= Eve“[ce — wree + cewplve™  (18)

by making use of the antisymmetry of WP, The expr%ssion in square
brackets is the Jaumann or corotational derivative ( ), {7, p. 402) of
Ce for axes rotating with spin WP, i.e.,

Ce = & — WPCe + CoWP (19)
and (12) becomes
D=2D°¢+ D? (20)
where
De = %ve“&evf‘ (21)

Thus the rate-of-deformation or stretching tensor D of the elastic-
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plastic deformation can be expressed as the sum of an elastic com-
ponent involving the Jaumann rate of C¢ (effectively a term involving
the rate of finite elastic strain) and the plastic rate-of-deformation
tensor, DP. This provides a basis for writing the elastic-plastic con-
stitutive relation in incremental form.

Taking the Jaumann derivative with spin WP of the elastic consti-
tutive relation (15) gives

o

e e sne

where the colon, :, denotes the trace of the matrix product. In com-
ponent form this becomes, for isothermal response with which this
paper is mainly concerned

22
%= [zam(a‘”) 203 ( ‘”2)
ACe/sf JC e[k

and substituting for C¢ from (21) gives

] 22)

v
T

Ce 23
ﬂ] af ( )

v . [V %y
Tij=4{Vi Vs (DC ) + C8VenVie (OCQZ)kjaﬂ] D, (24)
or in concise notation
T = Mijmn D,  7=T1(De) (25)
Inversion gives
De = Ke(r) (26)

The plastic rate of deformation or velocity strain, D?, is given by
the plastic-potential, time-independent, hardening law [3 equation

(40)]

_L(of o, f
—h( @1

oT T 50
where f = g(1) — ¢ = 0is the yield function, g bemg on isotropic scalar
function for isotropic hardening, and ¢ a scalar function of tempera-
ture, 8, and history of plastic deformation. h is also a scalar function
of plastic deformation history and temperature.

Since f i8 a scalar function of 7, the first term in the parenthesis in
(27), being a part of /, will not be changed by replacing # by another
tensor time derivative, such as 7. Thus (27) can be written

DP——( f.-r+—a£9)b—f
h\or of | or

For the remainder of the'development we will restrict ourselves to
isothermal deformation (# = 0), and write (28) in the form

1 df of v
D% (h oty brmn) Tmn = Aumnfmn , DP=AP(1) (29)

(28)

Combining (20), (26), and (29) gives

=(Ae+ AP)T) = AP (30)

a rate-type law for elastic-plastic material. The operator Aisafunc-
tion of the current state which depends on the stress and the history
of deformation. Inversion of (30) gives

7=.£(D) (31)
3 Objectivity and Symmetry Properties

In order to contrast the elastic-plastic kinematic relations (9) (with
an equality sign) and (20), we examine the relevant transformation
characteristics of quantities involved under rotation of the current
configuration by the proper orthogonal transformation Q(t)

x* = Qx (32)
The deformation gradient changes to
= QF (33)

Since elastic destressing is considered to occur without rotation, each
element of the unstressed configuration must be subjected to the same
rotation, Q(t), as the current configuration and this constraint must
be introduced into the objectivity requirements. Thus

Journal of Applied Mechanics

FP* = QFP (34)

and

ve* = qveaT (35)

It is clear that (83)-(35) are consistent with (4) and (10). Using
(33)—(35) it can be readily shown that the following transformations
arise:

p* =apaT (36)
p7* = aprQ’ (37)
¢ = aceq” (38)

e = qceQT + 4ceaT + aceaT (39)

¢ = qceqT (40)
1 .

pe* = ap¢QT + p a(veaTave™ + velaTave)aT (41)

D= adeaT (42)

Tt is clear that (20) is objective since D, D¢, and D? all transform in
the same way, whereas the common assumption of additive elastic
and plastic strain rates; i.e., (9) with an equality sign, cannot be ob-
jective since D¢ transforms differently from the other two terms.

It is important to examine the symmetry of the operators Ajjn, (30)
and £; jmn (31) to check that the structure of the constitutive relation
generates a rate-potential function [5] and hence can be incorporated
into Hill’s variational principle valid for evaluating solutions of
problems involving finite deformation.

_ Equation (30) expresses A as the sum of elastic and plastic operators
A< and AP, and we examine these parts independently.

For isothermal isotropic elastic response the Helmholtz free energy,
¥, is a function of Iy, I, and I's the principal invariants of the Cau-
chy-Green deformation tensor C¢:

I =tr(c®), Ip=[(trce)2—tr(ce)]/2, Is=detCe (43)
where tr stands for trace. The derivatives of { in (22) are then
oy _dv, \P <L A
= 1165 — C§) + —I3C% 44
acfj aIl l,] ( 1045 u) bI3 3Ly ( )
and
2 2
_o _ 2% L oW (15— C2p) + Xy 1,C% ]6
aC%0Ce; oIt oIl dl;dl;5
a4 %y 02\1/ ]
+ bag + 116, — C¢, + IC I16;; — C%
aTool; 2 atpar, 110 2 aCe | (1éyj ~ C)
Y KL \l/ ] -1
+ 8ap + —— (10, eg) +———1I3C%"| IsC§
alsol, 2V argor, 10 = Ca) + 5oy 1o e
oY 0ia0jg) + —‘// (130 'CE — IsCH 7 0kabisCH ) (45)

+ —= (Bgdij —
12( B0

Substitution of (44) and (45) into (24) gives the operator f[ijm,n, (25),-
and term-by-term examination establishes the symmetry
Mijmn = Mo (46)
The variables 7;; and D§,, are both symmetric in their suffixes, this
property of the former being confirmed by deduction from (21), (24),
(44), and (45). This, in combination with (46), permits the constitutive
relation (25) to be formulated so that
1:'Iijmn = ﬁjimn = ﬁijnm (47)
In view. of the symmetry (46), and regarding (25) as a matrix trans-
formation of a vector with subscript (mn), to.one with subscript (i 7)),
inversion to (26) yields a symmetric inverse matrix A, This combined
with the symmetry of 7;; and D7, establishes the symmetry rela-
tions

Afjme = Aguj= A% = A (48)
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It is immediately clear that the plastic operator, A7, (29), exhibiEs
the same symmetries, and hence also the elastic-plastic operator A,
(30). Again the symmetries are preserved by the matrix inversion of
(30) to produce the operator £, (31).

4 An Appropriate Variational Formulation

The symmetries established in the previous section guarantee the
existence of a rate-potential function [5, 8] and hence lead to appli-
cation of Hill’s variational principle for velocity fields which is valid
for finite deformation. Sequential application and time integration
over the period of deformation permits the history of the deformation
and stress distributions to be evaluated.

However, substitution of (31) into the variational formulation would
involve unnecessary complexity since the Jaumann derivative of
stress, ¥, involves the spin tensor WP (equation (19)), which cannot
be simply expressed in terms of the velocity field as is evident from
(11). In contrast the total spin W is simply the antisymmetric part of
the velocity gradient. Incorporation of the Jaumann derivative based
on the total spin is therefore more simply expressed and yields a
convenient variational-principal structure for the determination of
the velocity field.

To this end we define the Jaumann derivative associated with the

total spin W,
(°)=()-w(O)+()w (49)

The corresponding differentiation of the elastic constitutive relation
(15) yields

Hy=2 lam% +Ct, (fgﬁ)m] s (50)
where
Ge=Cc— wWee + cew (51)
Manipulation of this relation, by substituting from (13)
W= (VeveT), + (VvewPve)y, (52)
yields, after some algebraic manipulation
Ge=Dece + ceDe (563)

D¢ being defined in (21). When this is substituted into (50) we
have

oY 02¢) ]
Tij =2 |dia +Ch |
T [ (ace)ﬁj * (ace2 ki

X (6amcnﬁ + Camaﬁn)ﬂ ;enn

(54)

and inversion and combination with the plastic strain-rate operator
(29) according to {20) gives

D=(Ac+ AP)F=AH) (55)

where A° is the inverse operator to that in (54). Inversion of (55)
gives

+=.L(D) (56)
On the basis of (54), (44), and (45) it can be shown that the operator
L exhibits the same symmetry properties established in the previous
section for operator £ in (31). Thus the operator .£ can be expressed
in rate-potential form and so incorporated into Hill’s variational
principle [5].

In order to include convection influences associated with finite
deformation in a simple and complete manner, Hill’s variational
principle involves the unsymmetric nominal stress Tj; (Piola-
Kirchhoff I') and the gradient of the actual material velocity in the
deformed configuration with respect to the reference position coor-
dinates X. The variational principle for the velocity field v, (5), takes
the form ’

[ on . . ‘
f TJia(——’i‘—)dvo— f bidudVo — f Ji0:dSo =0 (57)
Vo 20Xy Vo So
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b; being the body force per unit reference volume, f; the surface
traction per unit reference area, and the superposed dot indicates time
derivative. The rate of change of stress is expressed in terms of the
rate-potential function E by the relation

_ OF
a(ou;/aXy)

Thus, to incorporate directly the constitutive relation in the form (56)
into (57) and (58), D being the symmetric part of the velocity gradient
in the current configuration, the current configuration must be chosen
as the reference configuration, and 7's; expressed in terms of the rate
of Kirchhoff stress, +, defined with respect to the initial configuration.
The velocity distribution is thus evaluated at time ¢ and hence the
increments of displacement in the time interval ¢ to (¢ + At), The new
configuration is then used as the reference state for evaluating the
deformation during the next time-step. Iteration is used to improve
the accuracy of the sequential procedure, and stresses are determined
by integrating the constitutive relation as the deformation pro-
ceeds. :

Now the Piola-Kirchoff ] stress is given in terms of the Kirchoff
stress (see, for example, [8] with the notation s for T and J& = # for_
7) by

T (58)

T=F"l7 (59)

For the reference state coincident with the current state at time ¢

tF(t) =1 (60)

the unit matrix. Differentiating (569) with respect to time in the in-
terval t to t + At, using (49) and (80), then gives at time ¢

T =tr+tp-Dlr — i1l (61)

where the superscript ¢ indicates that these stresses are defined with
the configuration at time ¢ as reference state. But the Kirchhoff stress
in (56) is based on the unstressed reference state of density po, and
is defined, in terms of the Cauchy stress ¢ at some arbitrary time,
by

P0
=—g0
p

T (62)

whereas in (60) and (61) the configuration at time ¢ is the reference
state, and in the time interval £ to ¢t + At
o) p&)po _ p(t)
TE——g=——"—0g=—"7T
P po P Po

Substituting into the variational principle (57) with X = x(¢) and in-
corporating (56) then yields after some manipulation

(63)

Sy B L imaDn3Di + 7= 2D3Din + LadLai)ldV
0

- fV bidvdV — J;fiavids =0 (64

where b; and f; are per unit volume and area, respectively, in the
configuration at time £. The formulation of the variational principle
in terms of the Kirchhoff stress is essentially that presented by
McMeeking and Rice [9] for the small elastic strain case except for
the density ratio term which was not included and may not be im-
portant in that case.

The variational principle (64) forms a convenient basis for the
generation of finite-element computer codes, many of which are in
successful operation for small elastic strains, for example [9-11].

5 Finite Elastic-Plastic Deformation With Small
Elastic Strain

Many problems involving the elastic-plastic deformation of metals
may fall within the scope of a special case of the theory developed in
this paper, that of finite deformation with small elastic strain, Then
the squares of elastic strain components can be neglected. The elastic
strain tensor can be defined as the Lagrange strain i
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e = (C°—1)/2 (65)

The Helmholtz free energy for isothermal deformation takes the form
of the classical strain energy for infinitesimal strain

Y= ()\efieﬁj + 2uefies)/2 (66)
Substitution of (65) into (66) yields
\[/ = [)\(C‘E,ij - 60?,' + 9) + 2;L(C§=’,~Cj=,- — 2Cfi + 3)]/8 (67)

Since in (54) D¢, which involves a time derivative of €¢, is considered
a first-order small term, analysis to first-order permits zero-order
substitution of factors and hence €€ to be replaced by I. D¢ can then
be replaced by D¢, and (54) becomes

|
fij =4 |6im|——| + Dy,
T : [ (bC")ii (OC“’2 ijmn

Differentiation of (67) shows that the first derivative of Y is of order
¢, and can be neglected compared with the second derivative, so that
(68) becomes

(68)

Tij = (N0ijOmn + 2U0imOnj) DGy (69)
Inversion gives
0w L A .
D = i (im0, — —‘—'—‘3}\ n Zuﬁgjﬁmn)rmn (70)
Substitution into (20) with the plasticity law (29) then yields
1 A 1 9f of :
D = |— (84 8jp — ———— 0ij0mn) + ——— Fmn (71
¥ ou " 3N+ 2u 5 0mn) h 37ij OTmn ! (T
which can be inverted to give
. A
Tij = 21 |8i40jg + — Sap0ij
2p
1 9, o)

aff
£+ of of O7y OTM;]
2 OTmn OTmn

the operator on the right-hand side being the corresponding .£. The
development following (69) parallels that given in [9] using different
elastic moduli, If in certain problems, for example, stability analyses,
a more precise formulation is needed, it may be possible to include
higher-order terms in an approximation for the elastic-plastic operator
L, (56).

6 Discussion

This paper presents a rate or incremental formulation of the fi-
nite-deformation, elastic-plastic theory developed in [3]. The fact that
in [3] the elastic constitutive relation was left in total elastic defor-
mation form, rather than in rate form, limited utilization of the theory
and application has been restricted to shock-wave analysis in which,
by symmetry, principal directions of stress remained fixed in the body.
This permits the use of logarithmic or natural strain which generates
additivity of both elastic and plastic strain and strain-rates [12, 13].
However, this approach is not possible for arbitrary loading with
rotation and the present contribution removes this restriction.

The present theory is based on exact nonlinear kinematics of elastic
and plastic deformation. The latter is the deformation the body would
exhibit if the macroscopic stress, and hence elastic strain, were
maintained at zero while the remaining deformation proceeds. In the
case of migration of dislocations, for example, increments of this
plastic deformation are directly related to the specifics of the activity
of such atomic mechanisms and are not coupled with the elastic strain
to which the body is in fact continuously subjected. This is in contrast
with an increment of irreversible or residual strain under maintained
stress, which depends on the elastic strain because of the elastically
deformed material lattice quite apart from the influence of rotation
already considered. The elastic deformation is that due to stress acting
‘on the purely plastically deformed material. The exact nonlinear ki-
nematics logically directs the development of the theory including
the appropriate stress and strain variables which arise.

Journal of Applied Mechanics

The current commonly adopted elastic-plastic theory appears to
have grown from a foundation of infinitesimal deformation kinematics
which sets rates (or increments) of total strain as the sum of elastic
and plastic contributions, using the rate-type law for the plastic strain
and the derivative of the classical elasticity law for the elastic con-
tribution. Combining such kinematics and constitutive laws yields
a linear stress-rate strain-rate relation with stress and history variables
as coefficients. In order to preserve objectivity (or from a more ele-
mentary standpoint, to permit rigid-body rotation to correspond to
zero stress rate) the Jaumann corotational stress rate is selected for
the elastic-plastic rate law. While the final rate law developed is ob-
jective, the components from which it was constructed either are not
objective or do not correctly express the physical entities they purport
to represent. It seems to us that this explains the anomalies which
appear in the currently accepted’ elastic-plastic theory when it is
subjected to careful scrutiny. '

Perhaps some comments are in order to clarify the concept that the
residual strain increment, left after addition and removal of a stress
increment Ae, on a body in which the stress ¢ is maintained, contains
an elastic part. Increments of stress and deformation about a state
of maintained stress can be analyzed in terms of the rate of defor-
mation D defined in (11) and (12). During the loading increment,
elastic and plastic deformation increments can arise and all the terms
in (12) are likely to be nonzero. The simplest unloading assumption
for the stress increment —Ag is to reverse the sign of V¢, the elastic
deformation rate, and introduce no additional spin. Then the last term
in (12) is zero for unloading, and the value of that term times At
during the loading Ae will be retained as a residual or irreversible
strain increment, although it is independent of the plastic flow oc-
curring during the loading increment [4]. Of course, the spin tensor
WP agsociated with the elastic-plastic loading increment could be
reversed and incorporated into the elastic unloading increment, in
which case the irreversible increment of deformation associated with
WP would become reversible. However this might be difficult to ar-
range in practice since in the loading increment the plastic strain will
normally dominate and superposing the spin WP on elastic unloading
is likely to dominate the deformation process in unloading. In any
event, to include spin in the unloading which defines plastic strain,
and to have to devise a prescription for such spin, is likely to serve no
useful purpose and would complicate the analysis compared with that
corresponding to the choice (10), of unloading without rotation. Quite
apart from the unloading question, it was already shown in [3] that
the power expended by the deformation rate associated with the last
term in (12) is zero, in contrast to that due to D?, so that the former
term was shown to be physically associated with elastic deformation
even though it does not involve a change in the elastic deformation
ve.

From the standpoint of application, the small elastic strain theory
developed in the previous section, which results in essentially the
formulation currently adopted in many computer codes valid for finite
deformation, can be expected to be satisfactory for the majority of
problems of metal deformation. Equation (18) shows that the plastic
spin associated Jaumann derivative of the elastic Cauchy-Green
tensor, C¢, is a good approximation to the elastic contribution to the
strain rate, which includes the effects of both the rate of change of
stress and the rotation of the body. Equation (22) shows that this is
associated directly with the same derivative of stress, and (13) indi-
cates that the total spin will generally be a close approximation to the
spin WP, so that the Jaumann derivative based on total spin will be
a good approximation to that based on WP, The present new formu-
lation will permit a more accurate version of the theory to be devel-
oped if needed for particular problems.

It should perhaps be pointed out that, although the concept of the
definition of plastic deformation as that remaining when the macro-
scopic’s'tress, and hence elastic deformation, is reduced to zero is
stressed in this paper, the general structure of the theory presented
can encompass the situation when a Bauschinger effect involves re-
verse plastic flow on unloading before zero stress is reached. In this
case there need be no particular difficulty in devising a Helmholtz
free-energy function for the elastic range. The application of incre-
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mental theory involves only rates or increments of strain and not a
prescription of total elastic or plastic strain. Formally one could define
the plastic strain to correspond to zero stress evaluated from the
elastic law even though this state cannot be reached without addi-
tional plastic flow. The utilization of this artificial unstressed state
provides no impediment to evaluating stresses according to elastic
or elastic-plastic theory where the corresponding physical behavior
is oceurring.
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Time-Dependent Behavior of Metals
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Mem. ASME Though Kriner’s self-consistent model is not fully consistent in the elastic-plastic defor-

mation of polycrystals, it is found to be perfectly consistent in the time-dependent defor-
mation of such materials. Hill’'s model, on the other hand, should be used with a modified
constraint tensor containing the elastic moduli of the matrix in that case. Kréner’s model
is supplemented with a physically consistent constitutive equation for the slip system;
these, together with Weng’s inverse method, form the basis of a self-consistent determina-
tion of time-dependent behavior of metals. The kinematic component of the latent hard-
ening law and the residual stress introduced in more favorably oriented grains are the two
major driving forces for recovery and the Bauschinger effect in creep. The proposed meth-
od was applied to predict the creep and recovery strains of a 2618-T61 Aluminum alloy
under pure shear, step and nonradial loading. The predicted results are seen to be in gen-

erally good agreement with the test data.

Introduction

Since Eshelby’s classic paper [1] on the stress field of an ellipsoidal
inclusion was published in 1957, its results have been widely used to
predict various mechanical behavior of materials. One of its most
important applications was developed into the “self-consistent model”
for polycrystalline plasticity, which was originally introduced by
Kroner [2] and subsequently applied by Budiansky and Wu [3].
Kroner’s model, then, offered a promising approach to account for
the complicated grain interaction. Later, Hill [4] reexamined the
structure of self-consistent scheme, and found that Kréner’s model
was not entirely consistent, in that the decreasing constraint power
of the matrix in plastic flow was not considered. Hill then proposed
a more rigorous self-consistent scheme, which was characterized by
a constraint tensor. The constraint tensor depends on the tangent
moduli, instead of the elastic moduli of the matrix in elastic-plastic
deformation. Ever since, Hill’s model has become perhaps the most
highly regarded, and has been successfully applied by Hutchinson [5],
and recently combining Kréner’s “explicit” spirit by Berveiller and
Zaoui [6], among others.

Prompted by the success of self-consistent model in plasticity,
Brown [7] first attempted to extend it to study the creep behavior of
metals. Recognizing that Kroner’s model was computationally easier
than Hill’s, he adopted the former model. Hutchinson [8] later also
applied Hill’s model to estimate the steady creep rate of a polycrystal
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from that of its constituents. The derivations of Brown and Hutch-
inson have provided many significant results. Hutchinson’s results
are particularly useful for the estimate of long-time creep.

It should be pointed out, at this stage, that both Kroner’s and Hill’s
models were originally proposed for the study of time-independent
plastic deformation of polycrystalline solids; they were not intended
for the time-dependent creep problems. If the self-consistent models
are to be extended to study the latter problems their applicability,
in their given form, should be critically examined. In fact, upon ex-
amination it becomes evident that Kroner’s model then becomes
entirely consistent and that, while Hill’s concept of constraint tensor
still remains valid, its value should be given in a modified form. The
crux of the matter is that, creep, unlike plastic deformation, is a truely
“stress-free” process in the sense of Eshelby, because the creep strain
rate, at any generic state, depends only on the current stress and de-
formation history and is independent of the stress rate. The latter
independence obviously does not hold in plasticity, and this leads to
the presence of tangent moduli in Hill’s constraint tensor. This subtle
point appears to have not been realized. Brown used Kréner’s model .
but wrote: “Hill (1965) has shown that this model has certain limi-

. tations, since the pronounced directional weaknesses in the constraint

of an already-yielded aggregate are disregarded. The present work
suffers from the same limitations.” Such limitations simply did not
exist. Brown’s results were less time-dependent than what he exper-
imentally showed, because he used the steady state power law for the
slip system to begin with. Hutchinson’s formulation on the other hand
is not affected by this consequence, since his objective was on the
time-independent, steady-state creep rate of the aggregate.

A séparate, yet equally plausible approach to derive the inelastic
constitutive relations of polycrystals has been pursued by Lin [9], by
means of his “equivalent body force.” This concept was originally
introduced for plasticity, and later applied to study the creep behavior
of metals by Lin, et al. [10], and Weng [11]. Considering both transient
and steady creep of the crystal, Lin, et al., derived the polycrystal
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properties from single crystal creep data. A two-step inverse method
was proposed in [11]: first, the single crystal properties are derived
from polycrystal data, and then these properties are used to predict
the creep behavior of the same polycrystal under other required
loading conditions. The derived single crystal properties account for
the effect of grain boundaries and therefore are in situ, and the pre-
dicted polycrystal results can be compared directly with experi-
ments.

In this paper we apply Kréner’s self-consistent model and Weng’s
inverse method to study the time-dependent behavior of metals. A
more physically consistent constitutive equation than those used in
previous studies will also be introduced to account for the active and
latent hardening of slip systems. Our consideration will be restricted
to the temperature range below half the melting point (T',), so that
crystallographic slip is the main source of creep deformation. Since
the elastic property of the grain for most structural metals is fairly
isotropic, such an isotropy will be assumed. For highly anisotropic
crystals Eshelby’s “equivalent inclusion” could be introduced to ob-
tain the additional inhomogeneous stress. Within the scope of small
deformation grain rotation will be neglected.

Self-Consistent Determination of Creep: A Stress-Free
Strain Problem

Kroner’s self-consistent relation was given in [2], and rederived by
Budiansky and Wu in [3]. However, by applying Eshelby’s solution
more directly the result could be so easily derived that it is tempting
and revealing to reconsider it here.

Consider an ellipsoidal inclusion (grain) embedded in an infinitely
extended matrix (aggregate). The stress and creep strain of the in-
clusion are denoted by ¢ and €°, while those of the aggregate are
specified by the corresponding barred (averaging) quantities ¢ and
€°. When the matrix and inclusion undergo the stress-free incremental
strains de® and de®, respectively, the self-consistent scheme can be
formulated by the two-step process:

1 Let the matrix and inclusion deform with the given amounts
separately without constraint. T'o bring the deformed inclusion into
the deformed matrix compatibly we apply

da; = L(dec — de®), (1)

on the inclusion, where L is its elastic moduli tensor.

2 Toremove the unwanted layer of surface force we apply a sur-
face traction characterized by de* = —doy on the interface. Then
Eshelby’s result shows that the additional stress induced in the in-
clusion, denoted by dog, is given by

dag = LS(de® — de®), (2)

where Eshelby’s 8 matrix, when multiplied by the effective stress-free
strain increment, gives rise to the constraint local strain increment
of the inclusion.

Thus, at the end of operation the induced stress increment in the
inclusion is the sum of da; and das, i.e.

do = —L(1 - 8s)(de® — de°), 6)]

where | is the fourth-rank identity tensor. When the inclusion is
spherical, equation (3) can be written as

do = —2u(l — B)(dec — dé®), (4)

where u is the shear modulus, and 3 = 2(4 — 52)/15(1 — v), v being
Poisson’s ratio. Equation (4) is the familiar Kroner’s self-consistent
relation. Since 8 < 1, the stress in more favorably oriented grains,
characterized by de® > de®, is relieved during this incremental process;
conversely it is increased in less favorably oriented grains.

Suppose that during this incremental deformation the aggregate
is further loaded with dg. Then, with the assumed elastic isotropy we
have

do — d = — L1 — 8)(de — d&®)
= —2u(1 — P)(de* ~ dev). (5)
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Since the difference between the total strain of the grain and of the
aggregate is given by S(de¢ — de®), Hill’s constraint tensor L*, in view
of (5), is seen to satisfy

L*s = L(1 —8), 6)

instead of his original form L*S = L(1 — 8), L being the tangent moduli
of the matrix under elastic-plastic deformations and S interpreted.
in this context. Evidently L = 0 in a constant-stress creep test; the
constraint power of the matrix would have vanished if Hill’s original
relation had been used.

Equation (5) provides the self-consistent variation of internal stress
in the grain for each incremental process; the average of de over all
grain orientations gives rise to de, and so does de® to dé°, This equa-
tion can be used to calculate the time-dependent behavior of metals
from those of its constituents, or vice versa.

Constitutive Equations of Single Crystals and

Polycrystals

The self-consistent model provides a proper connection between
the deformations of a grain and its aggregate. In order to use it to
determine the time-dependent behavior of the aggregate, however,
it needs to be supplemented with a physically consistent constitutive -
equation for the grain. Below T’,,/2 creep in metal crystals is primarily
caused by dislocation glide, during which their interactions, inter-
sections and structural changes lead to active and latent hardening
in slip systems. The creep rate of a slip system thus decreases even
under a constant stress, until a steady state is reached. The steady
creep rate of a slip system in general can be described by the power
function of its resolved shear stress 7; 0 can its initial creep rate. The
decrease of the transient creep rate, on the other hand, should be
described in accordance with a proper theory of work hardening. For
simplicity Taylor’s isotropic hardening law [12] was used in [11]. This
law offers a reasonable approximation under radial loading. But since
it is in direct contradiction with the observed Bauschinger effect in
crystals (for example, see Buckley and Entwistle [13}), it tends to
result in an underestimate for creep strains under recovery, reversed
loading or other nonradial loading. Recently, Weng [14] analyzed the
nature of some dominant hardening mechanisms in metal crystals and
found that, though dislocation tangles, jogs, forest cutting and “cell”
structure primarily lead to the isotropic hardening in slip systems,
the hardening behavior caused by dislocation pile-ups and dislocation
rings encircling dispersions is kinematic instead. A mixed hardening
law, which incorporates both isotropic and kinematic hardening, and
is characterized by the “degree of isotropy in work hardening «,” was
proposed. Using this hardening law as the basis for the transient creep
rate ¥, ¢, and again employing the power function for the steady creep
rate ¥,¢, we write the following constitutive relation for the ith slip
system: '

(1) )

A5 = kT, (7
) @) GHG
yeel + (1 — @) 2 cos b cos ¢ 'yf”, 8)

j

03] i)
y.0 = n{s“f"— [az
J

L.

where(ﬁjisvthe angle between the slip directions of the ith and jth slip
systems,(lJf)between their slip plane normals, and k, A, 5, and { are four
other single crystal constants. Both « and A are dimensionless and
k, ¢, and 7 are in the units of (stress)™ (time)~!, (stress)™, and
(time) 1, in turn. The total creep rate of a slip system ¢ is the sum
of its transient and steady components. It is evident from (8) that the
creep rate of a slip system decreases in accordance with the mixed
hardening law, with & = 1 and 0 corresponding to the isotropic and
kinematic hardening, respectively. The kinematic nature associated
with & = 0 has been fully discussed in [15]. A constitutive equation
like that given in [11] was found insensitive to recovery due to the
overwhelming dependence of creep rate on 7, even with the isotropic
hardening law replaced by the mixed hardening law.

To assist the determination of these five constants from the tensile
creep data of its polycrystal, it is helpful to introduce similar consti-
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tutive equations for its creep behavior. We write the steady and
transient creep rates € ¢ and ¢,¢, respectively, as

&° = ag?, ©)

@ =c(dab - &), (10)

where the four parameters a, b, ¢, and d can be easily determined from
two tensile creep curves.

Comparison of equations (7), (8) to (9), (10) indicates that the na-
ture of k, A, , and { are similar to those of a, b, ¢, and d, in turn. The
corresponding parameter of « for the polycrystal is not present in (10),
which under pure tension does not require any specific hardening law.
These five constants, each possessing a distinctive property, can be
determined from two tensile, constant-stress creep and one recovery
curves of the polycrystal.

Derivation of Single Crystal Properties From the
Tensile Data of Its Polycrystal

Consider a polycrystalline aggregate, consisted of randomly ori-
ented, equally sized single crystals. When the elastic anisotropy of
each grain is neglected, the creep rate of the aggregate is simply the
average of the creep rates of its constituent grains. In terms of rec-
tangular components,

&;° = {&;°), (11)
where { } denotes the average taken over all crystal orientations. This
notation will be used in the remainder of this paper.

The creep rate of a grain, on the other hand, depends on the slip rate
of its slip systems. We allow at any instant every slip system to be
active. This removes the single-slip restriction placed in [11], and
appears to be more physically consistent. Consequently

(&) (R)

&jc = % Vij Y5, (12)
where ;; is the symmetric part of the dyad b;n;, b; and n; being the
slip direction and slip plane normal, respectively, of a slip system. The
superscript k& refers to the kth system, and the sum includes all sys-
tems in the grain. This summation convention is implicit throughout
the paper and unless ambiguity might arise, the indicator £ will be
dropped for brevity.

Furthermore, the creep rate of a slip system, following (7) and (8),
is a function of its resolved shear stress, which is related to the local
stress in the grain by

(k) (k)
T = Vij o).

(13)

The local stress at time ¢t is calculated following the self-consistent
relation (5) with de;;© = &;°dt, dt being the time increment.
We now consider the following quantities for the derivation of single
crystal constants from the tensile properties of its polycrystal:
1 Initial Creep Rate. From equations (9) and (10) it is given
by
€ = (a + cd)a®. (14)

On the other hand from (11)—(13), (7) and (8), it can also be written
as

€0 = (kK + n OIS MY (15)
Comparison of (14) and (15) leads to
A=b, (16)
a+cd
= 17
e an

2 Steady Creep Raie. The steady creep rate of the aggregate
under tension is given by equation (9). Also, by means of equations

(11)-(18) and (7)
&° = k{Svu,Y), (18)

where 75 is the resolved shear stress of a slip system at steady state.
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Its value is not known a priori, but can be estimated approximately.
In a tensile creep test, though the local stress field in each grain can
be triaxial, its predominant component is still the tensile component.
Thus neglecting the other components, we have 75 ~ v1105, where o,
is the said component at steady state, which is heterogeneous
throughout the aggregate and whose value in each grain depends on
its orientation. We write

) ()

05 = po, (19)
for the kth grain, subject to the constraint

p}=1, (20)

for self-consistency. The value of p for each grain thus characterizes
the departure of its local tensile stress from the uniformly applied
aggregate stress 0. Then equation (18) becomes

€° = kS bt ipbigt. 21)

We further note that at steady state de = 0 for each grain. Conse-
quently from equation (4) de¢ = de¢. Since the creep rate in every
grain is now equal to that of the aggregate, the averaging bracket in
(21) can be deleted. Then, from equations (9) and (21), we arrive at

( a )1/b
= |l ’
p Ky bt

for each grain. Substitution of this relation into the constraint (20)
yields

(22)

1 b
ke {(EVHI’H)W’} ' =

3 Initial Decreasing Rate of the Creep Rate. From equations
(9) and (10} it is given by

dee c2d
- == . (24)
dec|e=0 a+ed
On the other hand consider the limiting process
de¢ Afec)

— = lim .
declt=0  ar—p Afec|t=0
[ ) (.i)
From (12) we write Afé¢} = {Zv11A%¢}. The variation of ¥¢, or Ay,
‘ )] 1))
in view of (7) and (8), depends on At and Avy;¢ for all j. When the
aggregate is under a changing, or sinusoidal stress, these factors are
equally important. But in a constant-stress creep test, the former
factor is less important than the latter. Thus
o @ "
i e i
A=y % Avy©
7oy

consequently from (7) and (8)

@ @) @ G

Ay~ —q 3 [a+ (1~ a) cos 0 cos ¢)Ay,°. (25)
j

Furthermore with Avy,° = 4,°A¢t, (8), (13), and (16) we arrive at

Afech=o ~ —n2¢

@) @) GHY
X312 v 2 le+ (1 — @) cos 0 cos ¢]V11~b} abAtL. (26)
F
On the other hand from (15) and (16)
Afecli=0 = (k + 2w 0T AL, (27)
Then, from equations (24), (26), (27) and (17), we find
@) @5 GHY
172({2 ri1 2 [a + (1 — a) cos 0 cos ¢lv11} = c2d. (28)
i j

MARCH 1981, VOL. 48 / 43

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Combining equations (28), (17), and (23), we finally have

@) G5 GG
ML v 2 [+ (1 — a) cos 8 cos qs]unb]
J

1

2
_ c2d . (29)
b

a+cd _ { 1 l
{Eynbﬂ} a (Eyub+1)1/b

Equations (16), (17), (23), and (29) provide four equations for the
five constants «, A, 1, {, and . The additional information can be
obtained from the recovery curve. Since the degree of isotropy in work
hardening « exists within the range 0 < & < 1, we may adopt the it-
erative process first by assuming « = 1 (isotropic hardening), to derive
the values of the remaining four parameters so that the two tensile
creep curves can be well simulated. Next, we use these five constants
to calculate the recovery curve. The calculated recovery strain is
usually too small under the assumption of isotropic hardening. We
then reduce the value of « to increase the kinematic component, and
repeat the same process, until the two tensile creep curves and the
recovery curve are accurately simulated. The corresponding values
of these five parameters then can be used to predict the behavior of
metals under desired loading conditions.

It should be pointed out that, due to the complicated nature of creep
deformation in a polycrystalline solid, the foregoing equations can
only provide the starting values for the iterative scheme. Since the
stress relaxation in more favorably oriented grains under higher
tensile stress is greater than that under lower stress, the actual value
of A is always greater than b.

Prediction of Creep, Recovery, and the Bauschinger
Effect of an Aluminum Alloy

The lattice of an aluminum crystal is face-centered-cubic; it has
four {111} slip planes and three (110) slip directions on each plane.
The polycrystal model used here consists of 75 different crystal or-
ientations, which were constructed with the aid of stereographic
projections in the standard triangle to simulate the three-dimensional

‘isotropy. Its isotropy, as measured by the generated creep strain
components, has a maximum deviation from perfect isotropy of less
than 4 percent. In this section we use the method outlined earlier to,
first, derive the five single crystal constants from two tensile creep
and one recovery curve of its polycrystal, and then use these constants
to predict the creep, recovery, and the Bauschinger effect of the same
polycrystal.

The experimental data of Blass and Findley [16], Findley and Lai
[17, 18] on a 2618-T61 Aluminum alloy, tested at 200°C, will be used
for derivation and for comparison. The two tensile creep curves were
tested at ¢ = 119.5 MPa (17.33 ksi) and 193.1 MPa (28 ksi) and the
recovery curve taken following the creep at& = 119.5 MPa. The test
data were given in terms of total strain. Since, as stated by Findley
and Lali, there was no plastic deformation in these tests, the creep
strains can be obtained from the total strain minus the elastic strain,
with the Young’s modulus E = 65.0 GPa (3.57 X 106 psi) (17]. The
constant-stress creep tests lasted for 2 hr and the recovery 30 min. The
creep and recovery data for these three loading conditions are shown
as open circles in Fig. 1. These two creep curves were found to be
representable by equations (9) and (10) with e =4.33 X 10711, b =
3.82,¢ = 9.14 X 1072, and d = 1.09 X 1078, where stress, strain, and
strain rate were in the units of MPa, 1074 m/m, and 10~* m/m/min,
respectively.

We used equations (16), (17), (23), and (29), and the iterative
method outlined to derive the values of single crystal constants. The
results are k = 2,52 X 10710, A =412,y = 0.10, { = 1.09 X 1077, 'and
a = 0.28, where stress and time are again expressed in terms of MPa
and min, respectively. The calculated theoretical curves are also shown
in Fig. 1; the experimental data are seen to be well simulated. In the
numerical scheme the transient rate of a slip system was assumed to
vanish when the parenthesis term in equation (8) became negative.

Four distinctively different loading conditions are available from
the test data for comparison. These are:
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Fig. 1 Derivation of single crystal constants from tensile creep and recovery

curves of a 2618-T61 Aluminum alloy
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Fig. 2 Creep and recovery of a 2618-T61 Aluminum alloy under pure
shear

(1) Creep under constant shear stress at 715 = 79.3 MPa (11.5 ksi)
for 2 hr, followed by recovery for 1 hr.

(ii) Creep and recovery under axial step loading: first creep under
a1 = 137.9 MPa (20 ksi) for 2 hr, followed by recovery for 30 min, and
then creep under reloading at o717 = 193.1 MPa (28 ksi) for another
1.5 hr.

(iir) Creep under step and nonradial loading: first creep under
o12 = 99.3 MPa (14.4 ksi) for 45 min, then step down to 712 = 70.3 MPa
(10.2 ksi) for 15 min, and finally, creep under superimposed o1; = 122
MPa (17.7 ksi) for another 45 min. This program involves combined
loading.

() Toexamine the Bauschinger effect in creep, an opposite shear
at o12 = 99.3 MPa (14.4 ksi) was further imposed for 45 min at the end
of recovery in (if) (the actual experimental test lasted for 1 hr). On
the other hand the first part of creep data in (ziz) under the same stress
was replotted for comparison.

The complete creep strain history for these four loading conditions
are shown in Figs. 2-5, in which the experimental data are given as
open circles and the theoretical predictions expressed by the curves.
In view of the extremely complicated behavior of metals under com-
bined stress and step loading the agreement between the theory and
experiments is seen to be generally good. In Fig. 2 creep strains pre-
dicted by the theory are fairly close to the test data, and the recovery,
as evidenced by both the theoretical and experimental results, is far
from complete after 1 hr. From the test data the recovered strain was
about 0.50 X 10™% m/m at the end; the theory on the other hand pre-
dicted the value 0.75 X 10~% m/m. In Fig. 3 under axial step loading
the theoretical results are very close to the experimental ones. In Fig.
4 though the theory slightly overestimates the creep strain during the
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Fig. 3 Creep and recovery of a 2618-T61 Aluminum alloy under axial step
loading

first 45 min, the creep strains produced during the second and third
stages of loading are in very good agreement with experiments. Fi-
nally, in Fig. 5, the creep strain under G3 was produced following a
creep and recovery test in the opposite loading direction, while that
under E1 was obtained without prior creep. The creep strain under
(73 is seen to be far greater than its corresponding part under E1 from
both theory and experiment. Although the theory in one case un-
derestimates the creep strain by about 8 percent and in the other
overestimates it by 15 percent, the directional Bauschinger effect in
creep deformation is vividly disclosed.

Conclusions

In this paper we examined the applicability of Kroner’s and Hill’s
self-consistent models, and found that, while Kréner’s model was not
entirely consistent in plasticity, it is fully consistent in creep. Hill’s
model, on the other hand, should be used with a modified constraint
tensor, containing the elastic moduli, instead of the tangent moduli
of the matrix.

Kroner’s model was supplemented with a physically consistent
constitutive equation for the slip system, which was based on a
hardening law proposed by Weng. This law involves both isotropic
and kinematic components in the latent hardening of slip systems,
and is characterized by the degree of isotropy in working hardening,.
The kinematic component of the hardening law and the residual stress
developed in more favorably oriented slip systems are the two major
driving forces for recovery and the Bauschinger effect of the aggregate.
Taylor’s isotropic hardening law was found inadequate for the pre-
diction of such behavior.

Kroner’s self-consistent model, the proposed constitutive equation,
and Weng’s inverse method form the basis of the study of time-de-
pendent behavior of metals. This method is in the most general form,
and can be used to predict creep, recovery, and the Bauschinger effect
under varying and combined stress.

We employed the proposed method to predict the time-dependent
behavior of a 2618-T61 Aluminum alloy. The test data of Blass and
Findley, and Findley and Lai were used for derivation and for com-
parison. First, the single crystal constants were derived from two
tensile creep curves and one recovery curve of its aggregate. These
constants were then used to calculate the creep and recovery strains
of the same polycrystal under pure shear, axial step loading, and step
and nonradial loading. The predicted results were seen to be in gen-
erally good agreement with experiments.
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Combined tension and torsion creep experiments are reported in which (A) one stress
component was increased or decreased while the other remained constant; (B) one stress
component was removed while the other remained constant; (C) torsion was partially or
fully reversed with or without simultaneous constant tension. Among the observed fea-
tures of the experimental results were the following: when one stress component was re-
moved the creep from the other component was unaffected; upon small reductions in
stress there was no recovery-type behavior; and when torsion was fully reversed, all prior
strain was wiped out. A nonlinear viscous-viscoelastic model was used for which the mate-
rial constants were derived from constant-stress creep and recovery data and previously
reported. This model, together with certain necessary modifications, was used to compute
the creep resulting from the complex stress histories described. Most features of the ex-

perimental results were predicted reasonably well by the modified theory.

Introduction

The creep behavior of metals under changing stress—especially
changes in state of combined stress and stress reversal—has received
little experimental observation. Mathematical expressions employed,
such as strain hardening or viscoelastic models, usually are unable
to describe the detail of creep behavior under changes such as in the

“foregoing. References to prior work in this area are given in [1, 2].

In a previous paper [1] the authors described a viscous-viscoelastic
model in which the strain was resolved into five components: elastic
¢¢; time-independent plastic ¢P; positive nonrecoverable (viscous)
¢¥(pos); negative nonrecoverable (viscous) ¢¥(neg); and recoverable
(viscoelastic) €”¢ components. From creep and recovery experiments
under combined tension and torsion, the time and stress dependence
of these components were evaluated for constant stresses. In [8]
constitutive relations for changes in stress state were developed and
their predictions were compared with actual creep behavior in simple
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stress states (uniaxial tension or pure torsion) under step changes in
stress.

In the present paper, results of combined tension and torsion ex-
periments with time-dependent stress histories including side step
changes in tension and torsion and stress reversal in torsion are re-
ported. Predictions of the experimental results are also presented
using the constants determined in [1] and the constitutive relations
derived in [3], with some modifications. The last two experiments
discussed in the following were reported in [4] as tests E and G.

Material and Specimens

An aluminum forging alloy 2618-T61 was employed in these ex-
periments. Specimens were taken from the same lot of 63.5 mm (2%
in.) dia forged rod as used in [1, 3] and the same lot as specimens D-H
in [4]. Specimens were thin-walled tubes having outside diameter, wall
thickness, and gage length of 25.4, 1.52, and 101.6 mm (1., 0.060, and
4, in.), respectively. A more complete description of material and
specimens is given in [1].

Experimental Apparatus and Procedure

The conbined tension and torsion creep machine used for these
experiments was described in [5] and briefly in [1]. The temperature
control and measurement employed was described in [1, 4]. Stress was
produced by applying dead weights at the end of levers. The shearing
stress and tensor shearing strain reported were computed at midwall
thickness of the specimen. The gage length employed was measured
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Fig. 1(a) Tensile strain for combined tension and torsion creep of 2618-T61
Al at 200°C under side-steps of loading, unioading, and recovery. Where the
VV theory is not shown it is the same as the MVV theory. Numbers indicate
periods on insert. g4 = 119.5 MPa (17.33 ksi); 02 = 143.4 MPa (20.8 ksi); 74
= 69.0 MPa (10 ksi); and 72 = 82.7 MPa (12 ksi).

at room temperature and no correction was made for thermal ex-
pansion. The weights were applied by hand at the start of a test by
lowering them quickly (in less than 10 sec) but without shock. The
time of the start of the test was taken to be the instant at which the
load was fully applied. In the present experiments changes in loading
were made at intervals during the creep tests. The load changes were
accomplished by hand in the same manner. Strain was recorded at
the following intervals following a load change: every 0.01h to 0.05k;
every 0.02h to 0.1k; every 0.05h to 0.5h; every 0.1h to 1.0h; and every
0.2h to 2.0h. All experiments discussed in this paper were performed
at 200 £ 0.6°C (392°F).

Experimental Results

Three combined tension and torsion creep experiments are shown
in Figs. 1-3. Each experiment consisted of multiple steps of stress
changes in tension or torsion alone and simultaneous changes in
tension and torsion.

Fig. 1 shows results of a combined tension and torsion experiment
in which there was a step increase in tension ¢ in period 2 with no

change in torsion 7. In period 3, there was a step increase in torsion -

7, with no change in tension ¢. Subsequent periods involved partial
unloading, first in torsion, then in tension, followed by recovery first
in torsion, then in tension. .

Fig. 2 shows the results of the series of changes in stress state during
creep for the portion of test £ conducted at 200°C as reported in [4].

48 / VOL. 48, MARCH 1981
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Fig. 1{b} Shearing sirain for combined tension and forsion creep of 2618-T61
Al at 200°C under side-steps of loading, unloading, and recovery. Where the
VV theory is not shown it is the same as the MVV theory. Numbers indicate
periods on insert. o4 = 119.5 MPa (17.33 ksi); 02 = 143.4 MPa (20.8 ksi); 74
= 69.0 MPa (10 ksi); and 72 = 82.7 MPa (12 kst).

In period 1, Fig. 2(b), there was pure torsion and in step 2 the torsion
was partially unloaded. In period 3, tension was added with no change
in torsion. In period 4, the torsion was removed with no change in the
tension, In period 5, the tensile stress was increased and in period 6, .
the tensile stress was decreased back to that of period 4. In period 7,
negative torsion was added with no change in tension.

Reversals of torsion were performed as part of experiments shown
in Figs. 2 and 3. In Fig. 2 (b) following recovery in torsion in periods
4, 5, and 6 the shearing stress was partially reversed in period 7 to a
negative value less than the maximum positive value in period 1, while
the tensile stress remained constant at a level less than its maximum.
In Fig. 3, the first reversal of torsion was preceded by positive torsion
then recovery at zero stress. In periods 3, 4, and 5, stress reversals were
performed in pure torsion. In period 6, a partial stress reversal oc-
curred. In period 7, tension was added at constant torsion. Periods
8, 9, and 10 included stress reversals in torsion while the tension re-
mained constant.

Discussion of Results
Among the features of the results of these creep tests the following
may be noted at this point: )

1(4A) When o was increased while 7 remained constant in Fig. 1,
period 2, there was a small increase in creep rate with a slight pri-
mary-type character (a positive creep rate decreasing with time).
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Fig. 3(a) Tensile strain for combined tension and torsion creep of 2618-T6l
Al at 200°C under stress reversals in torsion with and without tensile stress.
Where the VV theory is not shown it is the same as the MVV theory. Numbers
indicate periods on insert. o4 = 122.0 MPa (17.7 ksi); 71 = 79.3 MPa (11.5
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1(B) However, when 7 was increased while o remained constant
in Fig. 1, period 3, there was a large increase in creep rate with some
primary-type characteristics.

2(A) When 7 was reduced while ¢ remained constant in Fig. 1,
period 4, there was a large reduction in creep rate but no recovery-type
behavior (negative creep rate decreasing with time).

2 (B) However, when o was reduced while 7 remained constant
in Fig. 1, period 5, there was a small reduction in tensile creep rate,
no change in torsion creep rate and no recovery-type behavior.

3(A) Onremoval of one stress component to zero, time-depen-
dent recovery occurred in the strain associated with the removed
component, as in Fig. 1(a), period 7, Fig. 1(b), period 6, Fig. 2(a),
period 8, Fig. 2(b), period 4, Fig. 3(a), period 12, and Fig. 3(), period
11.

3(B) However, as noted in item 2, there was no time-dependent
recovery-type behavior resulting from the moderate reductions of
stress, as noted in item 2 and in Fig. 2(a), period 6 and Fig. 2(b), pe-
riods 2 and 10.

4 - When one stress component was removed to zero while the other
remained constant no change occurred in the behavior of the strain
component associated with the constant stress component as shown
in Fig. 1(a), period 6, Fig. 2(a), period 4, Fig. 2(b), period 8, and Fig.
3(a), period 11.

5 On reversal of torsion stress new primary-type creep was ob-
served in the shearing strain. The magnitudes of shearing creep strain
and creep rate were similar, but the rates were somewhat larger, at
each stress reversal; see Fig. 2(b), period 7, Fig. 3(b), periods 4, 5, 9,
10. The similarity of magnitudes meant that all prior strain was wiped
out at each stress reversal.

6 Constant tension stress in the presence of reversing torsion
stress showed a second primary-type tensile creep on the first reversal
of torsion, which was about the same as that on the first loading. On
subsequent reversals of torsion smaller primary-type tensile creep
was observed at each stress reversal; see Fig. 3(a).

Constitutive Equations for Creep Under Combined
Tension and Torsion

In the following the constitutive equations determined for the
material under consideration in {1, 3] were used to predict the creep
behavior resulting from the stress histories described in the preceeding
sections. Some modifications of the theories are described which
better predict some of the observed behavior described in the fore-
going.

In [3] it was shown that creep of 2618 Aluminum at 200°C under
combined tension and torsion could be described adequately by the
following relation:

€ (8) = ef; + el + el () + €lf (D), (1)

where €5}, €}, and e} represent the time-independent elastic strain,
time-dependent nonrecoverable (viscous) strain, and time-dependent
recoverable (viscoelastic) strain, respectively, and the time-inde-
pendent plastic strain e¥; was zero in the present experiments. €¥; was
further resolved into positive and negative parts because of its non-
recoverable feature. Without separate positive and negative parts év
would be zero upon stress reversal because it is nonrecoverable. The
elastic modulus Eg, shear modulus G, and Poisson’s ratio » for the
material at 200°C as reported in [1, 3] are given in Table 1. The con-
stitutive relations for €};(¢) and €§f(¢) under constant stresses and
time-dependent stresses as proposed in [1, 3] are reviewed in the
following.

Constant Stress. Under constant stress, the components ¢’ and
¢¥¢ under combined tension ¢ and torsion 7 were represented by the
following equations:

i) Fl(e — o'),(z = T)]t" 2)
1+R ' ! ’

efi(t) =

R

=B

1

+
&

€95(t) = (———) Gllo — o) (T — T)]tm, ®
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Table 1 Constants for equations (2)-(11) using ¢’, 7’ for F}, Gs*, G}
F} = 6.084 x 10712, per pa-n" (0.004195, % per ksi-h")
FP = 27.431 x 107%%, per pa®-h" (-0.0003533, % per ksiZ-h%)
2 ) P P
Fy = 7.59 x 10728, per paS-n™ (0.0000249, % per ksiS-h™)
o* = 9.143 x 107, Pa (13.26, ksi)
6! = 7.170 x 10712, per Pa-h" (0.004944, % per ksi-h")
Gt = 2,703 x 107%%, per PaS-h" (0.00000886, % per ksio-h") .
2 P P
™ = 4,571 x 107, Pa (6.630, ksi).
Fy = 1.0491 x 10728, per paS-n" (0.000003439, % per ksiS-h™)
+
Fy= 0
G; = -4.020 x 10°%%, per pa®-n™ (-0:0001911, % per ksiZ-n")
6t = 9.222 x 10728, per pa®-n" (0.00003023, % per ksid-n™
4 p : P
Note: n = 0,270
R = 0.55
E, = 6.5 10%Mpa (9.43 x 10% psi)
G, = 2.45 x 10%Pa (3.57 x 10% psi)
v =0.321
en(t) = (—1"“)[’[(0 - o), (r — T)]t", 4)
1+R ’ ’
€fo(t) = (—1 ) Gl(o — o), (r — T)}t™ (5)
1+R

The nonlinear functions F' and G in (2)-(5) were derived from a
third-order multiple integral representation [1, 6, 7], where for con-
stant stress
Flo—o,7— 1) =Fi(oc — ¢) + Fa(c — ¢’)2 + F3(c — ¢')3

+ Fyloc — o)r — 72+ F5(r —7)2 (6)
Glo~o,7—1)=CGi(r =)+ Gt — 73 + G3(a = o) 7 — 7

+ Gulo—a)2(r —17), (7).
and ¢’, 7/ are the components of stress corresponding to a creep limit
which may be taken to have a Tresca form defined as follows:
(0)2 + 4(r)2 = (0%)2 = (27%)2,
dlo =1/,

(8)

and o* and 7* are the creep limits in pure tension and pure torsion,
respectively. The coefficients F;, G;, and constants ¢*, 7*, R, and n
are values determined from constant combined tension-torsion creep
tests reported earlier [1] and shown in Table 1. The values reported
in [1] for F4, G3, and G4 were incorrect. They should have been as

~shown in Table 1.

Another possible representation for creep under combined tension
and torsion is to use (2)~(7) with the apparent creep limit defined as
fixed values ¢* and 7* for tensile components and torsion components
of stress, respectively instead of (8). This change required computing
new values of Ff, G, and G}. The best estimates of these three values
from the available test data are shown in Table 2.

Predictions of the creep behaviors based on these two different
respresentations, variable creep limit ¢’ and 7/, and fixed creep limit
o* and 7%, are presented in this paper. It must be noted that when the
components of the creep limit are variable (¢’, 7’} every change in
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Table 2 Constants for equations (2)-(11) using o*, 7* for F} and G}

FI,F;,F;,U’.‘,GI,G;,T*,H and R are the
same as in Table I.

Fj = 6.214 x 10777 per pa’-n" (0.0002037, % per ksi®-h™)

+

Fe =0

Gy = 1.562 x 107'% per pa’-h" (0.0007424,% per ksiZ-h™

+

G =0

combination of stress requires a change in ¢/, 7’ in accordance with
(8). For fixed creep limits s*, 7* no change is needed, however.
Time-Dependent Stress. The modified superposition principle
(MSP) derived as a simplification of the multiple integral represen-
tation was shown in [3] to describe the time-dependent recoverable
(viscoelastic) strain reasonably well. Under a continuously varying
stress o, the strain response ¢v¢ under the modified superposition
assumption can be represented for nonlinear behavior by
t 0 — — .

(1) = fo 5o PO 7O, ~ £ D
where f;; (0, t) represents a nonlinear time-dependent creep function
such as (2) and (8) for €} and €%, respectively, and where 5(t) = o(t)
—o'(t) and 7(t) = 7(t) — 7(¢).

For a series of m step changes in stress as employed in the present
work, (9) becomes as follows for €45 for example:

{9)

R
€45(t) = (I_-I-—R) (G, TOEP — (¢t =ty +. ..

+ GG n-1, Tm-D[{t — tm-2)" ~ (t — tm-1)"]

+ GOm, Tm)t = tm-1)"}, tm-1<t. (9a)

For the time-dependent nonrecoverable (viscous) strain component
€?, it was shown in [3] that the strain-hardening theory reasonably
represented the behavior of this strain component under a time-
dependent stress input. The strain-hardening theory for €f; and €},
can be represented by the following equations:

1 - _ n
o) =—— [ INGEE) T(E)]}I’"dE] , 10)
lalt) = l—j—R [ { t{G[E(E),F(E)]l”"dE]n‘ (11)

Equations (10) and (11) were derived from (4) and (5), respectively,
using the strain-hardening concept as in [1, 3].

For a series of m step changes in stress, as employed in the present
paper, (11) for example becomes as follows:

1
€fo(t) = (m) {G (a1, TV (t) + [G(og, T/t — £1)

+ [G(as, TV — ta)}",

Viscous-Viscoelastic ( VV) Theory. The total strain following
a time-dependent stress history was found according to (1) by adding
to the elastic strain corresponding to the stresses existing at the time
of interest the ¢¥¢ given by (9) and the ¢ given by (10) or (11) for axial
strain or shear strain.

Modified Viscous-Viscoelastic (MVV) Theory. In [3] it was
found that the observed characteristics of creep behavior of the ma-
terial under partial unloading were not properly predicted by the VV
theory. It was found, however, that the MVV theory proposed in [3]

ta<t. (1la)

Journal of Applied Mechanics

described the creep behavior of the material under partial unloading
more closely than the VV theory. In the following the MVV theory,
which will be used also in this paper, is reviewed. The basic difference
between the MVV and the V'V theories is in the treatment of the creep
limits for the recoverable strain e?¢. These differences in treatment
are illustrated in Fig. 4.

1 For the nonrecoverable strain component, the strain-hardening
rule was employed. Upon reduction of stress from o4 to a current
stress op, Fig. 4(a), the strain rate ¢* continued at the reduced (de-
creasing) rate prescribed by the strain-hardening rule, (10) and (11),
as shown in Fig. 4(a), unless the current stress ¢ equaled or was less
than the creep limit ¢* (or ¢’). When a¢ < ¢* (or ¢’), €” was zero as
prescribed by (10) and (11); see Fig. 4(a).

2 Upon reloading from a stress o¢ below to a stress ap above the
creep limit, the nonrecoverable strain rate € resumed at the rate
prescribed by (10) and (11) but as though there had been no interval
tx for which o¢ < o* (or ¢’); see Fig. 4(c).

3 For the recoverable strain component €€ on partial unloading
the recoverable strain rate ¢”¢ became and remained zero for all re-
ductions of stress from o4 to og, as shown in Fig. 4(b) unless the total
change in stress from the highest stress omax [= 04 in Fig. 4(b)] pre-
viously encountered to the current stress o¢ exceeded in magnitude
the creep limit o* (or ¢”). That is,

(12)
(13)

¢v¢e =0 when (04— 0op)=<|c*| (orog),

e =0 when (o4 — ac)>|o*| (oro’).

Equation (12) can be considered as meaning that for a small unloading
the recoverable strain component was “frozen.” Equation (13) indi-
cates that if the change in stress was greater than |[¢*| or |¢’| then
recovery would occur followed eventually by creep; see Fig. 4(b).

4 Upon increasing the stress to op(op = o 4) following a period
t, (a dead zone) for which (opmax — 08) < o* (or ¢’) and €”¢ = 0 as
discussed in 3 in the foregoing the recoverable strain component ¢’¢
continued to creep in accordance with the viscoelastic behavior (9)
as though the period ¢, never occurred; see Fig. 4(c). In computing
the behavior for situations described in 2, 3, and 4, it was thus nec-
essary to introduce a time shift in equation (9), (10) or (11) to elimi-
nate the appropriate period ¢, when €?¢ was “frozen.” Thus the new
time t’ subsequent to a period ¢, = (¢, — t,) becomes t’ =t — (t, —
tqe), where ¢ is the real time and ¢, t. are the times when op and op
were applied.

5 When recoverable and nonrecoverable strain components are
considered together two special circumstances arise. Consider that
the stress decreases from the highest value o4 to alower value op. If
g4 > 20* and o* < o < (64 — o*) then there is creep occurring from
¢¥ and recovery from €7¢. However, if 64 < 2¢* and (04 — ¢*) < op
< ¢* then there is neither creep nor recovery, ¢’ = ¢v¢ = (,

6 When one stress component decreased while the other re-
mained constant the recoverable strain component ¢’ was treated
as follows. The material behavior in such situations (such as Fig. 1,
period 5) suggested that reducing or removing one stress component,
say 7, while the other component, say 7, remained constant affected
the strain as follows. The strain corresponding to mixed stress com-
ponents behaved as though these mixed components had suffered a
small stress reduction. That is, the strain, say €1, associated with the
mixed stress components, say o712, became constant. The strain, say
€11, associated with the pure stress terms, say g, 02, ¢ which were
unchanged, continued as though nothing had happened.

Thus the following computations based on the (MVV) theory were
used for decreasing side steps.

For example, in Fig. 1(a), period 4, the strain components corre-
sponding to 072 and 72 remained constant at their values just prior
to the stress change, while the strain corresponding to o, 02, o con-
tinued uninterrupted. Again in Fig. 1(a), period 6, the strain com-
ponents corresponding to ¢72 and 72 remained constant while the
strain corresponding to o, o2, 3 continued uninterrupted (in this case
they were also constant). For €43 in Fig. 1(b), period 4, there was no
change from the value just preceding the stress change because the
G(o, 7) terms, see (7), decreased and the shear stress decrease was less
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lllustration of the role of the creep limit ¢* in partial unloading and reloading. Note corrections: In {b) interchange g and

o'c in equations; In (c) for recoverable strain change o¢ to o5 in equations.

than the creep limit. Similarly, in Fig. 1, period 5, there was no further
change in €if or €%5. This is consistent with 3 described previously.
Recovery of €3 in Fig. 1(a), period 7, was computed as though ¢, 02,

o3 terms recovered from the end of period 4 and 072 and 72 terms re- -

covered as from the end of period 3. For €45 in Fig. 1(b), period 6, the
strain was computed by considering recovery from 7, 73 terms as
though it started at the end of period 3, while the strain for o7, 027
terms remained constant. In Fig. 1(b), period 7, recovery continued
from 7, 78 terms and recovery from the o7, 627 terms started as though
from the end of period 3.

" Predictions for Side Steps and Recovery

Both the VV theory and MVV theory just described were used to
predict the creep behavior of the material under side steps and re-
covery experiments as shown in Fig. 1 and in Fig. 2, periods 1-6. In
applying the constitutive relations for the predictions, both the
variable creep limit, ¢’ and 7/ (8) and the fixed creep limits ¢* and 7*
and their corresponding constants as shown, respectively, in Tables
1 and 2 were utilized. The results of the predictions are shown in Figs.
1 and 2.

In general the MV'V theory using fixed creep limits (¢*, 7*) yielded
the best comparison with the test data. It correctly described the
constant creep rate observed in Fig. 1, periods 4, 5, Fig. 1(a), period
8, Fig. 2(a), period 6, and Fig. 2(b), periods 2 and 10, whereas, the VV
theory showed pronounced recovery-type behavior in these periods.
Also the recovery in Fig. 1, period 7 was correctly described by the
MVYV theory, but not in Fig. 1(a), period 7 by the VV theory.

The continuing creep observed in one component when the stress
of the other component was removed was best described by the MVV
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theory, as shown in Fig. 2(a), period 4, Fig. 2(b), period 8, and Fig.
3(a), period 11; whereas the VV theory showed a recovery.

Comments on Fig. 1, Period 3. The marked difference between
the predicted and the observed strains in the third period of Fig. 1
might be a manifestation of material nonlinearity under combined
stress not accounted for in the third-order theory. The possibility of
employing a fifth-order was explored. Additional appropriate
higher-order terms were added to (6) and (7). This approach did not
yield any significant improvement.

As reported in [1] combined tension and torsion tests XI and X11
performed at the same stresses yielded a markedly higher creep rate
from XI than XII. In [1], Test XI was omitted from the analysis from
which the solid lines in Fig. 1 were predicted. Repeating the compu-
tations using an average of the results for XI and XII did not yield any
overall improvements.

Predictions for Stress Reversals

Straightforward application of the concepts that a portion of the
creep of metals is nonrecoverable and strain hardening suggests that
reversal of stress should cause no further change in the nonrecoverable
€” component of strain. The fact that considerable changes were ob-
served, as shown in Fig. 3, was the reason that ¢ was resolved into two
parts €p,, and e}, in the present investigation. It was considered that
positive and negative stresses would produce independent creep re-
sponses, the sum of which would be the resulting creep. Also it ap-
peared that the nonrecoverable strain ¢ accumulated prior to reversal
of stress was entirely wiped out on completely reversing the stress.

In Fig. 3(b) the dot-dash lines were computed using the VV theory
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with Table 2 and considering all prior strain wiped out upon reversal
of stress. The solid lines (MVV theory) were computed considering
that the nonrecoverable strain only was wiped out upon reversal of
stress and the recoverable strain was computed in the usual manner,
by equation (9a). Fig. 3(b) shows that the solid lines describe the
character of the observed creep for complete stress reversal very well
for periods 3, 4, 5, 8, 9, and 10, except for increasing creep rates in
periods 3, 4, 5, and a shift in period 9.

The dotted lines in Fig. 3(b), periods 6 and 7, for which there was
a partial reversal of stress, were computed by not wiping out the
nonrecoverable strain at the end of period 6. The difference between
the solid and dotted lines in periods 6 and 7 indicate the magnitude
of the strain wiped out in arriving at the solid line. Comparing the solid
and dotted lines with the test data for periods 6 and 7 suggests that
the nonrecoverable strain was not wiped out at the start of period 6
(which was an incomplete stress reversal). It also suggests that during
periods 6 and 7 the prior nonrecoverable strain was gradually wiped
out, resulting in the increased rate shown.

The fact that the creep rate in Fig. 3(b), period 5, was not reduced,
as would be expected from strain hardening as a result of the prior
negatively stressed period 3, is proably due to the fact that the prior
nonrecoverable strain was in fact wiped out (i.e., recovered). Thus
there was no residual strain and hence no strain hardening.

The recovery in periods 11 and 12 was computed in the same
manner as just described, with excellent results.

The torsion in Fig. 2(b), period 7, was not completely reversed.
Again, as in period 6 of Fig. 3(b), the creep behavior suggested that
the residual strain from period 6 was not wiped out during partial
reversal of stress but was gradually reduced resulting in an increased
creep rate. Thus the actual creep started at the dotted line and moved
toward the solid line in Fig. 2(b), periods 7 and 8. In period 9, the
torsion was increased so that it was then fully reversed. Fig. 2(b) shows
both the VV and MV'V theories for period 9 with the residual strain
wiped out. Also shown as a dotted line is the MVV theory with the
residual strain not wiped out. It appears that the actual data contin-
ued in period 9 to complete wiping out the residual strain by the end
of period 9.

Predictions for Tension in the Presence of Reversing Torsion.
In Fig. 3(a), periods 7-10, tension was added to the existing torsion
(reversed in each period). The observed tensile strain e;; in these
periods showed small primary-type responses added at each reversal
of torsion. The VV theory (9) and (10) were used first to treat the
stress states in periods 7-11. Since €11 is an even function of 1, re-
versing T was equivalent to a continuous stressing of ¢ = 1, 7 = 73.
This approach yielded a continuous creep of €11 as shown by the
dot-dash lines in Fig. 3(a). Clearly, this is an inadequate description
of the behavior except for period 7.

Observing that on reversal of shear (torsion) stress in the presence
of tension the principal stresses changed direction markedly it was
likely that a different set of active elements (slip planes and disloca-
tions) would be involved for positive versus negative shear stress. Thus
virgin-type behavior of € would be involved in the axial strain re-
sulting from the first reversal of stress, as also observed for the cor-
responding shear strain component in Fig. 3(b). In subsequent re-
versals only the mixed stress terms would be involved in €?.

Thus, for the MVV theory in Fig. 3(a), periods 7-10, the nonre-
coverable creep €}, was computed as follows by separating €%;(pos)
from €};(neg). €71(pos) was computed from 73 in periods 7 and 9 and
zero stress in periods 8 and 10. All stress terms contributed virgin-type
creep in period 7. In periods 8-10, the pure tension component of creep
continued without interruption. In periods 8 and 10 the creep for
mixed stress term o72 remained constant; while in period 9 a new
virgin-type creep due to 072 was added (it was new because of the prior
reversal of o72). The creep for €§;(neg) was computed in the same
manner starting with creep from all stress terms in period 8. The €4
creep was continuous through periods 7-10 since 7 had an even power
in (6). The sum of all these components yielded the solid line in Fig.
3(a), which compares well with the experiment except that the strain
at the start of period 8 was too small.

Recovery Following Stress Reversals. Recovery in Fig. 3, pe-
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riods 11 and 12, was determined for the MVV theory as follows: In Fig.
3(b), period 11, €44 for 7,78 recovered as from the end of period 10; €33
for o7, 027 remained constant. In period 12 €} for 7,73 continued to
recover and €§ for o7, ¢27 recovered as though from the end of period
10. This produced the slight dip in the MVV theory between periods
11 and 12, as also observed in the data. In Fig. 3(a), period 12, €j for
¢, 02, o3 recovered as from the end of period 11 and €j$ for o72 re-
covered as though from the end of period 10.

Results and Conclusions

Analysis of results of nonlinear creep of 2618 aluminum under
combined tension and torsion stress states and under varying stress
history including step changes of one stress component while another
component remained constant and reversal of shearing stress showed
that the viscous-viscoelastic (VV) theory with certain modifications
(MVV) theory predicted most of the features of the observed creep
behavior quite well.

Among the conclusions are the following:

1 The behavior may be represented by resolving the time-de-
pendent strain into recoverable and nonrecoverable components
having the same time-dependence.

2 The material behaved as though there was a creep limit such
that only very small creep occurred unless the stress was greater than
a limiting value having fixed values o*, 7* for tensile stress and shear
stress components, respectively.

3 On partial unloading, the material behaved as though the
nonrecoverable strain component € continued to creep in accordance
with strain hardening unless the stress became lé€ss than the creep
limit; whereas the recoverable strain component €¥¢ remained con-
stant unless the decrease (change) in stress exceeded the magnitude
of the creep limit.

4 On reloading following an interval ¢, of partial unloading in-
volving no further change in €€ the component €”¢ resumed creeping
as though the interval ¢, did not exist.

5 An increase in tension under constant torsion was well repre-
sented by the theory but a subsequent increase in torsion at constant
tension was not as well represented.

6 Reduction of one stress component while the other remained
constant required treating the pure stress and mixed stress terms
separately. The strains associated with the mixed stress terms re-
mained comstant, whereas the strain behavior associated with the pure
stress remained unchanged.

7 Removal of one of two stress components during creep was
observed to have no effect on creep associated with the other stress
component. This was partially accounted for by considering that the
€ve gtrain associated with the mixed stress terms remained constant
until both stress components were zero.

8 On partial or complete reversal of stress the nonrecoverable
strain component ¢” behaved as though the reverse stress was applied
to a virgin material. ]

9 If the stress was partially reversed the prior residual strain re-
sulting from e* remained. However, if the stress component was
completely reversed the residual strain from the nonrecoverable strain
component ¢” appeared to be completely recovered (wiped out).

10 The axial creep resulting from cycles of reversed torsion in the
presence of constant tension consisted of: continuous recoverable
creep; plus continuous nonrecoverable creep from the first application
of positive torsion and also from the first application of negative
torsion associated with pure tension terms only; plus new virgin creep
associated with the mixed tension-torsion stress terms at each reversal
of torsion.
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Uniaxial tests using a servocontrolled testing machine and strain measurement at the
gage length were performed on a high-strength, low-ductility Titanium alloy. Tests in-
volved monotonic and cyclic loadings with strain rates between 2 X 1078 to 1073 s~1,
stress rates from 1071 to 102 MPa s~1, repeated changes in strain rates, and short-term
relaxation and creep tests. The inelastic behavior is strongly rate-dependent. Ratchetting
is shown to increase as the stress rate decreases. No strain-rate history effect was found.
A unique stress-strain curve is ultimately reached for a given strain rate irrespective of
prior history as long as only positive stresses are imposed. In the plastic range the relaxa-
tion drop in a given time period depends only on the strain rate preceding the test and is
independent of the actual stress and strain.

Introduction

Stress-strain curves obtained under dynamic conditions (at strain
rates above 10 s™1) can lie significantly above static stress-strain
curves obtained at static strain rates (order 102 s~1 or less). Fre-
quently, in the case of static test results, no specific strain rate is re-
ported with the implication that rate (time)-dependence? prevails for
static loading conditions. This assumption is also made in “static”
plasticity theories. However static stress-strain curves can be obtained
at loading rates which differ by several orders of magnitude, and
rate-dependence may be present within the static strain-rate range.

Indeed this has been demonstrated in the case of several metals [1-3] .

tested at room temperatures. For AISI Type 304 Stainless Steel we
have found significant room-temperature rate-dependence mani-

1 Permanent address—Institute of Basic Machine Design, ul, Narbutta 84,
02-524 Warszawa, Poland.

2 Rate (time)-dependence encompasses loading rate-sensitivity, creep, and
relaxation.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY
OF MECHANICAL ENGINEERS, for presentation at the 1981 Joint ASME/ASCE
Applied Mechanics, Fluids Engineering, and Bioengineering Conference,
University of Colorado, Boulder, Colo., June 22-27, 1981.

Discussion on this paper should be addressed to the Editorial Department,
ASME, United Engineering Center, 345 East 47th Street, New York, N. Y.
10017, and will be accepted until June 1, 1981. Readers who need more time to
prepare a Discussion should request an extension from the Editorial Depart-
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fested in loading-rate sensitivity of the yield and flow stresses at
different static strain (stress) rates, and in creep and relaxation be-
havior. AISI Type 304 Stainless Steel exhibits low-yield strength and
high ductility. The Titanium alloy used in this study has high-yield
strength and considerably less ductility than AISI Type 304 Stainless
Steel. :

In materials science plastic flow is considered a rate process [4] and
relaxation experiments are performed at room temperature [5, 6] using
specially equipped universal testing machines.

In viscoplasticity, some constitutive theories assume the existence
of a quasistatic or equilibrium stress-strain curve [7-11] characteristic
of the rate-independent portion of material response. In some cases
[7-9] dynamic-rate dependence is recognized and an equilibrium
stress-strain curve is used which is obtained from static tests where
loading rates are not specified.

The purpose of this study is to examine in a qualitative way the
loading rate-dependence of the stress-strain curves, the creep and
relaxation behavior of this high-strength, low-ductility material using
the method of servocontrolled mechanical testing. This method is
frequently used in fracture mechanics and low-cycle fatigue testing
but has not been employed for the determination of material prop-
erties for constitutive equation development. It is ideally suited for
this purpose since it permits the accurate measurement of the material
response at various loading rates through the use of feedback prin-
ciples.
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Fig. 1 Specimens used In this study

Material and Specimens

The Ti-7A£-2Cb-1Ta alloy was donated by the Naval Research
Laboratory and was identified by the NRL Code T89. Blanks of ap-
proximately 20 X 20 X 120 mm were cut from the top (Label T) and
bottom (Label B) of a 3-in. (76.2 mm) thick plate. The longest side
of the blanks was perpendicular to the direction of rolling. T'o equil-
ibrate texture effects the blanks were subjected to a beta-anneal
heat-teeatment of ' hr at 2000°F in vacuum and subsequent cooling
to room temperature in helium at a rate approximating air cooling.
Two different types of specimens shown in Fig. 1 were machined from
the heat-treated blanks. The specimens with the short-gage length

were used for the cyclic experiments. A total of nine specimens were
tested.

Testing Equipment and Procedure

All specimens were tested at room temperature in an MTS servo-
controlled tension-torsion system with dual ramp function generator.
The test results were recorded on an XY-recorder. Displacement was
in all cases measured by an MTS clip-on extensometer clamped on
the gage length and converted to engineering strain and strain rate
using standard methods. Engineering stresses based on the original
cross section are used throughout this study. .

In the following we refer to stress (strain) control, éreep and re-
laxation. In actuality the load (displacement) is controlled. During
creep the load is kept constant and during relaxation the displacement
in the gage length is held fixed.

The clip-on extensometer together with the function generator and
the servocontrolled system enable an accurate strain control which
is not possible with conventional testing machines. By simply
changing the command signal stress control can be achieved in the
servocontrolled test system. The reported test data represent real
material behavior. The strain measurement on the gage length to-
gether with the servocontrol (feedback) system and the frequencies
used in this study insure that no testing machine bias enters into the
recorded data.

Test Results

Behavior for Positive Stress. Influence of Loading Rate. Test
results of three different specimens B2, B5, and T5 are depicted in
Fig. 2. Specimen B2 was loaded under stress control at 69 MPa s~1,
Repeated loadings and unloadings with strain-rate changes were used
in the tests with specimens B5 (full line) and T5 (dashed line).

The stress-strain behavior is initially linear with slope E on all

- loadings starting at points O, D, F, and F;. At stresses larger than 450

MPa the effects of rate become noticeable and are significant in the
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Fig. 2 The effect of loading rate and type of control on the stress-sirain diagram of three different specimens; no strain-rate history

effect is observed
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Table 1 Rate-dependence of 0.2 percent offset yleld strengtho,
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Fig. 3 Effect of type of loading and loading rate on unloading behavior; the
amount of ratchet strain (strain accumulation) increases with a decrease In
stress rate

plastic range.3 Also the 0.2 percent yield strength is dependent on rate
as seen in Fig, 2.

Table 1 shows the variation of the 0.2 percent offset yield strength
with loading rate. The difference between the yield gtrength at the
slowest (2 X 108 s~1) and fastest (1.7 X 1073 s~1) strain rate is 21
percent or 131 MPa. The yield strengths for three different specimens
detern_lined at the same strain rate (10~4 s~1) differ at the most by 13
MPa or 2 percent. We see that the scatter is not very large and that

3 Plastic range is the region of the stress-strain curve in which the tangent
modulus changes very little and is small compared to the elastic modulus.

6
KSI MPa
207
100
L N 03% |
_L ot 1 £

1
04 %

| Specimen € o o
No. sm:L MPa s"l Mga
B1 1074 738
B2 69 764
B4 1074 730
BS 1.7X10 763
T1 1074 725
T4 1070 675
T5 2 x 1078 632

the influence of rate is very noticeable in the range of static strain
rates.

The initial unloading behavior starting at points C, Cy, E, and E;
is not linear elastic. The slope is initially larger than the elastic
modulus and continuously decreases as the stress decreases. At zero
stress the unloading slope is less than the elastic modulus (see also
Fig. 3). The initial slope on reloading is equal to the modulus of elas-
ticity and a small hysteretic loop develops as shown in Fig. 2.

In the plastic range the stress-strain curves obtained at different
strain rates are equidistant. The stress-strain diagram for specimen
B2 obtained under stress control, however, shows a somewhat higher
slope at a given strain level than the others.

For specimens B5 and T5 which were subjected to a different
strain-rate history up to points F and Fy, respectively, the same strain
rate of 10~% s~1 was used in the final loading starting at F and F; and
the two curves ultimately coincide within normal scatter.

Although specimens B5 and T5 underwent different strain and
strain-rate histories, their final stress-strain curves coincide when
loaded with the same final strain rate. We observe that the material
can forget the prior history and that a strain-rate history effect [12-14]
is absent. Note added in proof: Extension of the graph beyond C for

SPECIMEN B3 MPa

|'6)|= 153 MPa s
|64= 153

153

'154l= .0153

|¢‘55!= .00153

PRESTRAIN 12 %

PRIOR HISTORY :
CYCLIC STRAINING WITH DIFFERENT
&1 AT 6=+ 779 MPa

Fig. 4 Effect of stress rate on ratchet strain for partial unloading; at |¢'r1| and |6'2| 10 cycles were performed with only one cycle at
the other stress rates; the two dashed horizontal lines indicate a translation made for ease in interpreting the graph; they have no physical

significance
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gpecimen B5 and comparison with DE; also implies the absence of
a strain-rate history effect.

Figs. 3 and 4 further demonstrate the effect of loading rate. In Fig.
3 specimen T4 was first loaded and unloaded to zero stress at a strain
rate of 1078 571; see curve (1) OA. At point A a stress controlled loading
was started right away. During one loading and unloading cycle the
absolute value of the stress rate was kept constant; however, each new
cycle (points B and C) was started with a tenfold reduced stress rate
without changing the maximum stress; see curves (2), (3), and (4). It
is evident that the stress rate has a significant effect on the ratchet
strain (distances AB, BC, CD) accumulated during one cycle. This
ratchet strain is caused by a “creep deformation” allowed by the stress
control at stress levels approaching the maximum stress of the cycle.4
This creeping is negligible at a stress rate of 21.7 MPa s~! but becomes
significant at 0.217 MPa 571, The stress controlled (2), (3), (4) and the
strain controlled (1) unloading curves display significant differences.
The former show initial negative slopes not found for (1). For curve
(2) the negative slope is not pronounced since not enough time is
available for “creep” to develop during initial unloadings.

Fig. 4 is intended to illustrate the effect of “creeping out” further.
In this test only partial loading and unloading is performed between
Omax and omin and the stress rate is varied by four orders of magnitude.
At |&5| the cycle took 51.42 hr for completion. It is important to note
that the maximum stress equals the maximum stress obtained during
prior loading. )

We see that stress rate has a significant effect on the ratchet strain
accumulated in one cycle. It is of course very strongly dependent on
stress level. Fig. 4 implies that insignificant ratchet strain would have
developed at a stress of 690 MPa at | &5/, since the stress-strain curves

4 Such creeping motions are impossible in displacement control.
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corresponding to this loading rate are almost linear up to this stress
level. Also the evidence in Figs. 3 and 4 suggests that the ratchet
strains measured at omi, in Fig. 4 are approximately equal to the one
measured at ¢ = 0.

Relaxation Behavior for Positive Stresses in the Plastic Ran-
ge. The relaxation behavior of this material in the plastic range is
shown in Fig. 5 which depicts stress drops in 10 min and subsequent
reloading at various strain rates. It is evident that the total stress drop
and therefore the relaxation rate depends on the strain rate preceding
the relaxation tests. For a given strain rate the total stress drop is
further independent of the strain at the start relaxation test. In other
tests started at strains below the ones used in Fig. 5 we found that the
stress drop is also independent of the initial stress. The validity of
these statements is demonstrated in Fig. 6 where the stress drops in
10 min relaxation of three different specimens are plotted versus total
strain. We know from Fig. 2 that a unique stress-strain curve is as-
sociated with a given strain rate. Consequently the stress drops shown
in Fig. 6 are also independent of the stress at the start of the relaxation
test.

The data in Figs. 5 and 6 permit the following statement:

In the plastic range where the modulus is nearly constant and
much less than the elastic modulus, the stress drop in a given period
of time depends only on the strain-rate preceding the relaxation test.
It is independent of the stress and strain at the start of the relaxation
test.

Fig. 5 shows that the stress-strain curve eventually returns to a level
characteristic of the particular strain rate. The material forgets the
prior history if only relaxation during loading periods are involved.
Instead of performing relaxation during loading, in the test corre-
sponding to Fig. 7 a relaxation period was introduced after partial
unloading where the modulus is close to the elastic one. Compared

~<UNLOADING WITHOUT HOLD PERIOD

PRESTRAIN 0.4 Yo

0.2 04 0.6

0.8 10 12

STRAIN Y%
Fig. 7 Relaxation perlods of 20 min during Loading (a) and unloading below the maximum stress level (b); the relaxation period

{b) causes a displacement of the stress-strain curve to the right
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to (a) the relaxation at (b) occurs at a reduced rate. Upon continued
unloading the stress-strain curve does not return to the assumed
original unloading curve (dashed in Fig. 7). Rather it is displaced to
the right. In this case the prior relaxation history is not forgotten.

Stress Change During Strain-Rate Changes. Figs. 2 and 5 indi-
cate that there exists at every strain a stress level characteristic of a
given strain rate. Available data involving frequent relaxation periods
and strain-rate changes such as shown in Fig. 5 were analyzed by de-
termining at a given strain the characteristic stress level for a strain
rate of 1078 and 103 s~L, The tests include cycling between the strain
rates; see Fig. 9 of [1]. The results are shown in Fig. 8. It is seen that
the stress level differences are independent of strain and prior history
for positive stresses.

900
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A SPECIMEN T4
O SPECIMEN T1  AFTER CYCLIC LOADING FILLED SYMBOLS £=10765"!
700
0 i 2 [3 7

3 4 5
TOTAL STRAIN %

Fig. 8 Stress values characterlstic of a given straln rate versus strain for three
different specimens; each specimen was subjected to frequent relaxation and
strain-rate changes as demonstrated in Fig. 5; although the stress levels are
different for the cyclically preloaded specimen the stress level differences
for the same straln rates are equal; see also Table 2

Reversed Cyclic Loading. Strain Control. Completely re-
versed strain controlled cyclic loading was performed at a strain range
of Ae = 1.6 percent (B1) and 2.4 percent (T'1), respectively. After some
initial hardening followed by softening the stress range is observed
to be almost constant. This Ti-alloy exhibits cyclically neutral be-
havior. ‘

After the steady cyclic behavior was reached the effect of strain rate
on the hysteresis loop was studied by changing the strain rate at
suitable cycle intervals. At each strain rate two or three cycles were
recorded before the next strain rate change was initiated. Both step-up
and step-down changes in strain rate were performed.

After each change in strain rate a different hysteresis loop devel-
oped. The transition from one loop to the next was accomplished

Table 2 Strain-rate change—stress change behavior

Strain Rate Change Corresponding Stress Change® Mpa

After Cyclic**
Loading
Specimen Tl

From -1 To Zero-to-Tension
] Loading

Specimen T4

1073 1074 24,9 24.8
107° 1070 45,8 47.6
1073 1078 65.6 63.7
1073 1077 82,1 79,7,
10t 107° 20.9 19.5
1076 1078 ) 10.8 37.2
107° 1078 19.4 17.7

*
Stress change is obtained from the xy-records by an extrapola-
tion of the respective stress-strain diagrams. An example of
such an extrapolation is given in Figure 5.
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Fig. 9 The Influence of strain rate on the stress range and the width of the hysteresis loop at zero stress for a straln range of 2.4 and
-1.6 percent; transitions from loops obtained at varlous strain rates are reversible
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PRIOR HISTORY :
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WITH DIFFERENT STRAIN RATES

Fig. 10 Strain-controlled test at Ac = 2.4 percent with 2 min relaxation periods commencing at each arrow and subseguent loading
at [¢] = 1073 s7%; almost elastic behavlor is observed In the nearly straight portions of the loop

within less than 0.05 percent strain and was fully reversible, e.g., after
a step-up test from 1076 to 10~3 3~1 followed by a step-down test to
1078 g1 the two hysteresis loops for 1076 s~ coincided within ex-
perimental accuracy.

An increase in strain rate results in an increase in stress range and
a decrease in the width of the loop at zero stress. The results are shown
in Fig. 9. For a change in three orders of magnitude in strain rate the
corresponding stress range changes are 95 MPa or 7 percent and 125
MPa or 11 percent at Ae = 1.6 percent, and A¢ = 2.4 percent, re-
spectively. The line for Ao at Ae = 2.4 percent has a higher slope than
the one for A¢ = 1.6 percent. The plastic strain range (dashed lines
in Fig. 9) decreases with increasing strain rate.

Fig. 10 illustrates how “inelasticity is distributed” around the
hysteresis loop. The arrows with the numbers indicate the strains at
which a 2 min relaxation test was introduced. At the end of these tests
loading resumed at a strain rate of 1073 51, It is seen that no relaxa-
tion occurs in 2 min in the nearly straight portions of the loop and that
‘relaxation increases gradually as the slope decreases. The initial slope
at the commencement of each loading following relaxation is very close
to the modulus of elasticity. After the relaxation periods the stress-
strain curve returns to the original hysteresis loop. (No relaxation
periods are introduced right after unloading as was done in Fig. 7.)
The relaxation periods are forgotten. (The differences in the com-
pression part of Fig. 10 are probably due to continued small cycle-
dependent changes.)

Load (Stress) Control. Specimen B3 was used to perform
stress-controlled loading with 2 min constant load creep periods
(6 = 0) as indicated by the arrows on the right of Fig. 11.

Starting from the origin the specimen was loaded to a maximum
load and then unloaded to zero stress at point A, the end of Section
(1). Section (2) starts at A and ends at B where loading compression
and subsequent reloading in tension followed. Section (3) terminates
at point C. :

~Journal of Applied Mechanics

2 MIN
HOLD TIME

N
RETITIEN

SPECIMEN B3

U =15 MPas™!

Fig. 11 Load controlled loading; at the stress levels corresponding to the
arrows on the right 2 min creep periods are introduced during every loading
and unloading; creep develops gradually and is more pronounced on loading
than on unloading

On loading (¢ > 0) creep develops gradually and in a nonlinear
fashion. (Although the highest and lowest stress levels at which creep
tests were performed differ by less than a factor of two, the respective
creep strains accumulated in 2 min differ by much more than a factor
of two.) We also note that at the same stress level creep is less during
unloading than during loading. This can be seen at the two highest
stress levels of each of Sections (1), (2), and (3). Indeed no creep was
found at all at the low stress levels during unloading. Also the creep
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Fig. 12 Load controlled loading; continuation of test in Fig. 11; the influence of loading rate on the total strain range, the plastic strain
range and the strain reached during unloading from tension; the movement of the loop toward Increasing strain ¢* is permanent

strains during loading are at the same stress level different for sections
(1), (2), and (3). Creep is least developed for Section (2).

After the tests shown in Fig. 11 the maximum stress was increased
to £779 MPa and uninterrupted cycling continued for 10 cycles at 1.5
MPa s~1, Then after completion of one cycle the stress rate was con-
secutively decreased at zero stress going into compression and the
changes in the hysteresis loop were observed, specifically the strains
at zero stress. Fig. 12 shows that the loop shifted toward positive
gtrains (¢* increases as the stress rate was decreased), and that both
the width at zero load (Aep1) and the total width (Aetot) increased with
decreasing rate. We also note that Aey; increases much faster than
Acior.

The movement of the hysteretic loop to the right is probably due
to a higher maximum true stress in tension than in compression. (We
use load control.) The movement is permanent. An increase of stress
rate will narrow the loop; it will, however, continue to move toward
positive strains. The original position of the loop, in contrast to strain
cycling, will not be obtained when the stress rate returns to the same
value after an excursion to low or high stress rates.

Discussion

The results of this study show clearly that the inelastic deformation
of this high-strength, low-ductility Ti-alloy is rate dependent. The
rate-dependence is basically logarithmic; the loading rates must be
changed by an order of magnitude to get a significant change in the
stress-strain behavior.

Both the elastic and inelastic behavior of this material is very
consistent and very well reproducible. The modulus of elasticity (the
slope at the stress-strain origin), for example, was determined on nine
specimens to be 117 GPa £ 1 Gpa. Further, the results in Figs. 6, 8,
and Table 1 permit the comparison of results obtained with different
specimens.

This study is qualitative in nature and demonstrates that at the
loading rates used in this study plastic flow is basically rate-dependent
and that loading rate-sensitivity, creep, and relaxation are closely
related. The results suggest a number of qualitative conclusions im-
portant for constitutive equation development.

62 / VOL. 48, MARCH 1981

No Strain-Rate History Effect (SRHE). The results shown
in Figs. 2, 5, 8 and others demonstrate that prior history can be “for-
gotten.” When the material is stressed into the plastic range.® a unique
stress-strain curve is ultimately obtained for a given positive strain
rate provided the prior history consisted only of positive stresses. We
do not observe a SRHE [12-14]. These results are in agreement with
our findings for AISI Type 304 Stainless Steel [1, 2} but are at variance
with results obtained in dynamic plasticity [12-14] where strain rates
in excess of 10~1 s~ are involved.

We have not found dynamic plasticity experiments with strain-rate
changes on AISI Type 304 SS and on this Ti-alloy. We do not know
whether these metals exhibit a SHRE in dynamic plasticity. However,
a very important difference between dynamic plasticity tests and our
tests is in the strain rates and in the experimental equipment. The
servocontrolled testing machine insures that the strain rate is always
maintained at the specified value. Such assurance is not always
available in dynamic plasticity experiments.

Inelasticity Is Rate-Dependent. At the loading rates used in
this study inelasticity® is rate-dependent. As the loading rate is de-
creased the flow stress decreases (Figs. 2 and 5). Relaxation behavior
is tied to loading rate. A decrease in loading rate causes a decrease in
the stress drop in a given time in a relaxation test (Figs. 5 and 6).

It is therefore not unreasonable to assume the existence of an
equilibrium stress-strain curve [7-9, 15-17] obtained at very slow
loading rates. Creep and relaxation tests started from points on this
curve will not cause any time-dependent accumulation of strain and
stress, respectively. The results of this study suggest that the equi-
librium stress-strain curve must be below the stress-strain curve of

5 Fig. 7 shows that relaxation right after unloading (¢ < 0) can cause a per-
manent shift of the unloading curve. Also changes in stress rate during stress-
controlled cycling can cause a permanent shift of the hysteresis loop; see the
discussion related to Fig. 12. In these cases prior history is not forgotten.

6 Inelasticity denotes deviations from Iinear elasticity.
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¢ = 1078571, In [17] the curve corresponding to ¢ = 1071251 was taken
as the equilibrium stress-strain curve.

Relaxation and Strain Rate-Stress Change Behavior. For
positive strain rates and as long as the loading history involves only
positive stresses the flow stresses and the relaxation behavior are
directly related. After an initial transient period a flow stress char-
acteristic of a given strain rate is reached (Figs. 2, 5, and 8). Relaxation
rates observed in tests started from the flow stress in the plastic range
depend only on the strain rate preceding the relaxation test. The sole
dependence of the relaxation rate on previous strain rate ceases to be
true when the slope of the o-¢ diagram preceding the relaxation test
is different from the slope characteristic for the plastic range (Fig. 7;
in Fig. 10 all relaxation tests start from a curve with é = constant; the
relaxation drops are different.).

A dependence of the flow stress on prior history is shown in Fig. 8
for specimen T'1 which underwent prior strain cycling at Ae = 2.4
percent. After about 60 cycles the specimen was unloaded from ten-
sion to zero load. A regular tensile test with repeated strain-rate
changes involving increases and decreases in strain rates was then
started. The flow stress for the T specimen is less than for specimens
T4 and T5; see Fig. 8. Table 2, however, demonstrates that the stress
level difference between the flow stress at various strain rates before
and after cyclic loading is equal within the accuracy of the extrapo-
lation used in getting the data.

Cyclic loading changes the stress level characteristic of a given strain
rate. The strain rate-stress change behavior remains unaltered.

In the experiments of AISI Type 304 Stainless Steel {1] which
undergoes considerable cyclic hardening both the stress level and the
stress level difference were altered.

Unloading and Reloading Behavior. Figs. 2-5, 7, 10, and 11
show that inelastic behavior is observed at and below the prior max-
imum stress level. This is especially true for Figs. 7, 10, and 11. Figs.
10 and 11 also indicate that inelasticity develops differently in loading
and unloading.

In the unloading leg, beginning at some stress level below the
maximum stress (see Fig. 7), a nearly rate-independent linear be-
havior is observed which in this material extends to and beyond the
zero stress axis. It appears therefore that during unloading a region
of almost elastic behavior is present akin to the behavior obtained at
the origin upon initial loading.

The observed creep behavior in Fig. 11 is at variance with creep
theories which assume that creep rate depends only on creep strain
and stress. It can be explained by requiring that the creep rate de-
pends on overstress [15-17].

The type of control influences the unloading behavior considerably.
When a low stress rate is used “creeping out” is observed during un-
loading, which can be considerable (Figs. 4 and 3). No such creep effect
is possible in strain control. Constitutive theories should account for
this bias between stress and strain control.

Comparison With Experiments on AISI Type 304 Stainless
Steel. Although AISI Type 304 SS is a low-strength, high-ductility
material, its inelastic behavior [1, 2] is similar to this high-strength,
low-ductility Ti-alloy.” The stress levels are quite different in the two

7 All tests with the Ti-alloy were terminated at strains of approximately 7
percent. Small cracks were usually observed around this strain. Strains greater
than 40 percent are needed for Type 304 SS before necking starts.

Journ‘al of Applied Mechanics

cases; however, the relaxation, the strain rate-stress change behavior
and the unloading behavior are qualitatively the same. These findings
suggest that the viscoplastic model based on total strain and overstress
[15-19] is capable of qualitatively reproducing the observed be-
havior.
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An Isoparametric Finite Element
With Nodal Derivatives

A finite element using the nodal point values of the first partial derivatives of the un-

known function with respect to the coordinates to increase the order of the resulting inter-
polating polynomial is formulated as an isoparametric element, The shape functions in
local coordinates are given and then to satisfy requirements for the transformation of de-
rivatives are modified for use with the global coordinates. Examples of a cantilever beam,
a curved cantilever beam, and a flat bar with a hole demonstrate the high-order capabili-
ties of the element. The advantages of the element over other isoparametric elements are

discussed.

Introduction

Most of the higher-order finite elements in use are constructed by
the addition of nodes. If the interpolation polynomials known as shape
functions can be defined so as to express the desired function, typically
displacement, in terms of the nodal values of the function, the element
is generally usable. Another technigue used to develop a higher-order
element is to express the desired function in terms of the nodal values
of the partial derivatives of the function with respect to the coordi-
nates in addition to those of the function [1-3]. )

The former procedure is usually preferred in that the same shape
functions can also be used to describe the mapping from local to global
coordinates. When finite elements are so constructed, using one set
of shape functions, the element is called isoparametric [4]. Isopara-
metric elements have the distinct property that each node defines a
point in space as well as a value for the desired function.

The latter procedure has used other techniques to describe the
mapping from local to global coordinates [5-7]. This can result in
subparametric or superparametric elements in that either extra nodes
for defining the geometry or a different order of interpolation function
for the geometry or both are utilized. The element described herein
uses derivatives to achieve higher-order interpolating functions and
also maintains the concept of isoparametric elements.

Theoretical Development
The two-dimensional quadilateral element (Figs. 1 and 2) has four
corner nodes. At each node, two displacement components and their
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Fig. 1 Quadilateral shaped element in local coordinate system

2
1

Fig. 2 General four-sided element in global coordinate system
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first partial derivatives with respect to the local coordinates (U, Uy,
Up, V, Va Vp) are defined thus, allowing a total of six generalized
displacements. The shape functions defining the displacements (U
and V) in terms of the nodal point values of displacement and the first
partial derivatives with respect to the local coordinates are developed
using matrix inversion [8] in conjunction with a Taylor series ex-
pansion [9]. The interpolating polynomial functions for the dis-
placements expressed in the generalized coordinates a; and b; are

U=ao+aia+ a + aze?+ asf + as6? + aga® + ara?B

+ agaff? + agf® + a10a’B + annafP  (la)
and
V= b() + b1a + bzﬁ + b3a2 + b4aq8 + b5ﬂ2 + bGOLS + b7a2ﬁ

+ bga,BZ + bgﬂs + b10a36 + bu&ﬁS (lb)

The generalized coordinates are found by evaluating the polynomial
and its first derivatives at each of the four nodes, and then inverting
the resulting simultaneous equations. Substituting into equation (1)
and grouping terms according to the 12 nodal displacements and
derivatives results in the following shape functions:

For U and V:

1
N,-=§(1+ao)(1+ﬁo)(2+ao-—a2+,80—62); i=1,4,7,10

(2a)

For Uy and V.
Ni=-— % 1+ )1 + Lo}l —aDay; ©=2,5,811  (2b)

For Ugand Vg
N;j=~ é 1+ aé)(l +Bo)(1—62)Bi; 1=3,6,912 (2)

where
Bo = BB:

@y = Qo

and
o =%1 F; = +1.

The displacements are expressed in terms of the nodal displace-
ments and derivatives in local coordinates by

\%4
Va
Vs

i=1,234 (3d)

foli =

Since the values of the first derivatives of the displacements with
respect to the global coordinates differ from those of the first deriv-
atives of the displacements with respect to the local coordinates, it
is necessary to modify the shape functions derived in local coordinates
in order that the global nodal displacements and their first partial .
derivatives with respect to the global coordinates can be used.
Thus

N*=Ci(N) i=12,...,12 (1)

where N;¥ is the modified shape function and C; defines the trans-
formation on the original shape function N;. For the displacements

CiN;) =N; i=1,4,7,10. 5)
For the shape functions associated with the derivatives of the dis-

placements the chain rule gives

oU oUD U o 9. [}
Us=o= o4 =22, 2y, 22 (Ga)
da  dx O Qy d« e2s da
and
oU U dU o 0 0
ﬂ=-—-=.__._._x_. ____1=Ux_£+Uy_y (Gb)
28 ox o8 oy df op 2f

The partial derivatives of the global coordinates with respect to the
local coordinates are evaluated by isolating the element boundaries
that intersect at the nodal point associated with the given shape
function. For example, at nodal point 1 the boundaries are defined
in local coordinates by § = —1 and by o = ~1 (Fig. 1) and corre-
spondingly in global coordinates by y = F(x) and x = G (y), respec-
tively, where F and G are third-order polynomials.

For § = —~1, the global abscissa of the boundary can be expressed
{nonuniquely) in terms of the local coordinates by

X9 — X1 X9+ %1
—_— o+ .

2 2 @

x =

(This expression is chosen since it is identical to the x-« relationship
for a curve-side boundary of an isoparametric element if the boundary

fuh is formed by nodes having evenly spaced global abscissa.)
U =[N] {ule (3a) Taking the derivative of x with respect to « gives
‘ul3 ox h2
== ®)
fula dax 2
and where
‘Ull h2=x2—x1.
- (N jola b
V= [N] vl (3d)  Gince the global ordinate of the boundary is defined as a third-order
3 polynomial in terms of the global abscissa, the chain rule gives
ks Jy Oy ox ox
e 2 e e 2 7V x — 9
where PV (x) o 9)
U Substituting (8) into (9) gives
. mm ] = 0, h
{u}t Uut 14 1, 21 31 4 (30) —3—, = ——QF’(x). (10)
Us}, ‘ da 2
Similarly, for @ = —1, using the global ordinate of the boundary
and gives
Nomenclature
B = strain-displacement transformation F, G = third-order polynomial functions N;* = modified shape function
matrix : h = vertical or horizontal projection of an

C; = transformation on shape functions element side

D = stress-strain transformation matrix

Journal of Applied Mechanics

K = stiffness matrix
N; = shape function

U, V = displacements
x, y = global coordinates

‘e, B = local coordinates
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o _ha (11
B 2
where ]
. ha=ys~y
Thus \
%;%@m. (12)

Substituting equations (8), (8), (10}, (11), and (12) for each of the
four nodes into equation (3) results in the following modified shape
functions for the derivatives:

i+1

h; h
amn=;m+7fnumwn i=2,5811

j=GE+1)/3 (13a)

h; hi- L. :
Ci(N;) = 'Z—LN,' + 'TZ_IGI(yk)Ni—l i=3,6,912

k=1/3. (13b)
where hg = hs=x9—x1, hg = hgéya—-yz,hs=h11 =x3—x4,h3=
h1a = y4— y1.

The displacements can now be expressed in terms of the nodal
displacements and derivatives in global coordinates by

{u*h
U= [N¥| s (14a)
{u*ls
{u*l
and
fr*h
= Pk (14b)
{*s
fo*l
where
U
{u*} =< U, 1=1,23,4 (14c)
Uy,
and
1%
=4V, i=1,234 (14d)
Wy,

If the element is isoparametric, then the shape functions given by
(2) must also transform the geometry from local to global coordinates.
For nodal point 1, using equations (8) and (11) and the chain rule for
the coordinates gives

AXy=— = ———m= —~ 15
o dxda 2 7 (15a)
and
Oy 0OyOdy hs
== = D 15b
T8 oy 2 (156)

Substituting equation (15) for each of the four nodes into equation
(3) where now the displacements are replaced by the coordinates re-
sults in the following modified shape functions:

For Coordinates:

Ci(N;)=N; i=14,710 (16a)
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For Derivatives:

C;(N;) = %‘-N,- 1=2,3,5,6,89,11,12 (16b)

The partial derivatives of the coordinates of the boundaries with
respect to the global coordinates at the nodal points must be defined
values just as the coordinates are defined values. Again examining
nodal point 1 and the boundaries defined by « = —1 and § = —1.
For 8 =~1,

Xy == n
ox
and
Fe)
Yi= 2= F(x) (18)
ox
Fora = —~1,
o)
5y == G'(y) (19)
oy
and
oy
=—=1 20
Yy 2y (20)
'The geometry of the element is now given by
{xh
X = (v ¥ (21a)
{xla
{x}a
and
vh
Y = [N*] le 21b)
vla
{vla
where
X;
fxh=411 i=1,2234 (21¢)
G'(vi)
and
Yi
vk =< F(x;) i=1,23,4. (21d)
1

xi, ¥i, G’ (v;), and F’(x;) are specified values for each node of the ele-
ment.

Stiffness Matrix
The stiffness matrix is developed using the classical approach

(K1 = f(BI"[D][BldV (22)
where [K] is the stiffness matrix, [B] is the strain-displacement
transformation matrix, [D] is the stress-strain transformation matrix,
and V is the volume of the region. A procedure for evaluating this
integral is given in reference [10].

Element Performance

Case 1. A cantilever beam (Fig. 3) is subjected to a concentrated
load at the free end. A one element model is sufficient to give excellent
results for the displacements and stresses. Since the partial derivatives
of the displacements with respect to the coordinates can be con-
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Fig. 3 Cantilever beam with a concentrated end load
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Fig. 4 Curved cantllever beam with a concentrated end load

strained or freed at the nodal points, the problem of the Poisson ef-
fects at the cantilever support is overcome with this element.

Case 2, A curved cantilever beam (Fig. 4) is subjected to a con-
centrated load at the free end. A two element model gives very good
results. The geometry of the element is approximated by a third-order
polynomial on the boundaries. Expanding the equation for the curve
of the beam into a Taylor series gives

h? h3 cos 0
2R; sin®0 2R;2sin%0
where A is the distance from the starting point of the element side.
For 8 = 90°, the curve is best approximated by a quadratic. Thus,
when specifying the coordinate derivatives for noncubic boundaries,
attention must be paid to the resulting polynomial curve. Unjudicious
specification of nodal derivatives could result in undesirable S-shaped
boundaries.

Case 3. A flat bar with a circular hole (Fig. 5) is subjected to a
uniform axial stress at the ends. The stress concentration factors
found using a four element model are compared to those found pho-
toelastically by Frocht [11] for several variations in geometry (Fig.
6). The element performed well except in the area of the discontinuity
of the stress concentration factor as would be expected.

y=R;sinf —h cotf+

(23)

Conclusion
When compared to the four node quadilateral isoparametric ele-
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Fig. 5 Flat bar with hole with uniform axial loading

(1
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P/A
K
3
\ Finite Element
f \
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r/d
Fig. 6 Stress concentration factor

ment, the isoparametric element with derivatives described gives
higher-order accuracy for rectangular and quadilateral elements but
requires no additional input. For curved-side boundaries only are the
two slopes at each node given in equations (10) and (12) required as
extra input. This allows much flexibility in describing the boundary
elements while maintaining the ease of input for the internal quadi-
lateral elements, Continuity of stress and strain is maintained at the
nodes. Thus displacements and stresses are specified at the same
points, the nodes. Additional information such as rotations, normal
strains, and shear strains is also available at the nodes. This method
is easily extended to the three-dimensional case.

It should be noted, however, that elements that use nodal deriva-
tives suffer the disadvantage of not being suitable for those cases
where strain discontinuities exist at element interfaces. For example,
material or thickness changes would require special treatment of the
derivative degrees of freedom at the interface nodes.
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Finite-Element Solution of Elastic-
Plastic Boundary-Value Problems

It is demonstrated that elastic-plastic failure states may be captured in finite-element
models by employing (1) the elastic-plastic material stiffness to form the global stiffness,
(2) reduced/selective integration techniques to alleviate mesh “locking” due to incom-
pressibility, and (3), in the case of symmetrical configurations, an imperfection in the

form of a weak element.

Introduction

It is the objective of the theory of plasticity to offer a mathematical
description of the mechanical behavior of rate-independent materials
in the plastic range. The theory follows the well-established precedent
set by the theory of elasticity. Its recent popularity stems from its
extreme versatility and accuracy in modeling real engineering material
behavior. The origin of the theory dates back to a series of papers by
Tresca in the 1860’s in which he proposed the maximum shear stress
criterion for the yielding of metals. The actual formulation of the

theory was made by Saint Venant and Levy in 1870, Prandtl in 1924,

and Reuss in 1930. References to early works on the subject may be
found in [4].

Early works in plasticity only dealt with the simplest class of plastic
materials, viz., isotropic elastic-perfectly plastic materials. In that
case, the behavior of the real material is idealized by assuming that
it behaves like a linear isotropic elastic solid until the shear stress
reaches a critical intensity defined by the yield criterion, after which
it flows plastically. Although this theory is the simplest, no general
analytical method could then be developed for solving general
boundary-value problems involving an isotropic elastic-perfectly
plastic solid body. Until recently, exact solutions had only been ob-
tained for trivial problems which are one-dimensional or ones which
involve proportional loading conditions. The recent development of
numerical techniques such as the finite-element method has now
rendered possible, in principle, the solution of any properly posed
boundary-value problem in continuum mechanics. Numerous nu-
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merical solutions for elastic—plastié problems have thus been proposed
in the recent literature. However, it appears that many of these so-
lutions are deficient

1 In not converging toward a limit load (when such a limit load
exists) but rather rising steadily and attaining values far in excess of
the true limit load.

2 In not exhibiting localization of deformation phenomena when
such localizations should occur.

The fact that the numerical solution does not exhibit a limit load or
too high a limit load, indicates that the computed stiffness is larger
than it should be and/or does not become singular when it should. A
possible cause for this was pointed out in [11] and is related to the fact
that special care must be taken in the numerical formulation in order
to be able to handle the incompressible plastic flow which takes place
at failure. New techniques have now been devised to deal successfully
with incompressibility constraint requirements [7]. However, even
when using these techniques, numerical solutions have not seemed
capable of capturing localization phenomena, thus prompting several
investigators [5, 15], to devise special purpose finite-element proce-
dures.
It is the purpose of this paper to:

1 Investigate the ingredients necessary to capture failure states
accurately by numerical methods.

2 To demonstrate that limit loads and localization phenomena
can be captured successfully by finite-element models.

For simplicity, attention in this presentation is restricted to small
strains/deformations only. As for notation, boldface letters denote
vectors, second-order and fourth-order tensors in three dimen-
sions.

Preliminaries
The form of the plasticity equations first proposed by Melan [10]

~ in 1938 is given as follows:

af = (L)p 1

in which d = symmetric part of the velocity gradient; P = dimen-
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sionless symmetric second-order tensor normalized in such a way that
P:P = 1 and such that P gives the direction of plastic deformations; and
a superscript p is used to denote plastic rate of deformations. In
equation (1), L is the loading funetion,

=— ot (2)

in which H’ = plastic modulus; t = material rate of Cauchy stress; @
= dimensionless symmetric second-order tensor normalized in such
a way that Q:Q = 1 and such that Q is the outer normal to the yield
surface in stress space; and the symbol () denotes the MacCauley’s
bracket, viz., (L) = L if L = 0, otherwise (L) = 0. For a plastic
hardening case, H’ > 0, whereas H’ < 0 for a softening case. When H’
= 0, a perfectly plastic case is obtained.

Before proceeding any further, it is of importance to note that, as
a consequence of the normality rule the plastic fourth-order flexibility
tensor is equal to the outer product of the two second-order tensors
P and Q. The plasticity equations alone are therefore singular, and
cannot be inverted to yield a purely plastic material stiffness. In order
to be able to derive such a stiffness, the material’s elasticity must also
be taken into account. It is a fundamental assumption of the theory
of plasticity that the total rate of deformation tensor in the plastic
range may be decomposed into the sum of elastic and plastic rates of
deformation.

In order to be able to separate the contributions of the elastic and
plastic properties in the total deformation, it is commonly assumed
that the elasticity of the material is isotropic and linear. Anisotropic
and nonlinear effects are assumed to be due to the material’s plas-
ticity. The resulting elastic-plastic flexibility tensor is nonsingular
and can be inverted to yield the material’s stiffness as

t=Cd=Ed— —*E:P—Q'E'd 3)
) ’ H + QEP
in which
Eabea = Abap0cq + G(OacOpa + 8aadpc) 4)

denotes the elasticity tensor; and A, ¢ = Lamé’s constants. Note that
when P # Q (i.e., a nonassociative plastic flow rule is used), the €
tensor does not exhibit the major symmetry and therefore leads to
a nonsymmetric stiffness matrix. On the other hand, when P = Q (i.e.,
an associative plastic flow rule is used), the € tensor possesses the
major symmetry and leads to a symmetric stiffness matrix. For the
simple case of an isotropic elastic-plastic material which yields ac-
cording to the von Mises criterion [4], viz.,

dgs —k2=0 5)

where s = t — § trace (t)l = deviatoric stress tensor, equation (3)
simplifies to
2G/H' 3

—— g(s:d) (6)

t = 2Gd + A(trace d)l — 26 ——————
1+ 2G/H’ 2k2

for an associative plastic flow rule.

Limit Load

A state of failure is reached when deformations start to occur under
constant surface tractions. For the elastic-plastic solid body to
eventually reach such a state, the material stiffness must be singular,
ie.,

Cd=0 7

must possess a nontrivial solution, so that the global stiffness of the
solid body may be singular.
Assuming Q:E:P > 0, it may be seen that the material elastic-plastic
stiffness is singular if H’ = 0. This follows by showing that
X:C:X =0 ®

where X is a nonzero, symmetric second-order tensor. Taking X = Q,
equation (3) yields

70 / VOL. 48, MARCH 1981

oce=H _GEQ 9)
H' + QE:P
which is zero if H’ = (.
1t is therefore apparent that if the correct limit state is to be de-
tected by the numerical solution, it is helpful to use the elastic-plastic
material stiffness rather than any other algorithmically convenient
stiffness to form the global stiffness (as in initial-stress-type methods).
However, to advance the solution into the post-bifurcation regime
requires algorithmic strategies which are not considered herein.

Localization Phenomena

The basic theoretical principles for understanding the localization
phenomenon are contained in references [1-3, 8, 14, 16], where it is
shown that its existence in elastic-plastic solids is contingent upon
the loss of ellipticity of the velocity equations of equilibrium, i.e., lo-
calization is to occur when [3]

det(n-Cc-n)=0 (10)

in which det = determinant, and n = unit vector, whose orientation
defines a characteristic curve for the equations of continuing equi-
librium (CypedVe,d),e = 0, where v = spatial velocity. For an elastic-
plastic material, equation (10) imposes that [14]

’

H
E=2n°P-0-n—(n-P-n)(n-Q-n)—P:Q

__ A
A+2G@

It is of importance to note that the plasticity equations of equilib-
rium are the ones which lose ellipticity. This again suggests that if
localization phenomena are to be captured by the numerical solution,
it is helfpul to use the elastic-plastic material stiffness rather than any
other algorithmically convenient stiffness.

[(a+P+n) —trace P][(n+ @ +n) — trace @] (11)

Numerical Examples

In the following sections, a number of examples are presented which
demonstrate that both limit loads and localization phenomena in
elastic-plastic solid bodies may be accurately captured by a finite-
element solution of the velocity equations of equilibrium. For that
purpose, the finite-element code DIRT [6] is used. Elastic-plastic
equations lead directly to the definition of tangent stiffness matrix
(see, e.g., [9]), and an incremental predictor-corrector-type algorithm
is adopted [6]. The element and material model libraries are modu-
larized and may be easily expanded without alteration of the main
code. The present element library contains a two-dimensional element
with plane stress/plane strain options, and a three-dimensional ele-
ment. Full finite deformation effects may be accounted for. A contact
element is also available for two and three-dimensional analysis. The
present material library contains a linear elastic model and various
elasto-plastic and soil models. Some features which are available in
the program are

o Both symmetric and nonsymmetric matrix equation solvers.
s Reduced/selective integration procedures, for effective treat-
ment of incompressibility constraints [7].

In the following calculations, the four node bilinear isoparametric
element was used with the standard selective integration scheme [6,
71.

1 Localization of Deformations Into Shear Bands. Numerical
results which illustrate the phenomenon of localization of deformation
into shear bands for a rectangular block constrained to plane defor-
‘mations and subjected to tension in one direction are presented
hereafter.

In order to make the study quite specific, the material is modeled
as an incompressible isotropic elastic-plastic Prandtl-Reuss material
(equation 6)). Fig. 1(a) shows the two-dimensional finite-element
representation of the tensile specimen. The grid consists of 171 bi-
linear isoparametric rectangular elements. The specimen length-

‘to-width ratio is equal to two, and 9 elements are placed across the
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width, Uniform longitudinal end displacements are prescribed, and
no shearing tractions are applied. The lower left corner of the speci- } PLVLLALAY LU
men is fixed, and the loading is accomplished by imposing increments 7 / AR SNRIDDDBND
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0, and in the following H’/2G = —0.048. The corresponding angle for //'Z 1 NN NNEN
the plane of localization is then 38.7°. The assumed stress-strain curve ALY NN N
is shown in Fig. 1(b). j/ v v .
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loss of ellipticity is a necessary but not a sufficient condition for lo- Fig. 2(¢)
calization. Some type of nonuniformity (perturbation) is necessary
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in order to trigger the phenomenon. In the following, localization is
achieved by introducing a weak element which plays the role of a local
“imperfection” in the material properties. This element is located
either at the center (series C) or at the side (series D) of the specimen
as shown in Fig. 1, and its plactic modulus is such that H'/2G = —1/3.
Typical results are shown in Figs. 2-5. The spreading of the plastic
zone is indicated by a shaded area. In both Figs. 2 and 3, the imper-
fection is located at the center of the specimen. In Fig. 2 it has a yield
strength 5 percent smaller than the surrounding material. In Fig. 2(a)
the axial strain = 0.099 percent, and only the weak element has
yielded. Upon further loading, localization occurs and as shown in Fig.
2(b) (axial strain = 0.101 percent) results in a very symmetrical pat-
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tern, This pattern was found to remain stable upon further loading
and the specimen failed by necking. In Fig. 2(c) (axial strain = 0.150
percent) a slight nonuniformity in the end displacements was intro-
duced to break this symmetry. This was achieved by making the upper
right-hand corner longitudinal displacement 1 percent larger than
the remaining. By comparing Figs. 2{b) and 2(c), it is apparent that
as a result, some elements unloaded and one shear band emerged.
Note that the angle of the slip line is close to the predicted value
38.7°). In Fig. 38, the imperfection has the same strength as its sur-
rounding. In Fig. 3(a), the axial strain = 0.100 percent, and all the
elements have yielded. In Figs. 3(b) and 3(c), the axial strain = 0.103
percent and 0.120 percent, respectively. Note that the localization
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pattern is very different from the one found in Fig. 2. Again this is
stable, and the subsequent failure of the specimen is illustrated by
Fig. 3(c). In both Figs. 4 and 5, the imperfection is located at the side
of the specimen. In Fig. 4 it has a yield strength 5 percent smaller than
the surrounding material. In Fig. 4(a), the axial strain = 0.099 percent.
Upon further loading, localization takes place and leads to the for-
mation of two symmetrical slip lines as shown in Fig. 4(b) (axial strain
= (.101 percent). However, this configuration is not stable, and upon
further loading, only one shear band remains as shown in Fig. 4(c)
(axial strain = 0.140 percent). In Fig. 5 the imperfection has the same
strength as its surrounding and this leads directly to one shear band
as shown in Fig. 5(b) (axial strain = 0.102 percent). Again, note that
for all cases, the angle of the slip line is very close to the predicted
value (38.7°).

2 Failure States. In order to demonstrate that finite-element
solutions can capture failure states accurately, i.e., both limit loads
and localization phenomena, numerical results for the classical punch
problem [4, 12, 13] are presented.

The material is the classical incompressible isotropic elastic-per-
fectly plastic Prandtl-Reuss material (equation (6) in which H’ = 0)
and Fig. 6 shows the two-dimensional finite-element representation
of the problem geometry and the notation. The punch is represented
by a strip of elements ten-thousand times stiffer than the supporting
medium. Loading is achieved by the centered vertical force F. the
computed load-displacement curve is shown in Fig. 7, where ¢ = k/v/3
= simple shear strength. Note that the failure load is very accurately
captured by the numerical solution. Fig. 8 shows the computed ve-
locity field at failure when the medium is initially perfectly homoge-
neous. Note that again localization could not occur because of the
symmetry of the loading, geometry and homogeneity of the material
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properties. Fig. 9 shows the computed velocity at failure when a small
inhomogeneity has been introduced by placing two weak elements
(H’/2G = =) in the line of the foundation as shown in Fig. 6. The
load-displacement curve in that case remains identical to the one
obtained for the homogeneous deposit. However, note that at failure
in that case, localization of the deformations takes place and the
computed velocity field very accurately follows the classical slip line
solution [13].
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Summary and Conclusions

It is shown in this paper that finite-element models of elastic-plastic
boundary-value problems can accurately represent failure states when
the elastic-plastic material stiffness is used to form the global stiffness,
and reduced/selective integration techniques are used to alleviate
mesh locking due to incompressibility. In order to trigger the local-
ization of the deformations at failure in symmetric problems, and
capture the correct slip line field, a local material imperfection is used
in the form of a weak element. However, it is of interest to note that
the use of such local imperfections seems to be necessary only for
symmetric problems. As shown for instance in [17], finite-element
models capture failure states accurately without any such perturba-
tions in nonsymmetric problems.
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Asymptotic Distributions for the
Failure of Fibrous Materials Under
Series-Parallel Structure and Equal
Load-Sharing

Asymptotic distributions are obtained for both the strength and the time to failure of a
fibrous matertal for which mild bonding or friction exists between fibers. The analysis is
based on the chain-of-bundles probability model, and equal load sharing is assumed for
the nonfailed fiber elements in each bundle. Asymptotic results are obtained for the diffi-
cult but useful case where k, the number of bundles in the chain, grows very rapidly with
respect to n, the number of fibers in each bundle. For both strength and time to failure,
a classical extreme value distribution is found to be the asymptotic distribution, and the
parameters are given in terms of certain fiber properties. The results apply to long, flexi-
ble fibrous structures such as yarns and cables.

1 Introduction
The fibrous materials of interest in this paper are long and flexible,
and consist of strong fibers aligned in parallel. Very mild bonding or
friction exists between fibers, as would be the case in long flexible
cables, or in yarns with low twist. When an axial load is applied to the
material, fibers break in a random manner, and the total load is dis-
tributed across the unfailed fibers according to some load-sharing
mechanism, We will assume that the statistical failure characteristics
of a single fiber are known for any given time varying load, and our
problem is to determine the corresponding characteristics for the fi-
brous material.
 Because of the mild bonding or friction between fibers, a broken
fiber becomes fully inoperative only over a region which is small rel-
ative to the total material length; indeed, the fiber is capable of sup-
porting almost all its original load at only a short distance from the
break. It is this localization of the effects of failure which is responsible
for the high strength of such materials. Thus we model the material
as a chain of k statistically and structurally independent bundles with
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/ ~ TOTAL APPLIED LOAD

L — NOMINAL LOAD PER FIBER (L= _//n )

8 — FIBER INEFFECTIVE LENGTH (BUNDLE LENGTH)
EQUAL LOAD SHARING AMONG SURVIVING FIBERS
WITHIN BUNDLES

Fig. 1 Serles-parallel model for the fallure of a fibrous material in the form
of a chain of k bundles with n fiber elements per bundle; fallure of the material
occurs with the fallure of the weakest bundle

n fibers in each bundle as shown in Fig. 1. The length 6 of each bundle
is the length of this ineffective region for a broken fiber.

For each bundle, we will assume the simplest load sharing rule
which is equal load-sharing; that is, at any time the total load is dis-
tributed equally over all unfailed fibers, with the failed fibers carrying
no load. This assumption is most appropriate for a bundle of straight,
parallel fibers of equal length in which there is no physical contact
among the fibers, but we make this assumption in the present case
of mild bonding or friction between fibers. However, in the case of stiff
composite materials where the fibers are encased in a matrix material
thus causing the bonding among fibers to be much stronger, this as-
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sumption of equal load sharing must be replaced by what is called
local load-sharing. In this case, the mechanics of fiber/matrix inter-
actions comes into play, and the load redistribution is concentrated
on fibers which are immediate neighbors to the failed fibers, while
more distant fibers in the lateral direction remain unaffected. The
mathematical analysis for this case proceeds in a very different di-
rection from that considered here. For further discussion, the reader
is referred to Harlow and Phoenix [1-4]. Here, all analysis will be
under the equal load-sharing rule.

The early work on the model of this paper was performed in classic
studies by Daniels [5] in the static case, and Coleman [6-9] in the
time-dependent case. Daniels and Coleman obtained important as-
ymptotic results for certain cases involving single bundles of in-
creasing size n, and recently Phoenix [10, 11] has extended the as-
ymptotic results in the broader time-dependent framework proposed
by Coleman [9]. The latter paper [11] of Phoenix ties together the
maodels of Coleman and Daniels, these heing distinct for the most part;
Daniels’ static model is actually not a special case of the time-de-
pendent model on which Coleman performed the bulk of his work.

In this paper, we obtain asymptotic distributions for both the
strength and the time to failure of the fibrous material; that is, of the
chain-of-bundles. The results will be asymptotic as both n the number
of fibers and k the number of bundles increase indefinitely together,
but most important, we seek results for the most useful and difficult
case where k increases rapidly with respect to n. The fibrous material
is thus long and slender, as yarns and cables typically are.

We begin with a brief description of the three versions of the model
that we consider. These versions differ with respect to the assumptions
made about the failure of a single fiber. The first model is based on
that of Daniels for static strength, ignoring fatigue. The remaining
models are all extensions of Coleman’s model for time to failure in-
corporating fiber fatigue. In each case, we summarize earlier asymp-
totic results for single bundles. As bundle size n increases, an as-
ymptotic normal distribution occurs for both single bundle strength
and time to failure in fatigue, and we give the distribution parame-
ters.

Next, we focus on the analytical difficulties in determining the
asymptotic distribution for the strength or time to failure of the chain
of k& bundles, as both k and n increase. Since failure of the chain occurs
when the weakest bundle fails, the problem becomes one in the realm
of the asymptotic theory of extreme order statistics, wherein the lower
tails of the bundle distributions dominate in importance. Now, on
the one hand, we have classic, asymptotic results in extreme value
theory which would apply under the normal distribution for the k
variates. On the other hand, we have asymptotic normal distributions
for bundle failure as n — =, the exact distributions being essentially
unknown. The key question is “As n — », under what conditions on
the increasing of k with respect to n may we replace the (unknown)
exact distributions for bundle failure with the corresponding (known)
asymptotic distributions in this extreme value analysis?”

To further understand the nature of these difficulties, we discuss
certain ramifications of the central limit theorem, paying particular
attention to the rates of convergence of the asymptotic distributions
to the exact distributions, both in an absolute sense and in a relative
sense. We will see that it is the relative error in their respective lower
tails that is important, and this draws us into the framework of large
deviations theory as developed by Cramér and Petrov [12]. We will
quote certain relevant results for later use.

Next, we focus on the Poisson limit law to gain a deeper under-
standing of certain technical aspects of the extreme value analysis,
and to introduce the key asymptotic distributions which ultimately
arise for the failure of the fibrous material.

Finally, we obtain the main asymptotic results of the paper. It is
found that both the strength and failure time of the fibrous material
have an asymptotic distribution function of the form 1—exp {— exp
[(y — bp)/a,)} where the parameters a,, and b, are given explicitly in
each case. To a large extent, this form is a consequence of the equal
load-sharing assumption and the asymptotic normality it yields for

bundle strength. Elaboration on certain technical details, which are’

required in the light of the preliminary discussion, are reported

76 / VOL. 48, MARCH 1981

elsewhere by Smith [13, 14]. We conclude with an example which re-
veals some practical ramifications of the main results. We also discuss
some additional results obtained by other authors. In particular, the
calculations of Giicer and Gurland [15], whose model is actually the
chain-of-bundles model in Daniels” static setting take on a new
strength as we now justify certain steps in their analysis.

2 The Series-Parallel Model and Earlier Results

To reiterate, the fibrous material is a parallel structure of n fibers,
and is partitioned into a series of k short sections or bundles of length
4. Thus the material is viewed ag a chain of k bundles with n fiber el-
ements per bundle, and its total length is | = k6.

A total load .£ is applied in tension along the axis of the structure,
and in general this load will be time varying. But to compare results
for different bundle sizes n, we speak in terms of the applied load L
= L/n, so that L is the nominal load per fiber in the bundle. In the
static case, we focus on the strength which is the largest load L that
the structure supports, and in the time-dependent case, we focus on
the time to failure given the load L as a function of time. The & bun-
dles are structurally and statistically independent, and failure of the
fibrous material occurs when the first bundle fails.

At any time, the nonfailed fiber elements in each bundle share the
total load .£ equally, and failed elements carry no load; earlier, this
was referred to as the equal load-sharing rule. Thus, if i of the n fiber
elements in a bundle have failed, each surviving element supports the
higher load nL/(n — i) rather than the nominal value L.

2.1 The Static Strength of Single Bundles. We now consider
the static case, and summarize Daniels’ asymptotic results for a single
bundle [5]. If the individual fiber strengths are denoted by X;,
X, ..., Xn, and welet X1y = X9y =... = X(n) be these strengths
arranged in increasing order, then the bundle will support the load
LifL = XqgyornL/(n—1) = Xgor...ornL s X,; if none of these
inequalities are satisfied, the bundle will fail. Thus the bundle

strength Ly, is given by
n—-1 1
)X(g), Ce, (—) X(n)l. (1)
n n,

The distribution function of L}, which we denote by F},(x) = Pr{L},
< x}, is desired under the assumption that the fiber strengths X3, .. .,
X, are independent random variables with common distribution
function F(x), x = 0. While no compact expression was found for F},(x)
for large n, Daniels showed that the bundle strength L7, is asympto-
tically normally distributed with known parameters. One verion of
his result is as follows [13]:

Theorem 2,1, Assume F'(x), x = 0is continuous with F(0) = 0 and
J5x2dF(x) < . Let

w* =sup {x[1 - F(x)]:

L} = max [X(1), (

x =0}, (2)

that is, u* is the maximum value achieved by the function x[1 — F(x)]
as x = 0 is increased indefinitely. Also, let x* be the value of x where
this maximum is attained, and assume x* is unique and positive. Fi-
nally, let

o* = x*[F(x*)(1 — F(x*))]V2, 3)
Then for all real z
Fi(u* + n=12g%z) — &(2) (4)

as n — « where ®(z) = (2m)~Y2f2_ exp (—t2/2)dt is the standard
normal distribution function with mean zero and variance one.

Thus the bundle strength L7, is asymptotically normally distributed
with mean p* and standard deviation 6*/4/n. The asymptotic mean
w* is easily appreciated upon considering a very large bundle. If the
load in each surviving fiber is x, the fraction of surviving fibers is 1
— F(x), and thus; the applied load L is approximately x[1 — F(x)].
Maximizing x[1 — F(x)] by varying x = 0 will approximately yield the
bundle strength L}, since the standard deviation ¢*/+/7 is small for
large n. Later, we will see that the convergence implied by (4) is in-
sufficient for our purposes.

2.2 The Time to Failure of Single Bundles. The model of the
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previous section is appropriate only when fiber fatigue does not occur
to any appreciable extent. In this section, we discuss the time to failure
of single bundles where the fibers fatigue under load. To do this, some
mathematical model is needed for the probability distribution for
failure of a single fiber under an arbitrary load history i(¢), t = 0. We
concentrate on a class of models proposed by Coleman [6-9]; these
have shown remarkable agreement with the experimental behavior
of a variety of materials.

In the simplest model [7, 8], the probability that a surviving fiber
under current load ! fails in the next infinitesimal time interval of
length 8t is given by «(1)d¢ + o(5t) where the function x(x), the so-
called breakdown rule, is some positive and increasing function of x
= 0. Then, the distribution for the failure time T of a single fiber
subjected to the load history I(t), t = 0 is given by

PIT=t}=1—exp {— J;t K(l(s))ds], t=0. (5)

The simplicity of this model stems from the fact that the hazard rate
for the fiber at time ¢ is simply x(/(¢)), and does not depend on the load
history prior to time £. In fact, under the constant load { > 0, the
foregoing distribution function reduces to the exponential distribution
with constant hazard rate x(l). These facts simplify the analysis for
bundles because of this “memoryless property.”

Consider now a single bundle of n fibers subjected to the constant
load L > 0 (total load .£ = nl). At first, each fiber bears the load L,
but after j — 1 fibers have failed, the load on each survivor has in-
creased to nL/(n — j + 1) according to the equal load-sharing rule.
Thus the hazard rate for the time Y, ;, which is the time between the
(j = 1th and the jth failure, is simply the number of surviving fibers
multiplied by the hazard rate for one fiber, that is,

Anj=(n—=J+ DenL/(n —j+ 1)) (6)

Consequently, the distribution of Yy ; is given by the exponential
distribution

£z 0 (7

for 1 = j = n, and moreover, the random variables Yn1, Yn2, ..., Yon
are independent because of the memoryless feature. The time to
failure T', of the bundle is simply the sum

PlYnj =t} =1—expi-—Ant},

n
Th= 3 Yui (8)
Jj=1

The function x(x) is often taken to be the power law breakdown
rule

k(x) = (x/lo)?, (9)

where o and p are positive constants, and p = 1 is assumed. Not only
are the fatigue features realistic under this rule, but the analysis for
bundles under time-varying loads is simplified greatly, as we see
shortly.

Under this power law breakdown rule (9), we have X, j = (L/lp)’nr(n
— J+ 1)7**L Since Y, follows the exponential distribution (7), it has
mean A, and variance ;% so that the mean and variance of T}, are,
respectively,

E(T,] = 3 A3}
=1
= Lh)=*n1Y [(n - j + 1)/n]r
j=1

— (L/lg)~r j;l 2~ ldx (asn — «)

= p~l(lo/L), (10)
and
nVar{T,]=n i h
=1
= (L/l)"n=1 Y [(n — j + 1)/n]2-2 (11)
j=1
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1,
— (L/lg)~? j; x2~2dx (asn — »)

= (20— 1)1 (lo/L)>. (11)

(Cont.)
Because the bundle failure time T, is the sum of the independent

random variables Yy, 1, ..., ¥, ,, we may apply the Liapunov form
of the Central Limit theorem for sums of independent, nonidentically
distributed random variables (Chung [16, page 200]) to obtain the
asymptotic distribution of T,. The result is that (7, —
E[T,))//Var [T,] converges in distribution to a normal random
variable with mean zero and variance one. Alternatively, T, is
asymptotically normally distributed with mean p~1(lo/L)? and
standard deviation (lo/L)Pn—1/2(2p — 1)~1/2,

While (5) has permitted straightforward analysis, the implication
of exponentially distributed life for a fiber under constant load is not
realistic in most situations. To alleviate this difficulty, Coleman [9]
proposed the more general model for the time to failure of a single
fiber

PIT=t}=G (j;tx(l(s))ds), tz0. (12)
where G(y), y = 0 is an arbitrary probability distribution function
satisfying G(0) = 0. Thus, under constant load /, any distribution for
fiber life is possible; (5) is the special case G(y) = 1 — e,y = 0. The
difficulty is that under this model, the times Y, 1, . . ., Yu,» between
fiber failures in the bundle are no longer independent, and the fore-
going arguments do not hold; however, under very general assump-
tions, Phoenix [10] has recently demonstrated the asymptotic nor-
mality of T, in this case too, and has discussed extensively the com-
putation of the asymptotic mean and variance. These results also
apply to time-dependent load histories L(t), t = 0 (for instance, lin-
early increasing or cyclic loads) provided the power law breakdown
rule (9) is assumed.

We state some of these asymptotic results for bundles under the
more general form (12) for single fibers. We make some further
technical assumptions which are somewhat more restrictive than in
Phoenix [10] but which are required later:

(A1) G(x), x = 01is a continuous distribution function with G (0)
=0and f§ e?*dG(x) < = for some z > 0.

(A2) «k(x), x = 0is continuous, increasing and unbounded with
k(x) > 0 for all x > 0. Furthermore, for each fixed A > 0, the func-
tion

/k(M(1-x)), 0sx<1

13
0, x=1 (13)

Y(x;\) =
has a bounded, continuous second derivative on [0, 1].
(A3) The bundle load program L(t), t = 0is a continuously dif-
ferentiable function of ¢, and satisfies L{t) > 0 for ¢ > O and {§L(t)rdt
=+ for fixed p > 0.

For the loading of the bundle, we consider two cases:

Case 1I: Constant load program L(¢) =L > 0.

Case 2: Arbitrary load program L(t) in conjunction with the
power law breakdown rule x(x) = (x/lo)?, lo > 0 and p = 2, and with
L(t) satisfying Assumption (A3).

Next, let g(¢), 0 = t <1 be the right-continuous inverse of the dis-
tribution function G(y), y = 0, that is g(¢) = inf {y:G(y) > t}. (Es-
sentially, g(t) is the value g satisfying G(g) = t. For example, the in-
verse of G(y) =1—e™,y = 0isg(t) = log [L/(1 = t)].) For A\ > 0 de-
fine

1
== [ WO, (14)

and

1 _
s#(\) = [2J; j;ts(l—t)‘I”(s;A)\P’(t;)\)dg(s)dg(t) Y2 15)

where W' = dW¥/dt. Finally, let
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Fit)=Pr(T, =t} (16)

be the distribution function for the time to bundle failure T}, given
the load program L(t), ¢t = 0. OQur result is as follows:

Theorem 2.2 For Case 1let ¢y = u#(L) and o}, = of (L). For Case
2, define t, and g5 by f§ L(s)?ds = u#(1) and o3 = L(ts)"?c#(1), re-
spectively. Then, for all real z

F(ty + n~12g2) — $(2) aam

as n — o where ®(z) is the standard normal distribution function
with mean zero and variance one. .

Thus the bundle time to failure 7T, is asymptotically normally
distributed with mean ¢, and standard deviation ¢3/7/7, a result
which parallels Theorem 2.1 for the static case. The formulas for ¢
and o} are in a slightly different form from those in Phoenix [10}, but
are equivalent nevertheless. See Phoenix [17] for further applications
of the above asymptotic results. In particular, for linearly increasing
loads L(t) = Lgt, t = 0 where Lg > 0 is the loading rate, an asymptotic
normal distribution is again found for bundle strength L}, but the
asymptotic mean and variance now depend on the loading rate Lo.
We point out that Daniels’ static model is not a special case.

We have obtained asymptotic normality for the strength and failure
time of single bundles. The key question is “How close are the as-
ymptotic and exact distributions as n increases?” For single bundles,
such error bounds are useful. But when considering asymptotic results
for long chains of bundles, an error analysis is erucial particularly in
the lower tails of the respective asymptotic and exact distribu-
tions.

3 Proximity of Exact and Asymptotic Distributions
for Bundle Failure

We begin by considering some ramifications of the Central Limit
theorem. This theorem states that if S, = (X1 +. .. + X, )/n where
X3, X, ... are independent and identically distributed random
variables with common mean g and variance ¢2, then &, = v/n (S,
— u)/ o has an asymptotic normal distribution as n — e, with mean
zero and variance one. Symbolically, if F,,(x) = P{S, = x},x = 0 de-
notes the distribution function of S,,, then this result may be written
as :

Folp+n-12g2) > ®(2) as n— (18)

for any real number 2. (Notice the similarity with Theorems 2.1 and
2.2. The quantity S, is analogous to L;, and to 7',.)

This theorem is of great practical importance because it allows one
to obtain a quick and accurate approximation of the distribution
function F,(x), x = 0 whenever n is reasonably large. The exact
computation of Fy, (x) is typically laborious, however the Central Limit
theorem suggests the approximation

Fo(x) =« ®(+/n(x — u)/o)

which is easily used since tables for the normal function ®(x) are
widely available.

We now discuss two problems associated with the approximation
(19). The first concerns the rate of convergence in an absolute sense.
We know that the error is small when n is large, but how fast does the
error approach zero as n — «? How large must n be for the approxi-
mation to reach a desired level of accuracy? These questions are an-

~ swered by the Berry-Esseen theorem which we now state.

(19)

Berry-Esseen Theorem. Suppose, in addition to the afore-
mentioned assumptions for the Central Limit theorem, we have p =
E[|X; — ]3] < =. Then

|Fo(u + n—Y2g2) — ®(2)] < 3po—3n~1/2 (20)

for all n and real 2.

A proof is given in Feller [12, page 542].

Thus the Berry-Esseen theorem gives an explicit upper bound on
the difference between the exact distribution function and its normal
approximation uniformly in all z. It turns out that the explicit formula
(20) is not often used in practice because it tends to overestimate the
actual error considerably. But the most important feature of the result
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is that, as n — =, the error decreases to zero at the rate n~1/2, The
key question is: “Will a similar rate of decrease occur for the normal
approximations to the distribution functions for the failure of single
bundles?” In practice, the normal approximation is widely used for
n as small as 30 or 40, though of course, this depends on the use to
which the approximation is to be put as we now see.

The second kind of problem associated with the approximation (19)
is not resolved by the Berry-Esseen theorem. This problem concerns
events of very small probability. In such situations, the knowledge
that the absolute error is small may be of little use. As an example,
consider a chain consisting of k links. Let Yy, ..., Yz be the strengths
of the links, and assume these to be independent and identically
distributed random variables with common distribution function

" G(y), ¥ =z 0. The strength of the chain is M}, = min{Yy, ..., Y},and
has the distribution function
Gry)=1-[1-GW}, y=zo. (21)

Now suppose we want the median strength of the chain, that is, the
Toad m* for which G (m*) = 1/2. According to (21), this reduces to
wanting the load m* for which G(m*) = 1 — (3)V/* =~ 0.693/k when
k is large. If & = 10,000, m* must solve G(m*) = 0.0000693, the
right-hand side of which is a very small number. Now, if we only have
an approximation for G(y), say G(y), and we know |G(y) — G(»)]
< 0.001 for all , this is not useful when k = 10,000 because the relative
error in estimating G(y) is 0.001/0.0000693 = 14.4 which is very high;
we would be prone to making large errors in estimating the median
strength m* when using G(y). But for one link (k = 1) the relative
error is 0.001/(1/2) = 0.002, and an estimate of the median strength
m* of one link is likely to be quite accurate. Obviously the situation
worsens as k increases, and thus, accuracy further into the lower tail
of G(y) is required. In this example, which is at the heart of the matter
in this paper, the Berry-Esseen theorem is of no help because it only
deals with absolute error while we are really concerned with relative
€TTOr.

Cramér-Petrov Theorem. The analytical tool for studying rel-
ative error in situations where the normal distribution approximates
the true distribution, is the large deviations theory developed by
Cramér and Petrov. A convenient formulation of the problem is as
follows: Given a sequence 21, 23, ..., 2, ... of positive numbers
(which we denote by {2,,}), under what conditions is it true that

Folp — n=1262,)/®(—2,) — 1 (22)

as n — «? For {z,,} bounded there is no problem, but if z, — = (and
thus —z, — — ) then both the numerator and denominator in (22)
tend to zero.

In the case of the Central Limit theorem, the main result is as fol-
lows. Assume that Cramér’s condition holds, that is, that the moment
generating function of X, E[exp (sX;)], is finite for all s in some in-
terval (—A, A), where A > 0. (This assumption implies that all mo-
ments of X; are finite, so it is a much stronger assumption than those
made previously.) Then (22) holds if n~=1/6z,, — 0. For a proof see
Feller {12, page 548).

In terms of the approximation (19), this implies that when n is large,
the relative error in the approximation is small, provided that | (\/n(x
— u)/a)} is small compared to n'/6, It turns out that Cramér’s con-
dition is important. Although it can be relaxed in some instances, some
condition is required guaranteeing that the tails of the distribution
function F(x) for the X; decay exponentially fast. Indeed, if the tails
of F(x) decrease only polynomially fast, then the same is true of F,,(x),
and (22) will be false for any sequence z, which increases as fast as
any positive power of n. This happens, for instance, whenever X; has
only finitely many moments.

3.1 Error Bounds for the Asymptotic Distribution for Bundle
Strength. According to Theorem 2.1, we have asymptotic normality
for the strength of a single Daniels’ bundle. In light of the foregoing
discussion, it is meaningful to ask whether analogues of the Berry-
Esseen theorem and the Cramér-Petrov theorem on large deviations
hold for the strength of a single Daniels’ bundle. The answer is affir-
mative, and we now present the results.
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Let g(¢), 0 = t < 1 denote the right-continuous inverse of F(x), x
= 0, thatis, q(t) = inf {x: F(x) > t}. Let u(t) = q(t)(1 — t) and assume
u(t) attains its maximum at a unique point ¢* as ¢ is increased from
zero to one. Evidently, u(t*) = u* as defined by (2) and t* = F(x*).
We assume

(B1) q(t) is nondecreasing on [0, 1), g(0) = 0 and {§q2(¢)dt
< co,

(B2) There exist points to < t* < £1 such that u(t) is strictly in-
creasing on [to, t*], strictly decreasing on [t¥, ¢1] and its supremum
over all £ not in [t £1] is strictly less than u*.

(B3) u(t) is three times, continuously differentiable on a neigh-
borhood of t*, and p”(t*) is strictly negative.

These assumptions differ slightly from those for Theorem 2.1. If
w”(t*) = 0in (B3) but some higher derivative of u(t) is negative at ¢
= t*, the results we give later are false, but analogous results do exist.
We do not consider this case since (B3) (and the other assumptions)
are almost always satisfied in practice.

Under assumptions (B1)-(B3), we have the following results:

Theorem 3.1 There exists a constant K > 0 such that

|F5(u* + n=2g%2) — ®(2)| < Kn—1/8 (23)

where all quantities are as in Theorem 2.1.

The constant K depends on the distribution function F(x), x = 0
for fiber strength, but is independent of n and =.

Theorem 3.2 Assume {z,, n = 1} is a sequence of positive numbers
such that z, — =, and n=%6z, — 0. Then

Fr(u* = n=Y26%2,)/®(=2,) > 1 (24)

as n — = where all quantities are as in Theorem 2.1.

The proofs of these results are given in Smith [13].

Notice that Theorem 3.1 is analogous to the Berry-Esseen theorem
discussed earlier except that the rate of convergence is only n—1/6
rather than n~1/2, This happens to be the best rate possible, that is,
(23) would be false if n~1/6 were replaced by any function of n tending
to zero faster than n~1/6, This slow rate of convergence has been
confirmed by some exact calculations using a recursive formula (See
Fig. 4.1 in Harlow and Phoenix [1}), and will be seen also in an example
that we discuss later. However, the proof of Theorem 3.1 suggests an
improved approximation which leads to a considerable reduction in
error as compared with the normal approximation of Theorem 2.1.
Using this approximation, it is possible to compute F;,(x) within ac-
ceptable error bounds for n only moderately large. Further details are
given in Smith {13].

Theorem 3.2 is analogous to the Cramér-Petrov theorem discussed
earlier, though we have not needed Cramér’s condition. We mention
that analogous theorems for the upper tails of F,, (x) and F},(x) exist
where for example (1 — F;(u* + n=12¢%2,))/(1 — ®(z,)) = lasn
— o, In this case Cramer’s condition is needed.

3.2 Error Bounds for the Asymptotic Distribution for Time
to Bundle Failure. According to Theorem 2.2, we have asymptotic
normality for the time to failure of a bundle under Coleman’s as-
sumptions. We have an analog for the Cramér-Petrov theorem, this
being crucial in the chain-of-bundles setting. The theorem is as fol-
fows:

Theorem 3.3. Let {z,, n = 1} be a sequence of positive numbers
satisfying z, — o and n~1/6+¢z, — 0 for some ¢ > 0. Under the as-
sumptions of Theorem 2.2

Fi(ty — n™20p2,)/®(—2n) — 1 (25)

asn —> ®,

For a proof see Smith [14].

As for an analog to the Berry-Esseen theorem, Spencer [18] has
obtained a result, under assumptions similar to ours, which indicates
that the rate of convergence in this time-dependence case is O(n~1/2)
rather than O(n~1/6) as in Theorem 3.1 for the static case. This can
only improve the accuracy of our later results.

Having now obtained the key theorems (Theorems 3.2 and 3.3), we
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now proceed with a discussion of extreme value theory to introduce
key concepts that will be used in obtaining asymptotic results for a
long chain of bundles.

4 The Poisson Limit Law and the Main Extreme
Value Distribution

Suppose in the static case we have 800 bundles in a long chain, each
one of which has a probability p = 0.001 of failing under given load
L, independently of all the others. (In our earlier notation, F,(L) =
p = 0.001 and k = 800.) What is the probability that the chain-of-
bundles will support L, that is, that there are no bundles which fail
under load L? What is the probability that there are at most two
bundles with strength less than L?

This kind of problem is commonly handled using the Potsson Limit
theorem which, after the Central Limit theorem, is probably the
best-known limit theorem. Now the mean number of bundles that fail
under L is kp = 0.8, and the distribution of the number of such bun-
dles N is approximately the Poisson distribution

PN =j}=2 (26)

—, Jj=0,1,2,...
J!
with mean A = kp = 0.8. Hence, the answers to the previous two
questions are approximately e—%8 = 0.4493 and e~%8(1 + 0.8 +
(0.8)2/2) = 0.9526, respectively, so that rare failure for a single bundle
turns into a substantial chance of failure for the chain.

Poisson Limit Theorem. If one has k independent experiments,
each resulting in “failure” with probability p and success otherwise,
and if k — @ and p — 0 in such a way that pk — X for some fixed 0
< A < =, then the distribution of the number of failures converges to
the Poisson distribution with mean A.

In particular, the probability that there is at least one failure (which
corresponds to the failure of our chain-of-bundles) converges to 1 —
e~ X The proof of this theorem can be found in any introductory
textbook on probability.

The Poisson Limit theorem is used in studying the asymptotic
distribution of extreme values. Suppose X1, X, X3, ... are inde-
pendent and identically distributed random variables with common
distribution function F(x), and let My = min {X, ..., Xz}. (Thisis
the situation of the chain model associated with (21).) We seek the
limit distribution of M; that is, we seek constants ax > 0, by, real and
a limit distribution function H(z) such that

P{M;, = apz + by} — H(z) as @7

kh—

for each real 2.
Suppose we can find constants ag, by, and a function V(2) such
that

k— o, (28)

kF(apz + bp) — V(z) as

Now if we define “failure on the ith experiment” as the event {X; =
apz + b} for 1 =i = k, then the conditions of the Poisson Limit the-
orem hold, and the distribution of the number of “failures” converges
to the Poisson distribution with mean V(z). In particular

PiM, =arz+bpl=1—e" V), 29)

Thus, in the foregoing chain-of-bundles example, the role of A is
played by V(z) (for z fixed), and p is F'},(arz + bi) which diminishes
to satisfy pk — A\ as k — « if ar, > 0 and by, are properly selected. But
the new aspect is that the same a; > 0 and by, must work for all z.

Here are two examples with important ramifications in the strength
of materials.

1 Suppose the distribution function F(x), x = 0 satisfies F'(0) =

0 and F(x) ~ cx? as x — 0 from above, where ¢ > 0 and p > 0. T'ake

br = 0 and a, = (kc)~1/», Then, for any z > 0, we have kF(akz + bz)

— z# ag k — » while for z = 0, we automatically have F(apz + bg) =
0. Hence (28) holds with

2P, 2>0

V(z) =

30
0, z=0, @0

and (27) holds with
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1-—e% >
Hz) = e %, z>0
0, z2=0

The distribution function (31) is known as the Weibull distribution.
For example, the strength of a single fiber may be viewed as the
strength of the weakest of a large number of short segments of the
fiber. For this reason, the strength of single fibers is often successfully
modeled using a two parameter Weibull distribution.

2 Let F(x), —» <x < « be the normal distribution function ®(x),
—o < x < «, and define

(31)

ar = (2log k)~1/2 - (32)
and
Br = (log log & + log (4m))(8 log k)~1/2 — (2 log k)1/2.  (33)
Then we have the following important result.
Theorem 4.1. For each real 2,
k®(apz + Br) —e* as k— o, (34)

where a, and 3, are given by (32) and (33), respectively. Thus P{M},
= agz + Br} — H(z) where

H(z)=1—exp(~expz), —» <z< =, (35)

The proof of this theorem is given in Galambos [19, pages 65-67],
and hinges on the lower tail result

@(x) = (—+/2mx) "L exp (—x2/2)(1 + r(x))

for the normal distribution function where r(x) — 0 as x — — . This
example is very important for the later developments. Many other
aspects of extreme value theory, including Gnedenko’s character-
ization of all possible extreme value distributions, are discussed in
the recent book by Galambos [19].

5 Main Asymptotic Distributions for the
Chain-of-Bundles

On the one hand, we have asymptotic normal distributions for the
strength and failure time of large, single bundles as stated in Theo-
rems 2.1 and 2.2, respectively. On the other hand, we have the extreme
value distribution associated with the smallest of a large sample of
independent and identically distributed normal random variables,

as stated in Theorem 4.1. Since the failure of the chain-of-bundles

occurs with the failure of the weakest bundle, we would have the de-
sired asymptotic distribution in Theorem 4.1 if the true distributions
for bundle failure could be replaced by the asymptotic normal dis-
tributions, respectively. )

Intuitively, a simple replacement should work provided &, the chain
length, does not increase too quickly as a function of n, the bundle size.
But for our results to be useful in applications, we must have % in-
crease rapidly with respect to n. It turns out that the large deviations
theory associated with the Cramér-Petrov theorem of Section 3 is
crucial to the resolution of this problem.

For definiteness, fix a sequence k(1), k(2), ..., k(n), ... of positive
integers tending to infinity. We denote this sequence by {k(n)}, and
seek the limiting distribution of the strength and time to failure of
the chain of bundles as n — .

5.1 Asymptotic Results for Static Strength. Let L;,

*a«++» Ly be the strengths of k independent bundles as described
in Section 2.1. We seek the limit distribution of M}, as n —  where
M}, =min{L};, L}, ..., Lhe) Thus n and k tend to infinity simul-
taneously following the sequence {k(n)}. In the light of the discussion
of Section 4, it suffices to find constants a;, > 0, b;, real and a function
V(z) such that

k(n)Fiasz + b3) — V(z) (36)

where F}(x), x = 0is recalled to be the distribution function for the
strength of a single bundle.
Combining the approximation

Fi(x) = ®(+/nlx — p*)/o*), 20 (37
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(see (4)) with (34) suggests the following: Define a}, = ap(,yo*n—1/2
and b}, = p* + Br(yo*n~12 where ap(n) and Br(n) are as in (32) and
(33), respectively. Then we conjecture that (36) holds with V(z) = ez,
—o <z < «. Upon comparing (36) with (34), we see that the necessary
and sufficient condition for our conjecture to be verified is that as n

Fr(anz + b))/ ®(armyz + Brwmy) — 1. (38)

But (38) is just (24) of Theorem 3.2 with 2, = —(@r(n)z + Brm))-
Since z,, is the same order of magnitude as (log k(n))'/2, and The-
orem 3.2 assumed n~1/6z, — 0, it is sufficient that n =13 log k(n) —
0. Putting all the pieces together, we have the following result:
Theorem 5.1. Assume conditions (B1)-(B3) hold and that n~1/3
log k(n) —> 0asn — «. Let

a; = g*(2n log k(n))~1/2 (39)
and
by = u* + n=2¢*[(log log k(n) + log (47))(8 log k(n))~1/2
— (2log k(n))/?], (40)

where u* and ¢* are defined by (2) and (3), respectively. Then, for all
real 2z, the distribution function for the strength of the chain-of-
bundles, satisfies

PMpny = ahz + b)) — 1 — exp (—exp (2)) (41)

asn — o,

Theorem 5.1 gives the limiting distribution for the strength of our
series-parallel model of the fibrous material under a broad range of
sequences {k(n)}. In particular, k may be increased as any power of
n, and thus, will hold for long thin structures. Note that under the
assumptions of Theorem 5.1, the strength of the fibrous material
converges stochastically to the asymptotic mean strength u* of a single
bundle as bundle size n increases. (Crudely speaking, the material
strength approaches a constant as the variability in strength shrinks
to zero.) On the other hand, if k(n) — « too rapidly, we would expect
that the strength of the fibrous material would converge stochastically
to zero. This has been shown by Harlow, Smith, and Taylor [20] who
compute the limiting distributions as £ — « for n fixed. The two re-
sults together represent extreme cases.

5.2 Asymptotic Results for Time to Failure. Let Ty,
Ty, ..., Thi be the failure times of k independent bundles as de-
scribed.in Section 2.2. We seek the limit distribution of M#;,; as n
— o where M%), = min {T,1, Tho, ..., Thr). Thus n and k tend to
infinity together simultaneously following the sequence {k(n)}.

The analysis here is analogous to that in the previous section for
static failure, with F% () in place of F}(x), tp, and o} in place of u* and
o*, respectively, and Theorem 3.3 in place of Theorem 3.2. The only
difference is n =16+, — 0 for some € > 0 is assumed in Theorem 3.3
so that n~1/3+2¢]og k(n) — 0 is sufficient. We thus have the following
result: .

Theorem 5.2. Assume conditions (Al1)-(A3) hold, and that
n~U3+2]og k(n) — 0 as n — = for some € > 0. Let

ok = 04 (2n log k(n))~1/2, (42)

and

bl =ty + n=12q[(log log k(n) + log (47))(8 log k(n))~1/2

= (2log k(n)'2], (43)

where ¢, and o} are as defined in Theorem 2.2. Then for all real 2, the
distribution function for the time to failure of a chain-of-bundles
under load history L(t), t = 0 satisfies

P{MY ) = ahz + b} — 1— exp (—exp(2)), (44)

asn — ,

Theorem 5.2 gives the limiting distribution for the failure time of
the fibrous material under a variety of load histories L(t), ¢ = 0 and
a broad range of sequences {k(n)}. In particular k may be increased
as any power of n. Here, the failure time of the fibrous material con-
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verges stochastically to the asymptotic mean ¢; of a single bundle as
n — «. But if k(n) — = too rapidly, we would expect the time to
failure to converge stochastically to zero. This has been shown by
Harlow, Smith, and Taylor {20] under the simplest model of Coleman
(5). They compute limiting distributions as & — « for n fixed. Cor-
responding results under the more general model (12) are not yet
available. The two results together would represent extreme cases.

Recently, Borges [21] has studied the time to failure model in great
detail under the simpler assumptions (5) for single fibers. By making
corrections for the deviation from normality, his results extend those
given here. In particular, he assumes n=! log k{(n) so that the chain
length % is permitted to grow even faster relative to bundle size n than
in our case. Unfortunately, Borges results are quite difficult to use,
and thus, we will not present them here.

6 Comments on Applications
In the static case, the distribution function for the strength of the
fibrous material may be approximated as

PiMyy=x}+1—expl{—~exp[{x —b3)/al]l, x=0, (45)

where a}, and b}, are given by (39) and (40), respectively, and k{(n) is
just &, the number of bundles in the chain. (This amounts to a re-
statement of Theorem 5.1.)

In earlier work, Coleman [22] argued that the strength of single fi-
bers is naturally modeled by the Weibull distribution

F(x) =1—exp{-dx/xo)"}, x20 (46)

where 0 is the fiber length, and the positive constants x¢ and vy are the
scale (under 6 = 1) and shape parameters, respectively. He also ob-
tained u* and o* of Theorem 1.1, and showed how the asymptotic
mean strength u* for a single bundle diminishes as the variability in
fiber strength increases (y — 0). At the same time, u* diminishes in
proportion to §~1/7 as the fiber element length & increases. We have
shown here that for large k& and large n, the strength of the fibrous
material is approximately u*. But the question arises: “How close is
the asymptotic distribution (45) to the true distribution function for
M, the strength of the fibrous material?”

An Example. To answer the aforementioned question, we con-
sider a long fibrous cable under Coleman’s framework, and let H}, ,,(x)
be the distribution function for the cable strength. We let x5 = xg6~1/¥
so that x5 is the true scale parameter of the Weibull distribution (46)
for the fiber strength. The mean fiber strength is x;I'(1 + 1/) which
is numerically very close to x; for typical . In our example, we let the
chain length k = 10,000, take n = 10 and 50, and assume y = 10. Thus
the cable is very long and slender, and has fibers with a coefficient of
variation of strength of about 12 percent. )

Now if the number of fibers n were very large, the strength of the
cable would be p* = x5771/7 exp {—1/v} = 0.719 x;, or about 72 percent
of the strength of the fiber elements. But for these fairly small values
of n of 10 and 50, the exact cable distribution function H3 ,(x) and
its asymptotic approximation (45) appear as in Fig. 2 where the scaling
is such that (45) plots as a straight line. The graphs of the exact dis-
tribution were obtained using a recursive formula for F},(x) as origi-
nally developed by Daniels [5]. (See Harlow and Phoenix [1] for fur-
ther discussion. Numerical instabilities make it almost impossible
to obtain results for n significantly larger than 50, thus underscoring
the value of asymptotic results.) Notice that for n = 50 the true me-
dian strength of the cahle is 0.635x; which is considerably less than
u*. The asymptotic formula (45) predicts the slightly lower value 0.593
x5 Notice also the greatly reduced variability in cable strength for
larger n.

Fig: 2 indicates that n = 50 is still quite small for application of the
asymptotic distribution (45); fortunately, the predictions are con-
servative. It turns out that the rather slow rate of convergence in in-
creasing n is tied to that of (23) in Theorem 3.1 where the error decays
as n~ 178 Smith [13] has developed an improved approximation which
uses new constants b, in place of b}, These perform much better for
moderate n, though they are much more difficult to calculate.

We remark that changes in k by two orders of magnitude have little
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Fig.2 Comparison of exact and asymptotic distributions for the strength of
a long fibrous cable; a Welbull distribution is assumed for fiber strength

effect on the character of the results in Fig. 2, as our analysis would
suggest. However, decreasing v does reduce the relative accuracy
somewhat for these values of n. Giicer and Gurland [15] have graphed
various estimates of the median strength in this setting as k, n, and
v change, and we urge the reader to consult their work for further
insight in applications.

In the time-dependent case, the distribution function for the time
to failure of the fibrous material, under a given load history L(t), t =
0, may be approximated as

PiMby =t} = 1—expi—exp[(t —bR)/alll, tz0  (47)
where af, and bY are given by (42) and (43), respectively. (This
amounts to a restatement of Theorem 5.2.) We would expect (47) to
perform better in the time-dependent case than (45) did in the static
case, as revealed in Fig. 2.

For applications, we refer the reader to Phoenix [10, 17} for useful
formulas for computing ¢ and o of Theorem 2.2. Otherwise, the
general behavior is analogous to that for the static case above, and
Gicer and Gurland’s graphs [15] may be used with “time” in place
of “strength.”
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mechanics is reviewed. A method for experimental evaluation of these quantities by direct
determination of the values of their integrands at various points along a contour is pre-
sented, and contrasted with “compliance” methods which have been used to evaluate J.
This technique has been applied to three different specimen configurations, and the ex-

perimental results compare favorably with theoretical predictions.

Introduction

The usefulness of the J integral in fracture mechanics is well known.
Recently it has been pointed out by Freund [1] that another conser-
vation integral, the M integral, is also of practical importance. This
paper deals with the experimental evaluation of the JJ and M integrals
by direct measurement of the terms in their integrands.

The definition and physical significance of the J and M integrals
have been discussed elsewhere [1, 2] and will be summarized here. For
a plane problem of an elastic solid containing a crack, the J integral
is defined as

J = f (Wni — taun,ds (1

where

¢ = a contour surrounding the crack tip
W = the strain-energy density
up, = the displacement vector
ty, = the traction vector defined by the outward normal
toc
ty = Gjpn;

o is applicable to nonlinear elastic solids and to elastoplastic solids
which can be treated as nonlinear elastic (deformation theory of
plasticity) [2]. Another conservation integral, the M integral, is de-
fined as

M= f (Wain; — tattix;)ds )

where ¢ is now a closed curve.
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While it has been previously stated that M is restricted in appli-
cability to linear elastic solids [2], a more recent rederivation of M
indicates it remains valid in nonlinear solids [3]. / and M are inter-
preted physically as energy release rates: if ¢ encloses the tip of a crack
oriented along the x;-axis, then .JJ represents the energy release rate
with respect to translation of the tip of the crack in the x1-direction;
if ¢ completely encloses a crack or other flaw in a solid, then M rep-
resents the energy release rate associated with self-similar expansion
of the flaw [2].

The o integral is useful in fracture mechanics because it can be
shown to be equal to the crack extension force Gy, and hence obeys
Irwin’s relationship (stated here for plane stress and Mode I defor-
mation)

1
J=0G1= % (K+?) 3)

Even in cases of general yielding, so long as no unloading occurs,
comparison of the value of J determined in a body of a certain ma-
terial versus the critical value of J (J1.) for that material, is a useful
fracture criterion [4]. The usefulness of the M integral in crack
problems stems from the fact that M can be shown to be proportional
to J by using path-independence arguments [1]. For instance, consider
an interior crack in a body with origin of coordinates centered on the
crack (Fig. 1). Since M is path-independent, its value around any path
¢9 will be the same as that around ¢;. The straight segments of ¢4 along
the crack faces contribute nothing to M because they are radial seg-
ments (x;n; = 0) which are traction free. The remainder of ¢; is
composed of vanishingly small arcs around the tips of the crack. For
the small arc ¢, around the right tip, the contribution to M is

f (Wan, — tyup1a) ds = aJ
Cr

The arc around the left tip made the same contribution, hence the
total value of M is
M = 2aJ

Thus knowledge of M permits evaluation of J. The M integral can be
evaluated in cases where JJ is inconvenient or inapplicable (i.e., if there
is loading on the crack faces).
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Fig. 1

M integral contours for an interior crack

Techniques for Experimentally Evaluating J and M

The customary technique for measuring the J integral is the well-
known Begley and Landes compliance method which takes advantage
of the physical interpretation of J as an energy release rate [4). De-
noting the total mechanical energy of a specimen under load con-
taining a crack by E, if E is measured twice for the same load, once
for a specimen with crack length a, and again for an identical specimen
but with crack length a + Aa, then J is given by

_—AE
Aa

which can be shown to be given by the area between the load versus
displacement curves for the two crack lengths. Alternatively, if E is
measured for several different crack lengths, J is given by the negative
of the slope of a plot of E versus a. Recently it has been shown [5] that
for certain specimen configurations the J integral can be determined
from a load displacement curve for a single crack length. In contrast
with the technique described in the foregoing this method could be
called “nondestructive” because it requires only a single specimen
of fixed crack length. ’

An alternative nondestructive technique is presented here for
evaluating both the J and M integrals. The method makes direct use
of the definition of J (or M) as a contour integral and involves ex-
perimental evaluation of the integrand at various points along a
contour.and then determination of the integral by numerical inte-
gration. In general, determination of the integrand of J or M involves
knowledge of all the components in the x; — x5 plane of the stress and
rotation tensors (or, equivalently, of the displacement gradient ten-
sor). Determination of all these quantities experimentally would be
difficult. However, as will be shown below, in special cases with proper
choice of the contour ¢, the integrands of J and M simplify consid-
erably, so that they can be experimentally evaluated using strain gages
and displacement transducers. The authors have successfully applied
this technique on three specimen geometries.

While the experimental results to be discussed have been restricted
to Linear Elastic Fracture Mechanics, the method used should be
applicable for evaluating / or M in nonlinear elastic and elastoplastic
cases (subject to the restrictions on validity of / and M in such sit-
uations). If any yielding takes place along the contour ¢, the strain
gages employed must be capable of tracing the plastic deforma-
tion.

Examples

The first configuration considered was an edge-cracked panel, a
schematic of which is shown in Fig. 2. The value of the J integral for
such a specimen when subjected to remote uniaxial tension was de-
termined experimentally. The contour chosen for evaluation of the
J integral followed the vertical edges of the specimen and then pro-
ceeded horizontally adjacent to the shoulders. Because of symmetry,
the value of the o/ integral for the entire contour is equal to twice the
value of J along path ABCD. Along the traction-free vertical edges,
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Fig. 2 Schematic of edge cracked panel used for J integral experiment

the second term in the integrand vanishes and the only nonzero
component of stress is g92. Hence the strain-energy density W is given
by

W =4 Eex? (in plane stress?) (6)
and denoting by J, the contribution to J of the vertical edges,
hE oF
Jy= o 2 — €90/r1.52 X2 — j; "2‘ €92/x1amp > A%2 (7

Assuming the value of gy, along the horizontal paths is constant and
equal to the far-field stress ¢, and denoting by J, the contribution
of one of the horizontal portions of the contour, leads to

-b
Jp = — J; (o12€11 + oug) dx (8)

Assuming the shear stress near the shoulder to be sufficiently small,
such that the first term may be neglected, we can write

—b
Jnp=—0 j; ugdxy = ougl by (9

The J integral is given by J = 2(J;, + J,,).

The specimen used in this experiment was made of Aluminum
6061-T6, and the dimensions are shown in Fig. 2. Five strain gages
were placed along each of the vertical edges AB and DC, and the
displacement between points E and F and G and H was measured
using two linear variable differential transformers (LVDT’s). The
specimen was placed in a hydraulic testing machine using pin grips,
and a tensile load of 42000 N was applied. The measured value of J
was 1.54 N/mm (Jy contributed 90 percent of this). Using the
handbook value of the stress-intensity factor for this configuration
[6], and relation (3) leads to the theoretical value J = 1.49 N/mm. The
experimentally determined value of J agrees with this within 3 per-
cent.

A second experiment involved evaluation of the M integral for a
specimen containing an edge crack into which a wedge was forced. A
schematic of the specimen is shown in Fig. 3. For the case of an edge
crack in an infinite body, the M integral was evaluated for such a

1 A plane state of stress will be assumed here in evaluating the integrand of
JJ or M because thin specimens are used. It is known, of course, that, in the
immediate vicinity of the crack tip, the state of stress is triaxial and if anything
is closer to plane strain. This leads to a paradox in applying the Irwm relatlon,
which is discussed in reference [6].
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loading arrangement by Freund [1], and his reasoning is followed here.
For the entire closed contour shown in Fig. 3, the conservation law
M = 0 applies. The portions of the contour along the crack face make
no contribution to M: for small crack opening these are very nearly
radial segments, and path EF is traction-free, while on path DE the
tangential component of traction is zero and the normal component
of displacement is zero. The factor x; in the integrand makes it
nonsingular at the end of the wedge (point E), hence there is no con-
tribution from a vanishingly small arc at the origin. A small arc at F
contributes —lJ. Denoting the contribution of the portion of the edges
of the specimen by My, applying the conservation law M = 0 gives

My—1J=0 (10)

Experimental determination of M will thus permit evaluation of the
o integral. Since the edges are traction-free My is given by

~atl |

hrE
M() = j; 56222 (b -a+ l) dx2 + 5 6112 hdx1

l—a

WE
+J; Sentla=Ddr (1)

For the case of an infinite body containing a semi-infinite crack
which is forced open a distance B, Freund has determined the theo-
retical value of My to be (in plane stress) [1]

2
o < EB?
8
M, for a finite body is approximated by adding a correction which is
derived in Appendix 1.

For the actual experiment a specimen of Aluminum 6061-T6 was
used, Fig. 3. The specimen differed from the theoretical model used
in that the crack was machined so that it was initially slightly open
(to permit installation of the wedge) and was forced open further by
the wedge. A steel wedge was used which was rammed in place using
a hydraulic hand press. The difference, B, between the crack opening
distances before and after insertion of the wedge was measured using
a traveling microscope. A total of 10 strain gages were mounted along
the edges ABCD.

The value of M determined from the strain gage readings was 195.8
Newtons. Applying the measured value of B(B = 0.00535 in.) to the
theoretical solution for the infinite case and the finiteness correction,
led to a theoretical value for M of 223.6 N, with which the experi-
mental value is in agreement within approximately 12 percent. The
discrepancy is probably due to deviation of the specimen geometry
from the theoretical model used, and the approximate nature of the
finiteness correction.

In the third specimen configuration considered, the M integral was
evaluated for a center-cracked panel under uniaxial tension, a diagram
of which is shown in Fig. 4. The contour chosen follows vertically along
the edges of the specimen and horizontally a slight distance away from

(12)
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Fig. 4 Schematic of center cracked panel used for M integral experiment

the shoulders. By symmetry it is only necessary to evaluate one
quadrant. Thus

M = 4(My5 + Mgc) (13)

where Mg and Mpc are the contributions to M of paths AB and BC,
respectively. On the traction-free vertical edge BC, W = (E/2)eg22 and
xn; = b, s0

bE ph
Mpc = > f €902 dxg (14)
0

The contribution to M along the horizontal path AB is given by

51
Map = f {'2‘ (o112 — 022 +2(L + ) 6P h
0
%
+ El (012011 — vo12092) — o12u12h + x1022u1,2} dx; (15)

Since path AB is near the shoulder, o, may be assumed constant, but
it is not obvious whether any further simplifying assumptions are
justified. Consequently the importance of the various terms in Map
was investigated by making use of the solution for an infinite cracked
panel under remote uniaxial tension. The M integral was evaluated
for a large rectangular path in the infinite plate, chosen to simulate
the contour used in our finite specimen. This investigation is pre-
sented in Appendix 2, where it is shown that the contributions of
terms containing ¢11 and &5 are negligible, and if a quadratic variation
with x is assumed for usg, the result for M4p is

_ 2
*Zf i i‘g—b [usb, B) — uz(0, h)]

A specimen of Aluminum 6061-T6, the dimensions of which are
shown in Fig. 4, was used for the experiment. Ten strain gages were
mounted on the vertical edge BC and displacement transducers
(LVDT"’s) were placed between points B, D and 4, E as shown in Fig.
4. The specimen was placed in a hydraulic testing machine and loaded
in tension to 30000 N. The experimental value of the M integral was
found to be 11.52 N. The theoretical value for M was found, using

MAB = (16)

M= 207 = 20 5L
= 20J = 24 =X,
K
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Fig.5 Theoretical correction for finiteness of specimen with wedged open
crack

to be 11.23 N. The measured value agrees with the theoretical value
within 3 percent.

Conclusions

It has been shown that for certain special specimen geometries, hy
convenient choice of contours, the J and M integrals simplify suffi-
ciently to permit experimental evaluation of the terms in their inte-
grands, although it has been seen that care must be exercised in
making simplifying assumptions regarding the terms in the integrand
(as was especially true for the center-cracked panel). Experimental
values of J and M thus determined agree well with corresponding
theoretical values, so this appears to be a viable technique for non-
destructive experimental evaluation of the J and M integrals.

Acknowledgment

This research was supported in part by AFOSR F49620-79-C-0217
and Electric Power Research Grant RP-609-1 to Stanford University.
The authors are most grateful to Professors D. M. Barnett of Stanford
University an-i Stephen Burns of the University of Rochester, N.Y.,
for many valuable discussions with regard to the contents of this

paper.

References

1 Freund, L. B., “Stress-Intensity Factor Calculations Based on a Con-
servational Integral,” International Journal of Solids and Structures, Vol. 14,
1978, pp. 241-250,

2 Budiansky, B., and Rice, J. R., “Conservation Laws and Energy Release
Rates,” ASME JOURNAL OF APPLIED MECHANICS, Vol. 40, 1973, pp. 201--
203.

3 Herrmann, A. G., “Material Momentum Tensor and Path-Independent.
Integrals of Fracture Mechanics,” to be published.

4 Begley,J. A., and Landes, J. D., “The o/ Integral as a Fracture Criterion,”
Fracture Toughness, Proceedings of the 1971 National Symposium on Fracture
Mechanics, Part 11, ASTM STP-514, 1972, pp. 1-20.

5 Rice, d. R., Paris, P. C., and Merkle, J. G., “Some Further Results of J-
Integral Analysis and Estimates,” Progress in Flaw Growth and Fracture
Toughness Testing, Proceedings of the 1972 National Symposium on Fracture
Mechanics, ASTM STP-536, 1973, pp. 231245,

6 Tada, H., The Stress Analysis of Cracks Handbook, Del Research Corp.,
1973. :

7 Cottrell, A. H., Dislocations and Plastic Flow in Crystals, Oxford, Clar-
ondon Press, 1953,

8 Eftis, J., Subramonian, N., and Liebowitz, H., “Crack Border Stress and
Displacement Equations Revisited,” Engineering Fracture Mechanics, Vol.
9,1977, pp. 189-210.

APPENDIX 1

Approximation for the M Integral for a Panel
Containing an Edge Crack Into Which a Wedge Is
Forced :

The state of stress in a finite body containing an edge crack may
be obtained by adding to the stresses in the infinite body those due
to a solution which removes the tractions along the rectangular con-
tour ¢ (Fig. 5). If the distance ! is sufficiently small, these tractions
should be approximately the same as those caused in the infinite body
by an edge dislocation of Burger’s vector Bes where es is a unit vector
parallel to the x4 coordinate axis. The elasticity solution for such an
edge dislocation is given in terms of the Airy’s stress function ¢ as

B .
x1Inr [7] amn

¢ =
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where r is the radius measured from the end of the dislocation. It is
desired to determine the effect of the tractions on ¢ corresponding
to ¢ on k1 and kn1. The normal component of traction can be expressed
as the superposition of a symmetric part (tensile load), an antisym-
metric part (bending), and a self-equilibrating part. The effect of the
latter will decay with distance from the edge according to Saint-
Venant’s principle and hence should have little effect on k1. The
former two are found by determining the force and moment to which
the tractions are statically equivalent. The effect of the shear com-
ponent of traction on ky is estimated by determining a statically
equivalent constant shear loading. Only the horizontal edges need be
considered: the normal component of traction on the vertical edges
is by symmetry statically equivalent to pure tensile loading, which
does not contribute to k1 because it is parallel to the crack. For any
two-dimensional curve c, statically equivalent forces and moments
can be expressed as follows:

Y
F1 = f Tlds =—¢ (18)
¢ Oxs IS
d F
F2= fT2d3=—_¢ (19)
c bxl S
s} ¢]}F
M3=erTds=[¢—x1—?-—x2—£ (20)
¢ Oxp Oxolls

where S and F denote the initial and terminal points of the curve c.

Making use of (17)—(20), the result for the case at hand is

EB
Tensile load = Fg = — iIn (

4 (b - 11)2 + h2
a? (b—a) ]
— 21
tarm G-areny] OV
—-EB[ ah (b—a)h
- P o= 22
Shear load = Fy 4 WaZTRE VB —a)l +he (22)

ER
Moment = M3 = Z—— (c +d) 23)
7

Knowing these, k1 and kyj can be determined from a handbook [6],
and the correction to My is given by

AMo=1J =1 (—1}5) (ki + k) (24)

APPENDIX 2

Evaluation of the M Integral for a Large Rectangular
Path in an Infinite Body Containing a Crack

The solution for an infinite plate containing a crack under remote
uniaxial tension will be employed in the form presented by Eftis, et
al. [8]. For symmetric loadings the stresses and displacements are
given by

g = 2 Re ¢'(2) — 2y Im ¢”(2) + B
oyy = 2 Re ¢/(2) + 2y Im ¢”(2) —B
oxy = —2Re ¢"(2)

Uy = 51‘ {(k — 1) Re ¢(2) — sy Im ¢/(2) + Bz}
1}

1
uy = o {(k + 1) Im ¢(2) — zy Re ¢'(z) — By}

where ¢(2) is a standard Kolosoff-Mushkelishvili potential function,
B is areal constant, and & = (3 — »)/(1 — v) in plane stress and 3 — 4»
in plane strain. The solution to uniaxial tension of an infinite cracked
panel is given by

o —
$(2) =5\/z2—a2—;—rz, B="2

z

In order to apply this solution to determine M for a large rectangular
contour, the solution is expanded for large values of r/a. Terms of
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order a2/r2 must be kept or all information about the crack would be
lost. The result for stresses, displacements, and displacement gradi-

ents is
oa? x4 y4
=22 |2 Y 9,22
Oxx 6 (2 9 3x4y
oa?(xt 3yt )
Oyy = 0+ ——|— ———+ 3x2y?
vy 6 (2 9 Y

2
oa
Oxy = 75‘ (x3y - 3xy3)

1 I oa?
x=—1k =3)—x +—[(~k + 1) x3+ (& + b) xy?
u 2”{( )4x 4,,4[( ) 2+ ( )xy]}
u =i[(k—1)5 +‘L’2[(k—1)x2 +(k+3) 3]]
Y o 4y 4rt Y Y

1 oa?
ux,y='—_[(k+3)x3y+(k_5)xy3]

2u r8

1 ca?
Uy = — = =k + D3y + (—k + Txy3]

4u r

The M integral is given by .
M = 2(Msp + Mpc)

where paths AB and BC are shown in Fig. 6. Expanding the general
experession for M, in plane stress

b1 2 2
Map=2 j; 57 s = 03 + 2(HY) 0
» X
+ E (62yOuz — VO4yOyy) — Oxylixyh + x0yyly ( 1dx

h(1 Y
Mpe =2 ﬂ [EE (‘7;)/.)/2 — o2+ 2(1 - p) ‘Txyz) b - E OxyTyy

yv
+ E OxyOxx — Y Oxxley — b‘Txyux,yldy
The following terms are of order higher than a?/r? and may be ne-

glected:

Oxx 2; Oxy 2; OxyOxx, Oxylry, Oxyllyx and Oy Uy,y

Substituting the expanded expressions for stresses and displacements,
and integrating to determine Mp + Mpc, the only contribution to
the final result is from

h—yo.y0yy 2q%a? h b3+ 2bh3]
2 f dy = tan—12 — LT 200
o B PTTE " b erenre

and

h 202%a?2 b
2 f XOoyylydx = tan~1-—
o XOwly E

It turns out that the term
. —202a2(b3h + 2bh3)

E (b2 + h?2)2
is cancelled by other terms. Thus
4g%a? h b} 2wo%?
M = 2(Map+ Mpc) = o (tan™! b + tan™1! ;) = W; e

which is equal to the correct value for M in plane stress,

2 2 2,2
M=2aJ=2ak—I=2a(m/7ra) =27rcra
E E E
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Fig. 6 Contour for theoretical evaluation of the M integral in infinite cracked
panel

If all terms which are negligible for large values of r/a are omitted,
M sB becomes ’

hba? b vx
Map = % + 20 j; (xuy,x _E ny) dx

Now

b b
= b
J; Xlhy,x dX= XUy | § j; Uydx

b
= buuy (bh) — f uydx
0
If it is assumed that u, and oy, vary quadratically with x, then
b b
j; uyds = (y (b, ) + 200, h)
and
b b2
j; 205y == (03 (b, ) + 02, 0, )

After substituting numerical values; the M integral was determined
for the large rectangular path in an infinite plate using these ap-
proximations, and was found to agree within 1 percent of the exact
value, so these appear to be good approximations. In addition it was
found that the contribution of the o, term was hegligible, and the
result for M4p is

40b

~hbg?
E" + =y (6, h) = uy (0, )]

Map =

MARCH 1981, VOL. 48 / 87



K. Vijayakumar?

Research Sclentist.

An Embedded Elliptical Crack, in an
Infinite Solid, Subject to Arbitrary
Crack-Face Tractions

S. N. Atluri
a ts’ Prof olM hanl
Mem. ASME

Center for the Advancement

of Computatlonal Mechani
School of Civil Engineering,
Georgia Institute of Technology,
Allanta, Ga. 30332

In this paper, following a critical assessment of earlier work of Green and Sneddon, Seg-
edin, Kassir, and Sih (who obtained solutions for specific cases of normal loading on the
crack face and the cases of constant and linear shear distribution on the crack face), Shah
and Kobayashi (whose work is limited to the case of third-order polynomial distribution
of normal loading on the crack face), and Smith and Sorensen (whose work is limited to
the case of a third-order polynomial variation of shear loading on the crack face), a gener-
al solution is presented for the case of arbitrary normal as well as shear loading on the
faces of an embedded elliptical crack in an infinite solid. The present solution is based
on a generalization of the potential function representation used by Shah and Kobayashi.
Expressions for stress-intensity factors near the flaw border, as well as for stresses in the

far-field, for the foregoing general loadings, are given.

1 Introduction o
The problem of a flat elliptical crack embedded in an infinite solid,

of linear elastic material, has attracted much attention in the litera- .

ture due to its fundamental role in the studies of fracture suscepti-
bility of (embedded or surface) flawed, three-dimensional, engineering
structures, When the solid is subjected to uniform tension at infinity,
perpendicular to the plane of the crack (or, equivalently, when the
crack face is subjected to uniform pressure, in the complementary
problem), Green and Sneddon [1] have solved the problem using the
known gravitational potential for a uniform elliptical disk. The case
of uniform shear loading along the crack face was treated by Kassir
and Sih [2], who obtained an exact solution in terms of two harmonic
functions which, as iri the tension problem [1], are constant multiples
of the aforementioned gravitational potential. Kassir and Sih [2] have
also derived expressions for the stress field near the crack border as
well as for the stress-intensity factors.

Several investigations reported later were primarily concerned with
the generalization of the work in [1] for the cases of the crack surface

subjected to various degrees of polynomial pressure distribution '

normal to the crack surface. The first such generalization was con-
tained in a procedure suggested by Segedin [3] who proposed the use
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of certain type of ellipsoidal harmonics, and their partial derivatives,
which satisfy the Laplace equation. These potential functions were
later used by Kassir and Sih [4] in expressing solutions for both the
problems of the crack surface () under normal load [4, equation 3.24,
p. 80] and (iZ) under shear loads [4, equation 3.50, p. 86]. However, the
contributions of these potentials employed in [4] to each stress com-
ponent at the crack surface are not linearly independent polynomial
functions and hence, one has to make a judicious choice of the po-
tential functions for each degree of polynomial loading individually.
By making such judicious choices, without, however, indicating a
general procedure for such choices, Kassir and Sih [4] have presented
exact solutions for some higher-order homogeneous polynomial
loadings normal to the crack face, but limited their analysis to a tor-
sional load in the case of shear loading on the crack face.

Prior to the work of [4] (what appears to us) a more logical choice
of the potentials as given in [3] was made by Shah and Kobayashi [5]
in representing the solution for the problem of the crack surface under
arbitrary normal load. Though not explicitly stated in [5], the choice
in [5] can be seen to be such that the individual contributions of the
potential functions to the normal stress component on the crack
surface are linearly independent, and moreover, form a complete set
of polynomials. Shah and Kobayashi [5] have limited their analysis
to a third-degree polynomial pressure distribution normal to the crack
face, stating that the work involved in deriving the appropriate ex-
pressions for the chosen potentials was exhorbitant.

In the present paper, because of the previously stated linear inde-
pendency and completeness of the contributions to stress components,
at the crack surface, of the potentials, and due to the analytical con-
venience they afford, the potentials chosen by Shah and Kobayashi
[5] are used to represent solutions for both the problems of crack
surface under arbitrary (i) normal and (ii) shear loading. It is
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demonstrated to be possible to derive general solutions for arbitrary
(normal as well as tangential) crack face tractions. Such general so-
lutions are obtained for stress-intensity factors along the crack pe-
riphery for both the cases of (i) arbitrary applied normal stress dis-
tribution; and (ii) arbitrary applied shear stress distribution, on the
crack face.

For the sake of completeness, the Trefftz’s formulation [6] for a
plane surface of discontinuity is first briefly sketched. This is followed
by the treatment of the foregoing problem of an embedded elliptical
crack in an infinite solid. The presentation of the algebraic details of
the analysis is kept to a minimum in the interest of clarity as well as
reasons of space.

2 Trefftz’s Formulation for a Plane Surface of
Discontinuity

Let u, (o =1, 2,8) and oqp(e,8 = 1, 2, 8) denote displacements and
stresses, respectively, in a homogeneous, isotropic linear elastic solid.
The stress-displacement relations are, by Hooke’s law,

2v
Oap = G(Uog+ Uag + Bapliv,y) 1)
1-2v

where G and v are the shear modulus and Poisson’s ratio to the ma-
terial, respectively. The Navier displacement equations of equilib-
rium in the absence of body forces are

ugge + a- 2V)ua,ﬁ,3 =0 2)

in rectangular Cartesian coordinates x (& = 1, 2, 3). In the foregoing
the notations, ( ), = 3( }/0x,; and ( ),qs = 9%( )/dx,0x 5 have been
employed.

Let R be a region of discontinuity in the plane x3 = 0 such that, after
deformation, the material inside R breaks up with free upper and
lower surfaces, and remains continuous outside R. To deal with such
a problem it is convenient to consider its complementary problem in
which the surface of region of discontinuity is subjected to arbitrary
transactions ¢a. '

It is well known [7] that the solution for the aforementioned
problem can be expressed in terms of four harmonic functions y and
¢l =1,2,8) in the form

Ug = o+ xB\[/va (3)
so that the equations (2) are satisfied if
d’u,a + (3 - 4”)‘#,3 =0 (4)

The stress components in terms of ¢, and  are

Taf = G bap + dpat 60:3\"#‘3 + 5;93\[’:«

2
+ 2x3\l/yaﬂ + 601]3 1_—1/21; (¢’y,’y + ‘//yB) (5)

The boundary conditions along the surface of the region of disconti-
nuity are given by

o = 2G

1—2»
oD = Glpas + (pa+ ), a=1.2

[#(d1,1 + ¢d2,2) + (1~ v) (3 + ¥),3] (6a)

(6b)

inside the region R in the plane x3 = 0, wherein, the notation af,fB is
used for a prescribed quantity.

The problem is further simplified by expressing ¥ and ¢, in the
form

¥=V.f=foa (M
¢1=010—-2)(fra+fs1) — (B~ )f13 (8a)
d2 = (1 — 20){fa3 + fa2) — (8 — 4vifas (8b)

and
¢3=—(1—20)(fr1 + fo,2) — 2(1 — »)fs3 (8¢c)

Journal of Applied Mechanics

Then, the governing equations, namely,
Vax =0, ¢aps=0,doa+ (B~ 4)3=0

for Y and ¢, are satisfied in the three functions f.(a = 1, 2, 3) are
harmonic. The stress components g,g in terms of f(a = 1, 2, 3) are
given by

a1 = 2G[fa1 + 2vf322 — 2191 — 2232 + x3(V.H)  (9a)
022 = 2G[faze + 20f311 — 232 — Wfis + x3(V.F)e]  (9B)
o12 = 2G[(1 — 20)f3.12 — (1 — ¥){(f1,32 + fo13) + 23(V.P,0] (9¢)

o33 = 2G[—f3,33 + x3(V.f),38 (9d)
o31 = 2G[—(1 — »)fes + v(fiur + foo1) + 23V sl (9e)
o32 = 2G[~(1 = v)fass + p(friz + fao0) + x3(V.Paal (9

The boundary conditions (6) to be satisfied inside the region R in the
plane x3 = 0 take the much simpler forms

(10a)
(10b)

of) = —2Gfs33
off) = —=2G[(1 = V)fass ~ V(fria + fo2ad)l, @=1,2

in which the boundary condition for f3 is uncoupled from f; and fo.

Tt is to be noted that only the symmetric components of f, with
respect to the plane x3 = 0 need to be considered for satisfying the
boundary conditions (10). If the solid is of infinite extent in all di-
rections and the stress components decay to zero as one moves toward
infinity, then the solutions f,(a = 1, 2, 3) are harmonic functions
symmetric in x3. In such a case, the problem governing f3 is inde-
pendent of the problem governing f; and fs. Kassir and Sih [4] have
denoted the former as a symmetric problem and the later one as a
skew-symmetric problem.

3 Embedded Elliptical Crack in an Infinite Solid
Let the region of discontinuity be bounded by an ellipse
2 .2

%7 x

—+==1, af>a} (1)

ay aj
in the plane x3 = 0. The foregoing geometry of the crack surface is
more conveniently described in an ellipsoidal coordinate system. The
necessary ellipsoidal coordinates £.(a = 1, 2, 3) are the roots of the
cubic equation

w =0 (12)
where
PR SN S
w@=1 af+t ad+¢ & )

They are connected to the Cartesian coordinates x , by the relations

8]

af(ai — adxf = (af + £1)(al + E2)(af + &) (14a)
ad(af ~ ad)xf = (af + £1)(af + £2)(ad + &) (14b)
afadx} = £1faks (14c)
where
-0}t S —ajSsE<0<§< (14d)

The expression for w(£) in equation {(13) may be written in the alter-
nate form

w(§) = P(£)/Q(£) (15)

where
PE=(E-EE-8B)(E-t) (16a)
Q) =&+ ad(E+ad (160)
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The partial derivatives of £, with respect of x g required later are given?
by

g — 2x ﬂQ (go()
%t = Ty £P(E)

in which, for 8 = 3, as is zero. In the foregoing, the following notation
is used: 9f indicates the nth partial derivative w.r.t. xg and P’ indicates
the derivative of P w.r.t. £,

The elliptic boundary (11) in the plane x3 = 0 corresponds to the
curve 23 = 0, £5 = 0. The crack surface itself namely, the region inside
ellipse (11) in the plane x3 = 0 is given in a simple manner by the
surface £3 = 0.

The boundary conditions (10) may also be expressed in ellipsoidal
coordinates. From practical considerations, however, it is useful to
describe the distribution of the applied loads ¢ in Cartesian coor-
dinates. Moreover, the potentials are required to be symmetric with
respect to the plane x3 = 0. It is obviously difficult to meet this re-
quirement in ellipsoidal coordinate system.

From previous considerations, it is convenient to carry out the
analysis by a judicious use of both Cartesian and ellipsoidal coordinate
systems.

Basic Potentials V, (n= 1, 2,...). Basic potentials useful for
the analysis were suggested by Segedin [3]. They are of the form

[ ds
Vn=j;3 o) o

(In fact, the function V,, is known to be harmonic for all real values
of n = 0 [9]. It is symmetric in each x, since w(s) and £; are symmetric
in x,.).

To examine the suitability of the functions in equation (18) for the
analysis of crack surface under arbitrary loading, we first consider the
contribution of V,, to the stress components along the crack sur-
face.

By direct differentiation of the expression for V, with respect to
X o, We have

(17)

n=12... (18)

e} = ds
oV, =— n
I AV T
L ds w™(s)
= A" - at
S, % NGO VD)
L ds w™(s)
= n~1 — | 1
=n J;a Do o Va0 Vaw =t OLfs  (nosum on a)
(19)
in which
pa=—2/(al+s), a=1,2
=-2/s, a=3 (20)

The second term on the right-hand side of equation (19) is zero since
w(£&3) = 0. Hence

oV, =n fm PoX a1 ds s
“ £ V@)
Differentiating again with respect to xs we get from equation (21),
ds

n=1,2,...(nosumon )

2LV, =n j;: pal(n — Vpgraxs + Bagw]w"‘zm, nz?2
21)
PaXa 1 e pads _
= - e} e ——— =1 22
\/Q<s')L=Ea fo+ s vam® " @)

Along the crack surface &3 = 0, i.e., the region inside the ellipse (11)

2 Note that

(b _ =205  [ow(®)] 0k, _ o
dus @it b, | OF Jimton, o o4 PE2=0

90./ VOL. 48, MARCH 1981

in the plane x3 = 0, one obtains from equations (22), for , 8 = 1, 2,
in view of equation (17), that

L d
[a}ISaLVn]Ea=0 = n(n - 1) ‘I:) papﬁxaxﬁ[wn_21x3=0 ﬁ
+ ndag j;m pa[w"“l]m:o\/%, n=12...(aq,8=1,2)

(23)
In the case of the derivative d%V,, the expressions (22) contain sin-
gular terms. In the limit £5 — 0, however, it can be shown that

lim [03V,] = =[(0% + 98 Valea=o (24)

£3—0
as it should be since V), satisfies the Laplace equation.
It can be seen that the expressions in equations (23) and (24) are
polynomials in x1 and xs. However, since the functions

n=1,23...% (25)

[w"]x3=0;

are polynomials in %% and x}, the aforementioned polynomials in’
equations (23) and (24) do not form a complete set to represent an

arbitrary function of the varibles x; and x». Hence, if the functions

f«in the problem are represented as linear combinations of V, (n =

1,2,... =), one cannot obtain arbitrary distributions of o3, (o = 1,

2, 3) along the crack surface. That is, the functions V,(n =1, 2,...

=) do not form a complete set to represent solutions f, for an arbitrary
loading along the crack surface.

Complete Set of Potentials Fi; (k1= 0, 1, 2,...). Let each
component of the applied load ¢f2 be a polynomial of degree M in x;
and x2. Then the number of linearly independent terms in each
component is 3 (M + 1) (M + 2). Hence, to represent the solution for
each fq, one has to find the same number of linearly independent
harmonic functions of the type V,, such that a linear combination of
their polynomial contributions to the tractions along the crack surface

~ match with the given polynomial distributions of applied loads ex-

actly. For this purpose, we consider the functions of the type
kaVn

oxtoxk

first suggested by Segedin [3] and later used by Shah and Kobayashi
[5] and Kassir and Sih [4], and Smith and Sorensen [6]. It can be easily
shown [3] that the aforementioned partial derivatives of V,, are har-
monic for k + [ < n with polynomial contributions of degree 2n — k&
— | — 2 to the tractions along the crack surface. These functions would
be suitable for the analysis if the integers, &, [, n are restricted by the
relations

ofaLV, = (26)

2k +l+)ys2n=M+k+1+2 27

However, the number of functions corresponding to the integers k&,
I, n satisfying the relations (27) are more than § (M + 1) (M + 2) for
M = 2. As such, the aforegoing polynomial contributions of these
functions are not linearly independent for M = 2.

In the symmetric problem, wherein only f3 is nonzero, Shah and
Kobayashi [5] have chosen the required set of functions for repre-
senting f3 by takingn =k + [+ 1 (<M + 1) and varying k + | from
0 to M. They have, however, limited their work to M = 3 from prac-
tical considerations such as exhorbitant work involved in obtaining
and using partial derivatives (26) in the analysis.? Kassir and Sih [4]
have considered some specific (incomplete) homogeneous polynomial
loadings up to the degree M = 6; thus the results in [4] are inadequate
for the solution of a problem of crack face pressure of an arbitrary
polynomial variation even of degree 6. In retrospect it appears that
for each loading Kassir and Sih [4] have chosen a suitable combination

3 One of the reviewers has brought to our attention the efforts of Broekhoven
in extending the results of [5] in the case of M = 4 in the symmetric problem.
Upon further literature search the authors found reference [18], wherein
Broekhoven mentions such effort, but no detailed results are given.
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ofk, l,n satisfying conditions (27) but no general procedure for the
choice was indicated in [4].

In the case of shear loading, Kassir and Sih [2] have considered the
problem of crack surface under constant shear for which the solutions
for f1 and fz, which only are nonzero, are constant multiples of V5.
Later [4], they have also obtained solutions for the problem of crack
gurface under torsional load.

Smith and Sorensen [6] have considered a complete cubic-poly-
nomial load tangentical to the crack face leading to a (20 X 20) matrix
equation. They have not, however, presented in [6] the expressions
for the matrix elements. The problem of torsional load, as a special
case of their analysis [6], was treated in detail and variation of the
stress-intensity factors along the crack border were presented in
graphical form in [6]. From the previous observations, it can be seen
that, for high-order polynomial shear loadings, no solutions were re-
ported until now in the literature, even though the solutions for f, and
f2 can be obtained in terms of a suitable set of functions (26).

In the present paper, Shah and Kobayashi’s representation [5] for
the solution is extended to the general case of arbitrary loading by
expressing the solutions f, (@ = 1, 2, 3) in the form

fa= {: ; Coo,tFri (28)

where, by definition,

Fri = 2% Vipit (29)

and Cqp, are unknown constants to be determined from the anal-
ysis.

Partial Derivatives of Fy
By successive differentiation, it can be shown that, since w(£3)
= 0’

® ds
Fu= j; . dkdhwhtirl 730 (30)
and '
OfFp = f " alakalgktitl ds , a=1,23 (31)
&3 \/Q-(s_)

Differentiating both sides of equation (31) with respect to x5, we
obtain the second-order partial derivatives of Fj; required for the
evaluation of stress components along the crack face in the form

OpOiFu = Fliga + Fhiga (0, 8=1,2,3) (32)
in which
Fipe = —[0L050L0wk 41 /3 /Q(s) 5=t 0BE3
kol
B xhxbr g vl
=(k+i+ D) ————[phpbpapsvQ()]s=t; (33)
(fa— )G —t0) 07 #

and

ds

VQ(s)

In the foregoing ( )! denotes the factorial of the respective quantity.

Fhiaw = " opolotol okttt (34)
3

The derivation of expression (33) is given in Appendix of the pre--

sented paper.
Expressions for Boundary Errors. To satisfy boundary con-
ditions (10), it is necessary to evaluate only the derivatives

0L kB =1,2; and 0303Fu

along the crack surface £3 = 0. The former three derivatives along the
crack surface are given by

[0208Fki]es=0 = [Fhiagles=o @, 8=1,2 (35)
since
[F?zlaﬁ]Ea=0 = 0’ o, ﬁ = 11 2

In the evaluation of the derivative d}03F, along the crack surface £;

(36)

Journal of Applied Mechanics

= (), however, both F0 and F! terms are singular at £3 = 0 but it can
be shown that their sum remains finite, as stated by Shah and Ko-
bayashi [5] and tends to the regular (finite) component of Fjq5 as £3
tends to zero, i.e., :

[0304F kil ¢5=0 = finite component of lim [F};a5] 37
£3—0
Alternatively, we have
0303Fy; = —[dlaf + 0J0}Fu
so that
[0305F ki) gg=0 = ~[Fhin1 + Fhizales=0 (38)

which is finite for each k and [. The foregoing expression (38) was used
earlier by Kassir and Sih [4].

Substituting the series (28) in equations (10) and using equations
(85) and (37) or (38), one obtains

o} +2G 2 % Cont[0803Fulgsmo0 = 0 (3%)

and
oD +2G ¥ ¥ [(1+ »)0JdsFRiCop,l
E 1
= v(CrpiFhina + ContFhna)lig=0, a=12 (390)

The left-hand side expressions of the foregoing equations may be
considered as expressions for boundary errors. Applying any known
principle of nullification of errors such as least squares, collocation,
power series expansion, Fourier series expansion, it is in principle
possible to obtain a sufficient number of linear algebraic equations
for the determination of the parameters Cq 1.

Polynomial Load Distributions. If the distribution of applied
loads o (a = 1, 2, 3) along the crack surface are finite-order poly-
nomials in x1 and x, it is possible to obtain exact solutions by using
power series expansion of the boundary errors and equating the
coefficient of each power term of the series of zero. For this purpose,
one needs the polynomial series expansion of the derivatives Fj; in
equations (89). Such expansions are available, until now, for the first
few values of & + [ only [3-6] as discussed earlier. Here, the necessary
expansions for a general value of k + [ are derived and they are given
in the following (however, for the sake of clarity and conciseness, the
tedious algebraic details are omitted):

(@) e f=1,2 4
(+1+1)! (2p — 20)! (2g)!
R+1I+1-p) (p—qg) ¢!

' Tkt
[0k} Frilggmo = X £ (-ne
D=po g=dg

w2k 3V @ ds
" (op - 20— K (29 — 1) jt; (af +)P=9(a} + 5)9v/Q(s) “0)
in which
B =K+ 810+ 015 I/=1+ 820+ 0g
po = integer value of (k' + I’ + 1)/2
and

go = integer value of (I’ + 1)/2

The integral in equation (40) can be evaluated in terms of complete
elliptic integrals of the first and second kinds.

@) a=f=3

The expression for [230} Fri]¢,=0 may be obtained from equations
(38) and (40). If equation (37) is used, it takes the following form:

[230} Frilz5=0 = finite component of lim F}33

£—~0
kt+i+1 p—1 R+I1+1) (2p—2—2¢)!(2g)
SRS e ( N @p q')(q’) )
P=po 94=qo k+i+1-p)l (p—1-g) 4!
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2q—1

SO . (41)
@2p—2-29—k)!(2q~1)! (Cont.)
in which
po = 1 + integer value of (k +1 + 1)/2
qo = integer value of (I + 1)/2
and
J = finite part of lim { 2ds (42)

& s(a}+s)P~179(a3 + 5)9/Q(s)

Crack Surface Under Normal Load. Let the normal load ¢
along the crack surface in the symmetric problem be expressed in the
form

&3>0

A&'m —n me 2n+1x%n+j (43)
so that the values of i, j specify the symmetries of the load with respect
to the axes of the ellipse.

The solution for the function f3 in terms of the potentials Fp,, is
assumed in the form

fa= (44)

n [\1.-.

C§ - LiF ok —21+i,21+

N [\/}a-

1 M
S5 &S

In the foregoing, for purposes of clarity, a potential such as F,, is
represented as Fop—gi4i,214j, thus it is to be understood that m and
n take the values (2k — 21 + i) and (2! + j), respectively.

'The aforementioned expressions for ¢§) and f; are substituted in
the boundary condition (10a). The polynomial expansion of the sec-
ond-order derivative of each of the potentials F’s is obtained from
equation (41). The coefficients of like power terms on both sides of
equation (10a) are equated to each other leading to the following set
of linear algebraic equations for the determination of the parameters
C’s:

(._]_)m+i+j

k76D 76D (6D
T T T 1l

m=0,12...M
A ‘"l =-n,n 45
(ZG) ! n=0,1,2...m (45)
in which
1§ = @Re+i+j+DI2k—14+m—n +.i)]! [2(n +1 +.j)]! (46)
(kR —m)! k=l+m—-—n+i) w41+
and
J§9 = finite part of lim
' £—0
@ 2 ds
x f : : 47
ts s(a%+s)k—l+m—-n+;(a%+s)l+n+] /—Q(s) ( )

The foregoing equations (45) may be solved in successive steps as
outlined as follows:

(i) From the M + 1 equations correspondingtom =M, n= 0,1,
2, ... M, solve for the M + 1 coefficients

] CEfl-1
(z1) Substitute the values of coefficients obtained in step (z), in

the M equations correspondingtom =M —-1,n=0,1,2,... M -1,
Solve these M equations for the M coefficients

CY4h-1-1

(zi1) Continue the process solving, at the (M + 1 — r)th step, the
r + 1 equations correspondlng tom=r,n=0,1,2,...rforther +
1 coefficients

1=0,1,2,...M
1=0,1,2,...

M-1

CE
and taking valuesof r=M—-2, M —35,...

1=0,1,2,...r

1, 0 in succession.
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It may be mentioned here that Shah and Kobayashi [5] have con-
fined their work to M = 1 in each of the symmetric groups (i, j) = (0,
0) (0, 1), and (1, 0) and to M = 0 in the case of doubly antisymmetric
loading corresponding to (i, j) = (1, 1). Kassir and Sih [4] have con-
sidered homogeneous polynomial loadings corresponding to M = 1,
2, 3 in the doubly symmetric group (i, j) = (0,0) and to M = 1 in the
two groups (i, j) = (0, 1), (1, 0). Solutions in [4] were obtained, how-
ever, by using combinations of Fy; different from those given in
equation (44) except in the case of M = 1 in the (0, 0) group.

Crack Surface Under Shear Load. As in the symmetric prob-
lems, the applied shear load components ¢ (¢ = 1, 2) in the skew-
symmetric problem may be taken in the form

ofl) = Z Z Z Z AR, it (48)
i=0j=0 m=0 n=0
and the solutions for f, may be assumed in the form
11 B
fo= }_: Py Z Y. CEAL | Fok—sitiot+i (49)

Jj=0k=01=0

in which the upper value for k is dependent on ¢, I, j, and M.

Due to the skew-symmetric nature, the problem decomposes into
the following two problems denoted by P1(a, 8, M) and Ps(e, 8, M),
o= B

(z) Problem Py(«, B, M):
metric in both x; and x.

(i) Problem Pa(a, B, M): o) is symmetric in x; and antisym-
metric in xg; 6§} is antisymmetric in x, and symmetric in x5.

In each of the just mentioned two problems, the expressions taken
for the load components, the series assumed for the solutions, and the
derived linear algebraic equations governing the coefficients C’s are
given as follows:

() Problem Pi{c, 8, M):

o2 is symmetric and aé‘y is antisym-

B L2 00 9m—2n,.2
U§a= Z Z Aa,'m—n,nxlm an"

(50)
m=0 n=0
o = x1x9 Z Z AR x3men g (51)
m=0 n=0
where
o =0 for M=0 (52)
0,0) = Mok C(OO) F 53
fa Y X Co¥liFar—a10 (63)
£=01=0
=SS oppE
fi Z > CHP  Fon-ais1,2i41 (54)
k=0 [=0
where
f}gl'l)=0 for M=0 (55)

N Gl VL B e
@m — 2n)(2n)! k2m>;o< (1 — »)IPOJP:

Z 3 (~DF
k=m—11=0
=0,1,2...M
xop Moo
el n=01,2.
(=1m

k —
@m — 2n + DI@2n + 1) kzm ,Z =D -

1
o

~ VIO COP v

(56a)

1
—|A 17)11) nn =
&

Igl,l)ng,l)_ ylgl,l)J%l,l)} Cg,klll,l - Z Z (__1)k—1
k=m+1 =0

=0,1,2...M~1
m (56b)
n=01,23...m

X 10,5 cf:z,sz,,,]
in which
@k+i+j+IN2kR—I+m—n+i+dw)

(k —m)! (k=l+m—n+i+d)
2+ L+ + d2)]!
(n+ 14+ 82!

[g,i) =

(x=1,2) (57a)
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@h+i+j+1)! [2k—I+m—n+ D20 +n+ D]
R-m+i+j—1) k-l+m-n+1)! (+n+1)
(57b)

Iﬁ‘éj) =

J6D = f 1 ds
0 (a1 + s)k Hm— n+z+61a(a2 + s)l+n+]+52am

(@=1,2) (58a)
Jia= j:, @+ s)k—l+m—:+1£a% +5)itnt \/z;(s) » (585)
In the particular case of M = 0, we have
o= AQ, o =0
fO9=CO} Foo, fV=0, a=f=12 (59)
The equations (56) reduce to
2G[(1 — NIPOJPY —  [00JONCOY = AQS (60)

so that, in the case of constant shear, the solutions fﬁ,o'O) (ax=1,2)are
constant multiples of Fyg.

As in the symmetric problem equations (56) may be solved in suc-
cessive steps by solving first for the (2M + 1) coefficients

Co¥, 1=0,1,2...M
and

Cf-1-11

from the (2M + 1) equations consisting of M + 1 equations of (56a)
form=M,n=0,1,2... M and M equations of (56b) form =M —
n=0,1,2...M—1.
(it) Problem Py(a, 8, M):

[=0,1,2.. M~-1

M m
o) = xs Zo ZOA&O}.) T T (61)
m=0n=
M m
0’&3 =X1 ZO ZOAgm nnx2m an%n (62)
m=Un=
on . M &
fon = kﬁ_zo EOC O \Fop—a1,0141 (63a)
o Xk
8o = Z ; CHyy For—ars1m (63b)
(L) qop - (DmH
2G) T (@m - 2n)H2n + 1)
M &
X ¥ Y (=D)AL — »)IPVFPD — p 1OV O]
k=m (=0
X CON = v IEOJ1,CY0 ) (64a)

(_}—) 10 _ (=1)ym+1
2a@! P (2m — 2n + DI20)!

X 3 3 (=DHIA = ») IEOTE —  [90780]
k=m {=0

X CEy = v IRV 1O )
m=0,12..M
n=19012..m

As in the previous problem, equations (64) may be solved in suc-
cessive steps by solving first for the 2(M + 1) coefficients
CoOM-p Clflp 1=0,1,2... M

from the 2(M + 1) equations correspondingtom =M,n =0,1,2...
M.

It is to be noted that, in the case of arbitrary polynomial loading,
the integer M in the summation in equation (48) can assume different
values M(«q, i, j) for different combinations of e, i, and j. Insuch a
case, we define, fora = 8 =1, 2,

(64b)
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M1, = max [M(a, 0,0), M(B,1,1) + 1],
and »

Mg, = max [M(a, 0,1), M(B, 1, 0})] (65)

Then the solution of the skew-symmetric problem for arbitrary
polynomial loading is given by a linear sum of the solutions of the four
problems

Pl(ay 6: Mla)v PZ(av ﬁy MZa); o = ﬁ = 1, 2 (66)

Stress-Intensity Factors k, (o = 1,2, 3). Kassir and Sih [2] have
shown that in the vicinity of the periphery of an elliptical crack on the
plane x3 = 0, the ellipsoidal coordinates become

£1=—(a?sin20 + a} cos? ) 87a)
£2=0 (67b)
£3 = 2a1a9r(afsin? § + af cos? §)~1/2 (87¢)

where r is the radial distance normal to the crack border in the plane
x3 =0, and 6 is the angle in the parametric equations of the ellipse

x1=ajcosf and xg=asysinf (68)

The normal and tangential components 0,3, o;3 near the border of
the elliptical crack (where nn and ¢ are directions normal and tangential
to the crack border in the plane x5 = 0) in the plane x3 = 0 are given
by the relations

(69a)
(69b)

On3 = 033 c08 3+ o3z8in
03 = —031 sin B + d3g COS ﬂ

where 3, the angle between the outward normal of the crack border
(in the plane x3 = 0) and x1-axis, is related to 6 by the equations

cosB=azcos8/r/A, sinf=a;sinb/VA (70)
A =a?sin?0 + a}cos2d (71)
The stress-intensity factors &k, are defined as

Kl = lim [(27rr)1/2033]52=0 (72(1)

r—0
K3 = lim [(277)20,,3)5,=0 (72b)

r—=>0

and

(72¢)

K3 = lim [(27r)Y26,3) 5,0
r—=0

From equations (67), (69)-(72), the expressions for K, take the
following forms:

1/2
K= (L) A4 lim [£Y%053]g5=0 (73a)
a1a2 £3—0

. T \1/2 A
Ks= (——) A=A {az cos 0 lim [£Y%031]5,=0
aiasg £3—0

+ ay'sin § lim [g§/2032}52=0] (73b)
£E3—0
and
T

1/2
Kz= (_) A4 {az cos § lim [8513/20'32152:0
2102, £—0

—ax sin § lim [E;I;/Zdaﬂgz:o] (730)

£3—0

From equations (9d)~(9f), we have

lim [£§%053]5ym0 = —2G Elimo [£¥%3.33lz=0 (74)
-

£3—0

and
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file:///a1a2

lim [£¥%034]¢p=0 = —2G lim
£3—>0 £3—0

X [ 5/2[{(1 - V)fa,33 - (fo(,mx + fﬁ,ﬁa)uh:() o 5 = 1, 2 (75)
Since the solutions for f,, are linear combinations of potentials Fy,,

one needs the following quantities for evaluating the right-hand side
expressions in equations (74) and (75).

GY = lin:) [£4208F ki) gz=0

= flimo [EY2(F i3 + Fhiss)lea=0
-

cos® 6 sin!

= — (=2 2RI+ 1)1 O (76)
1 2
%= lim (6%} Fulqe
Jo.
= Elim [leg/ZFglaﬂ]EFO
40
cos® f sin! 8 XaXg
( ) (28420 4 L4 D=5
al*p
a,B=12 (17

where x 4% g are given by equation (68).

By using equations (74), (75), series solutions obtained for f,, and
the equations (76) and (77), the stress-intensity factors K, are eval-
uated from equations (73). The expressions for K, thus obtained are
given next.

(i) Symmetric Problem. From equations (44), {73a), (74), and
(76), the expression for the stress-intensity factor K is obtained as

Ky = —2G

(
ala2]

M & . P
kz Z G2:§3_2H"2'+"Cg,’£)—1,1

i=0j=0k=01

1 &
Aty ): z (—2)2kHi+i(2k 4+ i+ j+ D!
1 (cos )

2k—-2l+i {gin A2+ ..
(Sln Cg"'ﬁ)_;_l (78)

aid2\ a3 asg

(ii) Skew-Symmetric Problem. The solutions for f; and f2
in this problem are linear sums of the solutions of the problems P; and
P, which take the form

1L 1M k.
fi=x Zfi” = Z > Y C¥lyy Fonorviaes
i=0j=0 i=0 /=0 k=0 I=0
and
101 o 1 1 M k
fe=Y LAFN=3 3 ¥ Y CE For—ai-ipit1-; (79)
i=0 j=0 i=0 j=0 k=0 I=0

The stress-intensity factors Ky and K corresponding to the fore-
going series solutions (79) are given by

K2=8G( T )
aias

K3 =8G (—”—
\a1a2,

A~ ‘/4a—- [H1az cos & + Hsay sin 6],
102

(80a)

A~Y4(1 — y) —— [Hoaz cos § — Hya sin §]
aiaz .

(80b)

1 M &k l
2 X X (=R + i+ j + 1) (cose 2h—21+i
ay

inf\2i+i .
X (ﬂ) ’ CE,, (81)
as .

and
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1 1 M &k
Hy= 3 3 ¥ Z( 2)2k+2“"(2k+3—t—'1)'(
=0 =0

sin §\2i+1-j
X
az

cos 0)2k—21+1—i

a1

gl i,1=J)

woi7? (82)

4 Concluding Remarks

In the foregoing we have presented a general solution for the
problem of an infinite linear elastic solid containing a flat elliptical
crack, whose faces are subjected to an arbitrary polynomial variation
of normal as well as tangential tractions. This represents.a general-
ization of the cited earlier works of other authors [1-6]. The expres-
sions for the three-modes of stress-intensity factors, Ky, Ko, and K3
along the flaw border, for the considered general loading, are given.
The expressions for the stresses in the far-field for the considered
problem of arbitrary loading on the crack face, are given in Appendix
of the present paper.

One of the most pressing needs in applied fracture mechanics is the
accurate and cost-effective evaluation of stress-intensity factors along
the border of embedded or surface flaws in complex structural
geometries such as aircraft attachment lugs, nuclear reactor pres-
sure-vessel-nozzle junctions, etc. The shapes of these flaws are often
assumed, to a first approximation, as elliptical or part-elliptical. In
solving these complex practical problems, several approaches such
as, the Schwartz-Neuman alternating technique [10, 11], the
boundary-integral equation technique [12], and singularity-finite-
element methods [13, 14] have been reported in literature. It is gen-
erally recognized [15] that even though the alternating technique may
be the simplest and most cost-effective technique, the results obtained
so far through this technique are not as accurate as those obtained
through the finite element and boundary-integral-equation ap-
proaches.

In the alternating technique, as applied to the problem of cracks
in finite solids, two solutions are needed, generally. One of these so-
lutions is for stresses in the uncracked finite body at the location of
the considered crack, and the other solution is for the problem of an
infinite body with a crack whose faces are subject to arbitrary normal
ag well as shear traction components. For cracks in complex finite
bodies, such as described earlier, the first solution previously men-
tioned, would in general lead to a rather complex stress-field at the
location of the considered crack. Because of the limitation of the
available analytical results for the second solution discussed in the
foregoing [1-6], the stress-fields of the aforementioned first problem
were always approximated by polynomials of order <3 in the use of
the alternating technique {10, 11]. Since this limitation has been
overcome in the present paper, the results of the present paper may
effectively be employed in devising a more accurate and cost-effective
alternating-solution technique for analyzing complex, flawed,
structural geometries. The results of our efforts in this direction will
be reported shortly.
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APPENDIX

We consider here evaluation of potentials Fi; and their partial
derivatives required for calculating displacements and stress com-
ponents at a point away from the crack surface.

Earlier, Shah and Kobayashi [5] have derived, for values of k + [
up to 3 expressions for Fy; and their partial derivatives up to sec-
ond-order in terms of incomplete elliptic integrals and Jacobian el-
liptic functions. In a subsequent investigation [16], they have also
obtained expressions for some third-order partial derivatives of Fy;
required in the evaluation of stress components o3, 012, and a3 in
the symmetric problem. It appears that, in deriving the aforemen-
tioned expressions, they have expressed the power term w*+*1aga
polynomial in x2 (o = 1, 2, 3) and carried out necessary differentia-
tions. Kassir and Sih [4] have, however, adopted the chain rule of
differentiation involving total derivatives with respect fo w and ob-
tained expressions in a slightly different form for their potentials and
partial derivatives up to second-order in the analyses of both sym-
metric and skew-symmetric problems.

In the present paper, we derive the necessary expressions for a
general potential Fr; and its partial derivatives by both the afore-
mentioned procedures. For this purpose, it is convenient to consider
the required partial derivatives of Fy; as a sum (Ho + H;) of an inte-
grated component' Hyp and an integral H; of the form

@ ds
Hy= f aklallamlwk-f-H'I -
1 g, 010298 NGIO)
Then the component Hy and the form of H; in Fy; and its partial de-
rivatives are as listed as follows:
() Fu:

(83)

Ho =0
and

k1=k, ll=l, m1=0 in H1 (84)
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(i5) OLFwr:

Ho=0
and
ki=k+ 010l =1+, m =0 in H (85)
(iii) OBOLFu:
Ho = Fli,
=~ [a}lafliaéwh+l+l \/%;) e Ok - (86)
ki=k 4010+ 015 l1=1+ 8zt b
my =03, + 83 in Hy (87)
(iv) OLOROLFwy
Ho= %F%lﬁa - [akagafagwk+l+1 TaG et alEs  (88)
ki=Fk + 014+ 15+ 014
[1 =1+ 0oq + Sop + 6oy
and
my=083s+ 035+ 83y in Hy (89)

The integrand in equation (83) may be evaluated in two ways
mentioned earlier. In the first procedure, the power term p*+i+1 ig
expanded in terms of x2(cx = 1, 2, 3) and term-by-term differentiations
are carried out. Then, we get

- kH+l p 4 (-1)»
alobaftwh il = (k + 1 + 1) > —
1o pEO q§0r=0(k+l+1—p)!
(2p — 29)! (2q — 2r)! (2r)!  x3p—2a~m1

p—aq) (g—r r! (2p—2¢-k)! (2g —2r — 1!

xgm 1

x %q——Zr—ll

@r - mi)! (e} + $)P~4(a} + 5)a-Ts" (90)

Substitution of the foregoing expression in equation (83) leads to an
expression for H; containing integrals of the type

. ® 1 ds
Troer »fEa (a} +8)P=9(ad + 5)97s" /Q(s) oD
The aforementioned integrals can be evaluated in terms of incomplete
elliptic integrals of the first and second kinds and Jacobian elliptic
functions.

The expression in (90) can also be used in (86) and (88) for the
evaluation of the integrated parts Hy. However, much simpler ex-
pressions for these integrated parts are derived from the second
procedure described in the following.

In adopting the second procedure involving chain rule of differ-

entiation, we note that
. I . C dimpgktitt
i kL D pp(yl, Ni—20 ___ ~
e e
*h ) Lo impnicg whHiHLFep—i
=(k+1I+1)N T AP PP ————e———————  (92)
a0 PP e T R T 1+ 2p—i))

in which A},i) are integer constants and

I =I(i/2) = integer value of i/2 (93)

The previous form for a partial derivative of the power term was
recognized earlier by Quinlan [17]. The integer constants A,(,i) (p=
1,2,...1) for values of i up to 10 were also obtained by him by carrying
out successive differentiations. By differentiating both sides of
equation (92) with respect to x,, however, we obtain the following
recurrence relations among the coefficients A%):

AP =1, AfY = AP

APV =AD+ (G -2p+ 249, p=1,2,...1 (94)
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and

(94)

AfD = AP when z(‘“)=1(£)+1
. 2 (Cont.)

2

Using the form for a partial derivative of the power term, we get

ki Lom
b{“b%‘bﬂ"wk"'Hl =Gk+1+ i3 ZI: Zl Zl Al()kl) A‘(Ill)

p=0¢=0r=0
wlN
X Al el sl i (95)
where
N=k+l+1+p+q+r—-k1—l1-—m1. (96)

By substituting the foregoing expression (95) in equation (83), one
gets an alternate expression for Hy involving integrals of the type

® wN ds
J= f — ©7)
ta (af + sYr1-pP(ad + s)—9sm1-T A /Q(s)
which are relatively complicated in comparison with the integrals in
equation (91).
However, in view of the property w(£3) = 0, the form (95) is con-
venient for finding the integrated components Hg in equations (86)
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and (88). The contributions of terms in (95) to H are from terms
corresponding to N = 0. Hence, we get the following simple expres-
sions for the integrated components in the second and third-order
partial derivatives of Fy;:

kol
FO =h+l+“__xlf.2ﬂ_. kla =g (98
Riga = ( ) G E)(Ea— B [pipapaps VA(s)s=g )

The expression for Hy in (88) is obtained as

d R+1+1)
H =—F9 T e {In i1,m1
0 o, klg (& — EDlEs — £1) vV Q(E3) 10105 PE 0y

(k1 — )Ry + (h— 1l
2pox}

(ml—l)mﬂ}
903x%  |Js=ts (99)

in which k1, l1, and m are given by equations (87).

The partial derivative of Fj, in (99) may be obtained from the
expression (98) by treating £, (« = 1, 2, 3) as functions of x (o = 1,
2, 3).

Substituting the foregoing second and third-order partial deriva-
tives of Fy; appropriately into equations (9a)—(9f), the expression for
each of the six stress components in the far-field can easily be written
down. These lengthy expressions are omitted here for the sake of
conciseness and clarity.

X xf‘xé‘xé"‘m 2
2p1xf
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The slip band formed in a grain on the material surface is a preferential site for crack ini-
tiation during low strain fatigue of polycrystalline metals. The forward and reverse plas-
tic flow within the slip band is modeled in the present study by dislocations with different
signs moving on two closely located layers, and it is assumed that their movement is irre-
versible. Based on the-model, the monotonic buildup of dislocation dipoles piled up at the
grain boundary is systematically derived using the theory of continuously distributed dis-
locations. This buildup is associated with the progress of extrusion or intrusion. The num-
ber of stress cycles up to the initiation of a crack of the grain size order is defined as the
cycle when the stored strain energy of accumulated dislocations reaches a critical value.
The relation between the initiation life and the plastic strain range derived theoretically
is in agreement with a Coffin-Manson type law, and that between the fatigue strength and

the grain size is expressed in an equation of the Petch type.

Introduction

The initiation of fatigue cracks is one of the most important stages
in the fatigue fracture processes of metals. A large number of metal-
lographic observations has been carried out to elucidate the micro-
mechanisms responsible for crack initiation. The state of the art is
described in two recent excellent review articles by Grosskreutz [1]
and Laird and Duquette [2]. The site of crack initiation varies de-
pending on the microstructures of the material involved and types
of applied stresses. Among possible sites of crack initiation, the slip
band is preferential one for pure, single-phase metals and some
polyphase metals under a low strain cycling [1, 2]. The cyclic strain
is concentrated along the slip band and the extrusion or intrusion is
accompanied with it.

Most of the models proposed to account for the formation of ex-
trusions or intrusions are based on Mott’s assumption [3] that dislo-
cations move along different paths in the slip bands under forward
and reverse loadings. These models, however, are rather qualitative
and fail to yield any systematic, quantitative way to evaluate the
monctonic buildup or ratcheting of plastic deformation by a cyclic
loading. One exception is the model proposed by Lin and Ito [4]. They
considered two thin slices closely located in a grain on the specimen
surface, with one part sliding during forward loading and the other

1 On leave from Department of Engineering Science, Kyoto University, Kyoto,
Japan.
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part sliding during reverse loading. T'o make this mode of deformation
possible, they assumed a special field for the internal stress. Such an
initial stress is not always expected in reality.

In the present paper, a more reasonable model for early fatigue
damage is proposed. The plastic deformation within the slip band is
modeled by two adjacent layers of dislocation pileups. Each layer has
a different sign. A systematic buildup of accumulation of dislocation
dipoles is derived under the assumption of the irreversible dislocation
motion. The model can also yield a Coffin-Manson type law for crack
initiation and the Petch-type equation for the grain size dependency
of fatigue strength.

Model and Analysis

Model of Damage Accumulation. In the fatigue of smooth
specimens of polycrystalline materials, a slip band crack is expected
to nucleate in a grain on the surface which has a high value of cyclic
shear stress resolved from the applied stress on the slip plane in the
slip direction. Under a uniaxial stress, the resolved shear stress be-
comes maximum when the normal of the slip plane and the slip di-
rection are inclined at 45 deg to the stress axis. Figs. 1 and 2 illustrate
two extreme cases of the most favorably oriented grains located on
the surface. Fig. 1 is the section perpendicular to the specimen surface.
The slip plane is perpendicular to the sheet face and the slip direction
is in it. Fig. 2 is a picture of the section parallel to the surface inside
the specimen. The slip plane is perpendicular to the specimen surface
and the slip direction is on the specimen surface. In the following
discussion, the former case is denoted as the case of orientation A and
the latter one as that of orientation B.

The dislocations generated in a most favorably oriented grain under
the tensile stress are piled up against the grain boundary. In Figs. 1
and 2, the dislocation pileups on layer I are made under tension. The
dislocations in Fig. 1 are created at the surface of the specimen and
moved to the interior of a grain. The dislocations in Fig. 2 are created
inside a grain and move to the grain boundary. The back stress caused
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Fig. 1 Dislocation motion In a most favorably orlented grain (Case A or-
ientation) and the formation of extrusion and intrusion by dislocation accu-
mulation

by pileup dislocations is negative in the vicinity of pileup layer L
Therefore, the reverse plastic flow is expected to take place near the
layer during subsequent reverse loading.

If the dislocations piled up on layer I move in the opposite direction
under reverse loading, there is no accumulation of dislocations, so no
fatigue fracture takes place. In the following model, it is assumed that
the dislocations formed by previous forward loading are irreversible
and that the reverse plastic flow is taken up by the motion of dislo-
cations with the opposite sign on the other slip plane which is located
very close to the previous one. The basis for the assumption of irre-
versible dislocation motion as an extreme case will be discussed later.
The dislocation pileups made under reverse loading are those on layer
11 shown in Figs. 1 and 2. The pileups of negative dislocations on layer
II cause a positive back stress on layer L. This back stress enhances
the pileup of positive dislocations during the next stage of forward
loading. In this way, the accumulation of dislocation dipoles is am-
plified with the number of stress cycles. In the case of orientation 4,
extrusion, intrusion, or an extrusion-intrusion pair is monotinically
built up as illustrated in Fig. 1. For a general case, the dislocation
accumulation is accompanied by surface roughening because the slip
direction is not parallel to the specimen surface. In the case of orien-
tation B, the specimen surface is not roughened by dislocation accu-
mulation.

In the following sections, the progress of dislocation accumulation
will be calculated by using the theory of continuously distributed
dislocations. The calculation is carried out in two-dimensional cases
and the material is assumed to be isotropic. By considering long-life
fatigue, the slip band is isolated and the distance between two
neighboring layers is negligible compared with the length of pileup
layers.

Dislocation Accumulation for the Case of Double Pileup. The
cyclie shear stress on the primary slip plane in a most favorably ori-
ented grain is shown in Fig. 3, where 71 is the maximum stress and 73
is the minimum stress in one cycle. The calculation will first be made
for Case B shown in Fig. 2. The Cartesian coordinates x, y are used
as indicated in the figure. The grain size is 2a.

Under the first loading of stress 71 greater than the frictional stress

98 / VOL. 48, MARCH 1981
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Fig. 2 Dislocation motion in a most lévorably oriented grain (Case B or-
ientation)
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Fig. 3 Applied shear stress pattern

k, the dislocation distribution with density D1(x) is produced on layer
1. By assuming k to be constant, the equilibrium condition of dislo-
cations inside layer I is expressed as

TP+ri—-k=0 (e8]

where 71D is the dislocation stress (back stress) given by
a
P =A f Dy(x")dx'/(x = x7). @)
—-a

The domain of the dislocation distribution is —a < x < a and
A=Gb/27(1 - ), 3)

where b is the Burgers vector, G the shear modulus, and » Poisson’s
ratio.

Equation (1) can be solved with the use of the inversion formula
of Muskhelishvili under the condition of the unbounded density at
two tips of the pileup x = +a [5]. The dislocation density D;(x) is

1 1 a ; 71—k
D = _ f 2 _ el T o
1) w24 (a2 — x2)12 J fa® =" x —x’dx
= (11 — k)x/mA(a? — x2)1/2, 4

The total number of dislocations between x = 0 and a is
Ny = j; Di(x)dx = (1 — k)a/7A. )

The plastic displacement ¢(x) caused by the motion of dislocations
generated at x = 0 is
- ) = f bD(x")dx’ (5a)
x

where ¢(+a) = 0.
The total plastic displacement y1in —a < x < a is

yi= f_ $x)dx = f_ bDy(x)xdx = (11 — k)ba2/2A.  (6)
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The multiplication of the number of pileup layers in a unit area by
the y1 value yields the macroscopic plastic strain. For simplicity, v
is called the plastic strain. The stored energy of dislocations per unit
thickness of the specimen is

Uy=-% j‘_z 710 $lx)dx

= f_ * 71D bD1(x)xdx/2 = y1(r1 — k)/2. @

According to the present model, the reverse loading frorn the stress
71 to 79 causes the dislocations with a negative sign piling up on layer
11, instead of the dislocations moving in the reverse direction on layer
I. By denoting the density of dislocation piled up on layer II as Dy(x)
and the back stress due to Da(x) by 74P, the equilibrium condition in
layer 11 is expressed as

TP+ 7P+ 19+ k=0, 8)

where the friction stress k is acting on the motion of netative dislo-
cations. The distance between layers I and II is assumed to be very
small compared with the pileup length. Then, 7,2 on layer II can be
regarded as the same as on Layer L. Substitution of equation (1) into
equation (8) yields

7P — (Ar — 2k) =0, 9)

where AT = 71 — 72. Only when A7 is larger than 2k can the disloca-
tions on layer Il be generated from x = 0 and pile up at x = +a. The
dislocation density Do(x), the total number of dislocations Ng between
x = 0 and @, and the plastic strain 3 are obtained from equation (9)
in a similar way. These are

Do(x) = —(A1 — 2k)x/TA (a2 — x2)1/2
Ny = —(Ar - 2k)a/7A
ve = —(At1 — 2k)ba2/2A.

(10)

The values of Ny and 3 are negative. The stored energy of disloca-
tions Da(x) is the positive value

Uy = —vyo(AT — 2k)/2. (11)

The pileup of negative dislocations on layer 11 causes a positive back
stress on layer 1. This back stress enhances the pileup of dislocations
on layer IT during the subsequent reverse loading.

The increment of dislocation Dg(x), the dislocation number Ny,
the plastic strain increment v, the back stress increment 7,2, and
the stored energy Uy, at the kth step of the forward and reverse loading
processes are obtained in a similar manner. They are

Dy(x) = (-1)F1AD(x), Np=(-1)¥"LAN, v, = (-Dk Ay

TP = (1441 (2k - A7), Up=AU (12)
where
Ar=T11— T2
AD(x) = (A1 — 2k)x/TA(a? — £ D)1/2
AN = (Ar'- 2k)a/A (13)

Ay = (At — 2k)ba2/24
AU = Ay (AT — 2k)/2.

The index k takes 2n at the minimum stress after n-cycles and 2n
+ 1 at the maximum stress after n-cycles.

Stress Distribution and Strain Energy at the Maximum Stress
After n-Cycles. The total density of dislocations Dy(x) piled up on
layer I, their number Ny and stored strain energy Uj are given as the
sum of the increments of the corresponding values made during each
loading stage. They aré

Di(x) = 3 Daunalx) = Dalx) + nAD(:) (19

Journal of Applied Mechanics
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Fig. 4 Dislocation distribution on layer | and its stress distribution for the case
of double pileup

(14)

Ny= i Noy+1 = Ny + nAN
n=0 (Cont.)

n
Ui= T Ugpe1 = Ui + nAU.
n=0
The corresponding values for dislocation pileup on layer II are

Dutx) = 3. Dan(x) = =nAD(z)

Ny = En: Non = —nAN

n=1

(15)

UH = i Ugn = nAU.
n=1

The stress field after n-cycles can be given as the sum of three
components: the applied stress, the internal stresses due to the dis-

_location pileups on layers I and II. From equations (4), (13), and (14),

the dislocation density Dy(x) is given as

Di(x) = Tyx/mwA(a2 — x2)1/2 (16)

where

Tr=11~k + n(Ar — 2k). an

The aforementioned dislocation distribution is the same as the dis-
tribution of crack dislocations for a crack with length 2a subjected
to the shear stress T [6]. The stress field due to the pileup dislocation
density Diy(x) is identical to that due to the crack. Fig. 4 shows the
shear stress distribution on y = 0, together with the dislocation dis-
tribution. The stress intensification takes place only near the tips of
the pileup. The singular terms of the stress field in the vicinity of the
right-hand tip of the pileup are expressed as [6, 7]

Ky .0 6 36,
Dz 2t o U1 71 e 2
Oxx Pl = @rro) i sin 5 (2 + cos 5 oS P
K L6 6. 36
Dy _ 221 s 7 U1 901
gyl = Gnr3 sin 5 cos 5 sin 5 (18)
K (/] 0 30
oxyPi=10 = L3 S (1 — sin —sin ~——1)
@Qmr)i2z " 2 2 2
where K is the stress-intensity factor given by
Ky = TiWra = [(11 — k) + n(A1 — 2k)]V 7. (19)

The stress field due to the dislocation pileup on layer II is identical

to that caused by a crack under the negative shear stress
T = —n{A7 — 2k). (20)

The stress-intensity factor is
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Ky = Tyvma = —n(Ar — 2k)v/7a.

In low-strain, long-life fatigue, the values of 71 and K1 are nearly

equal to the negative values of T'ir and Ki1, because the term 71 — &
. becomes negligible compared with the term n(Ar — 2k) near crack
- initiation.

Dislocation Accumulation for the Cases of Single Pileups. If
the dislocation source is at the grain boundary in Case B shown in Fig.
2, only positive dislocations are generated on layer I under forward
loading and negative ones on layer II under reverse loading. The
equilibrium equation (1) is now solved under the condition that the
density is bounded at x = —a and unbounded at x = a. The density
Di(x)is

(21)

Di(x) = (11— k)a + x)V%/7nA(a — x)V/2 22)
The total number of dislocations is given by
Ny = (11— k)a/A. (23)

This is equal to the ledge of the grain boundary formed in dislocation
generation, when it is multipled by the Burgers vector. Since the
dislocation source is at x = —a, the plastic strain v is calculated as

yi = f_ bD(x)(x + a)dx = 3(r1 — k)ba?/24. (24)

Equation (22) can be rewritten as

Dilx) = (r1 — B)x/7A(a? — x2)V2 + (71 — k)a/TrAla? — x2)V/2,
(25)

The first term is equal to equation (4) and the second term is the
distribution for unstressed pileup of positive dislocations with the
number Ni. The stored energy of the latter distribution is given by
Hirth and Lothe {8) as (N2 b/2A) In (2R/a), where R is the outer
cutoff radius of the dislocation stress field. Therefore, the stored strain
energy is

U1 = C‘)’I(Tl - k)/2 (26)

where
C = 1/3[1 + 2 In (2R/a)]. @7

The dislocation accumulation in the subsequent stages is expressed
by equations (12) with the following substitution:

AD(x) = (A7 — 2k)(a + x)V2/wA(a — x)1/2,
AN = (A7 - 2k)a/A
Ay = (A7 - 2k)3ba%/24, AU=CAy(Ar—2k)/2.  (28)

Equations (14) and (15) can be used as expressions for the dislocation
accumulation after n-cycles. The dislocation density on layer I is

Dy(x) = Tr(a + x)V2/1A(a — x)1/2 (29)

where T' is given by equation (17). The stresses, oxx 71, 0y, 71, and
ayyP1= 1,0, due to Di(x), can be calculated by adding the stresses
caused by each dislocation. The stresses are calculated to be

Ty t ay (301 + 02) . (01 - 02)}
oy Dl= ——— 08 + 2v/rysin
7 Vrilrn/re ¢ 2 "2 2

+
Dy = EL( ay-) cos (3__01 ._.0_2) (30)
ro, 2

g
¥ \/r_l r1\/

Ty 0y — 02 ay 361 + 64

oy Pl = {\/r cos ( - sin -7
MRV A 2 | v 2

where (ry, 8;) and (rg, #2) are the coordinates shown in Fig. 4. By ex-

panding the foregoing equation near the right-hand tip of the pileup,

it can be seen that this stress field also has a singularity similar to the

shear crack stress field. The stress-intensity factor is given by

Ki=2Tw'wa = 2[r1 — k + n(Ar — 2k)]vV 7.

(31)
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Similarly, the stress-intensity factor for the stress field due to the
pileup dislocations on layer 11 is

Ky = 2T1v/ma = =2n(A7 — 2k)\/7a.

The analysis of Case A, of single pileup from the surface, shown in
Fig. 1 is complicated because of the image force of the free surface.
The exact solution cannot be obtained in a closed form. Two ap-
proximations will be considered.

The solutions for Case B of double pileup could be used by re-
garding one half of the pipeup as imaginary, In this approximation,
the right-hand side of the double pileup in Fig. 2 corresponds to a
vacancy dipole pileup with the extrusion shown in Fig. 1(a), while the
left-hand side corresponds to an interstitial dipole pileup with the
intrusion shown in Fig. 1(b). The amounts of intrusion and extrusion
are obtained by multiplying the total number of dislocations with the
Burgers vector. A second approximation can be given by regarding
the length of a single pileup in an infinite plate as the length of the
slip band emanated from the surface. The former approximation is
expected to yield the lower bound of the solution and the latter, its
upper bound.2 The extrusion-intrusion pair can be formed when the
negative dislocation motion takes place on two layers adjacent to layer
I as shown in Fig. 1(c).

Crack Initiation. There are three ways for an embryonic crack
to be formed in dislocation pileup accumulated under cyclic stress,
A large tensile stress built up between two layers at the top of the
pileups of vacancy dipoles shown in Figs. 1 and 2 could become large
enough to create the nucleus of a crack. Since the densities of pileup

(32)

- dislocation on two layers are about the same for long-life fatigue, ex-

cept for the sign, the tensile stress o, at x = a and at half the distance
between two layers is given as follows using equations (18), (19), and
(21):

Oyx = Oy D1+ 02 P1 = 8+4/a n(Ar — 2R)/\/2h

where h is the distance between two layers. The number of stress
cycles for the formation of a crack embryo is given from the afore-
mentioned equation by assuming that the crack is nucleated when
oxx becomes the theoretical strength. For Case A shown in Fig. 1,
embryonic cracks are formed inside the material at the grain boundary
of the surface grain where the vacancy dipeles are piled up. The site
of crack nucleation is on the surface at the grain boundary in Case B
in Fig. 2.

Formation of intrusion causes the stress concentration under the
applied stress, and it can also be regarded as the crack embryo. The
depth of intrusion equals the total number of accumulated disloca-
tions, N1 = N1 = nAN, multiplied by the Burgers vector. It increases
in each cycle and is n bAN after n-cycles. Equation (13) or (28) can
be used as an approximation for AN in the case of orientation A. The
third possible site is the ledge left at the grain boundary when the
dislocation source is at the grain boundary in the case of orientation
B. The size of the ledge is equal to n bAN where AN is given by
equation (28). In the previous two cases, it is rather difficult to de-
termine the define length of time for the formation of an embryonic
crack.

The following growth of a crack embryo will take place along the
slip bands. Fig. 5 illustrates two types of initiation and growth of
cracks. The condition of the growth of the crack embryo will be treated
from the viewpoint of energy balance. If the stored strain energy due
to dislocations accumulated after n-cycles becomes equal to the
surface energy, the layers of dislocation dipoles can be transformed
into a free surface. The life of the crack initiation n. is now defined
as the number of stress cycles when the following energy condition
is satisfied:

(33)

U = Ui+ Up = 2n AU = 4 aw; (34)

2 The stress-intensity factor for the surface crack with length a under shear
stress 7 is 1.12 74/7a [7]. The first approximation yields 7+/7a as the stress-
intensity factor, while the second approximation yields 1.41 r/7g.
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(i) Crack Embryo {ii) Subsequent Growth

(a) Crack initiation from vacancy dipoles or extrusion

(i) Crack Embryo (ii) Subsequent Growth

{b) Crack initiation from intrusion

Fig.5 Two types of crack Initlation; (‘a) Crack initiation from vacancy dipoles
or extrusion, (/) crack embryo, (/i) subsequent growth; (b) Crack initlation
from Intruslon, (/) crack embryo, (/) subsequent growth

for Case B with the pileup length 2a. The value of w; is the specific
fracture energy for a unit area. The right-hand side of the equation
is 2 aw; for Case A. For a double pileup case, n, is

ne = 4 aws/ (At — 2k)Ay
= 2bw;a3/A(Ay)?
= 8 Aw,/ba (AT — 2k)?

(35)
(36)

where equation (13) is used in the derivation. For the case of a single
pileup of orientation A, w; is substituted by w,/C in the foregoing
equations, For general cases, including the single pileup for orientation
B, the previous equations are applicable with a minor change of the
coefficient.

Discussion

A most striking advantage of the present model is that the progress
of the ratcheting of a plastic deformation in the slip band can be cal-
culated in each forward and reverse loading. The irreversibility of
dislocation motion in two neighboring layers as assumed in the model
can be realized if the friction stress against the dislocation motion is
higher in the reverse direction than in the forward direction by a small
amount. Only when the dislocation sources are located very close to
each other, the dislocation accumulation can take place as calculated
in the previous chapter. For the case of an isolated dislocation source,
the dislocation motion on a single plane becomes reversible because
no positive back stress is produced by the dislocations on a secondary
layer. In the real situation, the motion of dislocations will be irre-
versible or reversible depending on a statistical distribution of dis-
location sources.

Two neighboring layers considered in the model can be regarded
as the zone of strain localization such as the persistent slip bands
found in low strain fatigue. Several experiments have been reported
on the slip movement under cyclic stress and most of them indicated
a certain irreversibility of plastic deformation, Keith and Gilman [9]
observed in their etch pit study in lithium fluoride crystals that dis-
location movements were irreversible under cyclic stressing except
for the small motion of dislocation loops. More macroscopically,
Charsley and Desvaux [10, 11] found that a partial reversal of the
tensile slip steps and extrusion-type or intrusion-type slip steps oc-
curred during compression, but no total reversal was seen in single
crystals with wavy and planar slip modes. Their observations sub-
stantiate partly the assumption of the present model.

The slip step within the persistent slip bands in copper single
crystals was observed by Finney and Laird [12] with the interfero-
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Fig. 6 Stress-strain hysteresis loop

metric technique. In their observations, the macroscopic strain carried
out by the persistent slip bands was reversible; only at the finest
distribution of slip within the band was the deformation not strictly
reversible. The macroscopic behavior of the cyclic stress-strain hys-
teresis of the slip band derived from the present model is shown in
Fig. 6. In the first forward loading up to 71, the material hardens lin-
early with the plastic strain according to equation (6) or (24). During
the next reverse loading, the stress-strain relation follows the ABC .
path shown in the figure. The amount of plastic strain range Ay isa
linear function of the stress range subtracted by twice the friction
stress as given by equation (13) or (28). The subsequent forward and
reverse loadings result in the closed hysteresis loop CDABC of stress
and strain. The hysteresis loop is macroscopically reversible, which
agrees with the finding by Finney and Laird [12] or more generally
with the hysteresis loop found at the saturation stage of the fatigue
process.

Although the irreversibility of dislocation motion as assumed in
the present model has not yet been fully rationalized, either experi-
mentally or theoretically, the success in evaluating the ratcheting
deformation and the reasonable estimate of crack initiation life given
as follows will make the irreversibility assumption acceptable as an
extreme case. Obviously, further studies are required on the dislo-
cation motion under cyclic stressing.

The energy criterion for crack initiation gives a direct correspon-
dence to the Coffin-Manson relation. From equation (35), we have

ne(Ay)? = 2 bwsa3/A. (37)

The right-hand term is a material parameter which is independent
of the applied stress. Coffin [13] and Manson [14] originally found the
life law for complete fracture of smooth specimens under high strain
cycling. Later, a similar law was confirmed to be valid for low-strain
and long-life fatigue [15]. The life up to the initiation of the crack on
the grain size order was about 50 percent of the total life without re-
spect to the stress amplitude in long-life fatigue [16]. Therefore, the
Coffin-Manson relation seems to be valid for the initiation of crack
in long-life fatigue, with which the present model is concerned. The
strain energy of dislocations is accumulated in the same amount in
each forward and reverse loading except the first loading. The amount
of stored energy does not correspond to the total area of the hysteresis
loop, but only to the shaded area shown in Fig. 6. The energy corre-
sponding to the remaining area of the loop is the dissipated work
against the friction stress. Martin [17] derived the Coffin-Manson
relation about 20 years ago by regarding the segment of the plastic
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Fig. 7 Graln boundary crack Initiated by stacked pileups of vacancy dipoles;
(a) crack embryo, {b) subsequent growth

work associated with work hardening as accumulating damage. The
present model gives a clear interpretation of his accumulating damage
as the dislocation strain energy stored in the material by the irre-
versible motion of dislocations.

The initiation life expressed by equation (36) in terms of stresss can
be rewritten as

Ar =2k + (8 Aw,/bn,)2a-1/2, (38)

Since the length 2a is the grain size, the previous equation is of the
Petch type for constant initiation life. The Petch-type relation has
been reported for the long-life fatigue of several metals [16, 18].
The value of w, consists of the surface energy and the plastic frac-
_ ture work. Because no reliable data have been reported on the Cof-
fin-Manson type and the Petch-type equations for crack initiation,
the exact estimate of w; is difficult. The following equation of the
Petch type is reported by Taira and others [16] for the endurance limit
for low carbon steel:

oe = 114 + 0.329//d (39)

where o, (MPa) is the stress amplitude of the endurance limit and

d (meters) is the grain size. By using E = 2.1 X 10° MPa, v = 0.3, nc

= 108 and d = 2a, the value of w; estimated from equations (38) and

((39) is 3.8 X 105 N/m. This is much larger than the surface energy of
- iron, so the plastic fracture work is predominant.

Among the three possible sites for the formation of an embryonic
crack, which site to operate is greatly dependent upon the material
involved. The relaxation zone which may occur at the pileup tip in the
vicinity of grain boundaries reduces the stress concentration and
prolongs the time of embryonic crack formation in the cases of or-
ientation A and B. This concurs with the fact that internal cracks are
rarely observed beneath the extrusions [1, 2). For general cases, screw
dislocation movement is superimposed on the edge dislocation motion
and the intrusion and extrusion are formed in the slip band, short-
ening the initiation life of a crack embryo. In the fatigue of a copper
single crystal, Ebner and Backofen [19] observed the difficulty of crack
initiation when the primary slip direction is parallel to the specimen
surface such as in the grain with orientation B. However, such an
observation has not been reported with respect to polycrystalline
materials.

If the materials contain inclusions, the slip motion can be blocked
by the inclusions and the crack can be initiated at the inclusions [1].
This type of crack initiation can also be analyzed using the present
model of dislocation accumulation combined with a proper fracture
criterion. '

When the applied stress or strain is relatively high, the slip defor-
mation is rather uniform within a grain, and the grain boundary be-
comes a preferential site for crack initiation. The stacking of slip bands
which contain the pileups of dislocation dipoles can give an expla-
nation of the grain boundary cracking. Fig. 7 illustrates the situation.
Several embryonic cracks are made along the grain boundary by the
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stacking of pileups of vacancy dipoles, and are connected to 'a
boundary crack under the action of the tensile stress normal to the
bounary. Under even higher strain, the deformation is almost uniform
within a grain and then a single slip band or its stacking may no longer
be appropriate for expressing the deformation in a grain. The cubical
dependence of the right-hand term of the Coffin-Manson type
equation (37) on the grain size will disappear. The micromechanicg
of inclusions will be a tool in treating the deformation of a single grain
in the plastically deformed polycrystalline matrix {20]. Nonetheless,
in this case the model of monotonic builtup plastic deformation under

- cyclic stress will play an essential role as an elementary process.

An application of the present model and its refinement will be made
in the future in each particular case of materials and testing condi-
tions.

A phenomenological approach by Zarka, et al., [21] can also derive
conditions for the cyclic ratcheting.

Conclusions

With regard to the plastic flow within the slip band in a most fa-
vorably oriented grain in low strain fatigue, the assumption of the
irreversibility of dislocation motion yields a systematic increase in
the amount of pileups of dislocation dipoles under cyclic loading,
Forward loading causes a pileup of dislocations with a positive sign
on one layer; the reverse flow is taken up by the dislocations with a
negative sign moving on subsequent layers which are located very close
to the first layer. The ratcheting deformation takes place with the help
of the back stress due to dislocations made in a previous loading stage.
While the macroscopic stress-strain hysteresis follows the saturated
closed loop, the pileup of dislocation dipoles and the surface rough:
ening are monotonically increased in quantity. The theoretical
analysis of the mode! for two-dimensional cases, using the contin-
uously distributed dislocation theory, yielded an exact assessment
of the accumulation of dislocations together with the cyclic stress:
strain behavior.

Several possible sites for the formation of the crack embryo were
examined based on the stress distribution of accumulated dislocations
and on the geometrical irregularities of the surface and the grain
boundary. The sites are at the tip of the pileup of vacancy dipoles, the
intrusion, and the ledge of the grain boundary. The material prop-
erties were expected to affect which site to operate. The time of the
initiation of a crack of the grain size order was determined as the time
when the stored energy of accumulated dislocations reaches a critical
value. The relation between the initiation life thus determined and
the plastic strain range is in agreement with the Coffin-Manson law,
and that between the grain size and the fatigue strength is expressed
in the functional form of the Petch type. Finally, several possible
applications of the present model were suggested in relation to the
other modes of fatigue crack initiation.
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Paper concerns the plane-strain problem of a rigid, thin, rounded inclusion pressed be-
tween two isotropic elastic half planes with different elastic constants. Required to find
the extents of the contact regions between each plane and the inclusion, and the contact
stress distributions. The governing integral equations are solved approximately by usmg

Chebyshev expansions. Numerical results are presented.

Introduction

The plane-strain problem which will be studied is shown in Fig. 1.
Two elastic half planes with shear moduli and Poisson’s ratios u;, »;
(i = 1, 2), respectively, are pressed together by a pressure which at
infinity is given by 7,, = ~po. A rigid obstacle, symmetrical in x but
not necessarily in y, lies between the two half planes. It is assumed
that the contacts between the two half planes, and between the ob-
stacle and each half plane, are all frictionless. It is required to find
the extents of the contact regions and the displacement and stress
fields.

The problem for two identical half planes was solved in closed form
by Alblas [1]. The corresponding problem for two identical layers was
solved by Alblas {2]; both problems were solved by Gladwell [3, 4] by
using Chebyshev polynomial representations.

Formulation

Boundary values of displacements, stresses, etc., for y = 07 will be
labeled 1, 2, respectively. The profiles of the obstacle for y = 0 may
then be taken as y = +f;(x) where, for infinitesimal elasticity theory,
there is no loss of generality if one assumes that

fix) = di — x%/(2r). 1

If p;i(x) = —-r§,‘} (x, 0), the boundary conditions on ¥y = 0 may be
written

—o<x <o, 7 (x,0)=0,i=1,2, (2)
<zl =L pilx)=0, i= 1,27,} @)
lx] 2, pi(x) = palx),

lx] < e, vilx) = (=)"Yfilx), i = 1,2,} @

|2} =1, vi(x) = valx)
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Fig. 1 Arigid obstacle is pressed between two dissimilar half planes

In addition there are the conditions at infinity

[0)]

Ty =0=19@y), 78 @y)=—ps as (x2+y2)—> =,

)

the equilibrium conditions on the obstacle

1 cg
P= " pitde = patwas, (©)
—cl —e9
and the condition of compression in the contact regions, namely,
—o<x <o p(x)20, i=1,2. 7

The solution for each half plane may be obtained as the superpo-
sition of two fields. The first corresponds to a uniform stress field in
the y-direction, namely, Tg,l)), (x, y) = ~po, for which

2uiui(x, y) = vipox, 2uvi(x, y) = —(1 — v;)poy. (8

The second may be expressed in terms of Fourier cosine transforms.
Thus, if v;(x), p;(x) are the combined fields then (Sneddon [5, p. 457])
on the x-axis
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vi(x) = (=)19; F[E71Pi(E); x] 9
pi(x) — po = F[Pi(§); x] (10)

where 9; = (1 — y;}/u;. It is convenient to work with displacement
derivatives; then

vi(x) = (=)id; Fo[P;(£); x] (11)
and equations (4) may be replaced by
fx] £ ¢, Ug(x) = ("-)"_lf;‘(x), i=1, 2,} (12)
[x] 21, vi(x) = valx),

provided that the compatibility equation
! !
vil) =flen) + f vin)dx = ~falea) + [ vz =vall) (13)
c1 c2
is satisfied.

If the common contact pressure for |x| = [ is denoted by q{(x), then
equations (3) and (10) yield

pi(x) — po, |x] S ¢,
FelPi(k); %] = -po, e < x| <1, (14)
q(x) —po, |x] =L
But (Lowengrub [6]) if
F[F(E);x] =f(x), —»<x < (15)
then
%, [F(); 2] = " [0t 16)
ol —x
provided that f{x) is an even function of x. Thus
¢ pt(é)
FlPi(g)s o] = — = f_ e
1 ¢ podd 1 rqgl®~po
* Lif—x wJdL - o, 96 4D

where L; = (=1, —¢;) u (¢;, ) and L = (—, =) u (I, m). This repre-
sentation for F.[P;(£); x], when linked to equations (12), yields three
integral equations of Cauchy type, one on each of (—¢;, ¢;) and one on
L. In principle it is possible to solve for either q or p1, pe in terms of
P1, pg or g, respectively, but not only are the integral equations so
obtained extremely complicated but also it is still necessary to satisfy
the side conditions (6), (7), and (13). An approximate solution seems
preferable.

Chebyshev Polynomial Solution
An appropriate representation for p;(x), an even function of x with
(c? — x2)1/2 hehavior at +¢;, is
pi(x) = po(l — x2/cH1/2 Z a® Ugp—solx/c;) (18)
where Up(x) is the Chebyshev polynomial of the second kind. The
integrals in (17) involving p;(£) may be evaluated explicitly by using
the result (Gladwell [3])

11— 12U,y (1)dT
kil J‘—l 7T—t

_[Tat®), |t] <1,

1t - sign (£)(¢2 - D2 |¢] > 1,

where T',(t) is the Chebyshev polynomial of the first kind. Thus

1 J‘”" Pi(f)dg
o omd-a E—x
The contact stress ¢(x) is an even function of x, with (x2 — [2)1/2

behavior near x = [+ and with limiting value pg as x — «. A suitable
representation is

Rn(t) =

(19)

g a® Ron_1(x/c;). (20)
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(21)

. N
q(x) = po(l = t2)V2 4 pot (1 — tH12 3 b, Usn-1(t),
n=1

where ¢t = l/x. The integrals involving g{x) in (17) may then be
transformed into those of type (19), leading to

N
bilx) = (=)~19ipo {Rl(t) 1t 2 buRa(t)

- Z af R2n—1(x/0i)J- (22)

Thus equations (12) become

zPO{R1(t) +t Z bpRon(t) — Z al Tzn—l(x/_ci)] = fi(x), (23)
wherei = 1,2 and |x| < ¢;, and

, N N
41 {T1(t) +t Y2 5, Tont) — ¥ alP Roni(x/c1)
n=1 n=1

N
T a® Ron_r(xfcs) (24)

n=1

= o, {m) 403 b Ton(e) ~
n=1

where |x| 2 [, i.e., Jt] < L.

The functions Ri(t), tRa,(t) in (23), and the functions.
t " Rop—1{x/c;) in equation (24) are well behaved in the intervals | x|
< ¢; and |x| = [, respectively, and may therefore be represented in
their respective intervals by Chebyshev polynomial series. In (23)
write x = ¢;7, then t = I/x = 1/(k;7) where k; = ¢;/l, and we use the
approximations

N o
Ri(t) = R[1/(k;7)] = z e Tom—1(7) (25)
tRon(t) = [1/(kiT)]Ron[1/(kiT)] = 1 d#.)Zn Tom-1(1)  (26)

so that, on equating the coefficients of T's,,~1(7) on each side of (23)
we find

. N o
eg;) + Zl dr(;s),Zn bn - al(:l) = —Silsm,l: (27)
ne
wherei =1,2;,m=1,2,...N and
filx)/(9ipo) = —x/(ri¥ipo) = =Si7, Si=ci/(ridipo). (28)

/(eit) = 1/(k;t)

Equation (24) is treated in the same way; now xfe; =
and

(1/t)Ron~1(x/c;) = [h'/(k't)]R2n—1(1/(kit))

=k Z dmZn—szm—z(t)

[1/2 B + Z v Jp— sz(t)]. (29)

The prime in the foregoing summation indicates that the first term
is halved. The use of this approximation in (24) leads to

N N
o [2-k1 > dsg,.-las,“}= —oz{z—kz 5 ds?gn_la;%] 30)
= n=1
01{ —kl Z dm+12n 1(19)] =

N
—d [bm ~ky Y AP0, 1‘1(2)] (31)
n=1

form=1,2,...N.

The solution procedure is now straightforward. We suppose that
91, ¥g, or sufficiently d9/9, = T, and k1, ks (satisfying 0 < k; < 1) have
been chosen. Equations (30) and (31) yield

1= z MdB,; aP + Nod B, P (32)
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ki

Fig.2 Contours of I’ = 4,/ for given values of k4, k2

N
by = ZI MdP g 0P + Nad @501 aP) (33)

ne
where X; = k;0;/(91 + 93). Multiply the first term in (27) by the
right-hand side of (32) and substitute (33) for b, in the second term.
The result is 2N equations for the 2N coefficients a{, a'?. Assuming
(on physical grounds) that the homogeneous equations with Sy = 0
= Sy have only the trivial solution, we may write the solution of the
homogeneous equations in the form

. 2 .
ol =y al)s; o9
j=1

When p;(x) is given by (18), the equilibrium equation (6) becomes

2P/(wlpg) = k1a? = koal®, . (35)
Thus, on using (34), we find
2 2
k1Y AfYSj =k ¥ ARS; (36)
i=1 j=1

which, since k1, k3 are known, is an equation for S,/8s. Once S1/S5
is known, the values of 81 and Sy separately may be found by substi-
tuting the expressions (34) for all, ) in equation (32). At this stage
all the coefficients a(), ¢, b, are known; after verifying that the
contact pressures are compressive, there remains one final equation,
the compatibility equation (13) which may be written

c} c} ! l

1 2 ’ .

di+dyg=—+—— f vy (x)dx + f vy (x)dx. (35)
2r1 2ry €1 c2

This equation yields dy + d in terms of known quantities.

Numerical Results

For the case of two identical half planes, Alblas [1] found that
dpor _
l

where K, E are the complete elliptic integrals with arguments k = k;
= kg, and

2k -5 (36)
i

ard 2
L= 2[ENE - K) + k2KK").
2 =« i
All the figures refer to the particular case in which the obstacle is
symmetrical, so that ry = rg. Fig. 2 shows the contours of I" for given

(37)
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values of k4, ko; Fig. 3 shows those of 91por/l and Fig. 4 shows those
of r{dy + dg)/1% These results were computed as follows. Define T;
= kifS; = 9;pori/l. I ry = rothen To/Ty = d9/¢1 = T'. For given values
of k1, kg, an arbitrary value of I' = () was chosen, and T';, T were
computed as described in the section, “Chebyshev Polynomial So-
lution.” The value of T2/T;y = T'W) was computed and the calculation
was repeated with I' = T, T¢ was found in practice that T'4/T; was
most ingensitive to the chosen value of T so that two steps of the it-
eration were always sufficient to yield the value of I' appropriate to
those k1, k2 and r1 = ry. For k; = kg the results were compared to those
of equations (36) and (37). It was found that N = 5 was adequate for
k < 0.5and N = 9 was adequate for 0.6 < k < 0.9.

Figs. 5 and 6 show the contact pressure and normal displacement
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Fig. 6 The normal displacement on the free boundary when ¥4 = ¥,

on the free boundary when 91 = 5. Figs. 7 and 8 show the corre-
sponding quantities when &1 # ¥.

Comparison With a First Approximation

The numerical results show that for small k3, k3 the contact pres-
sures are approximately given by the first terms in (18) and (21). Thus,
to a first approximation,

pi(x) = poaf) (1 — x/cH12, q(x) = po(1 = 12/xHV2  (38)
vi(x) = (=)""19;po {Ry(l/x) — af’ Ra(x/c;)} (39)
Now equations (23) and (24) give
9ip {R1(U/x) — af) (/e = ~x/ri, |x| S, (40)
94 {l/x — aPRy(x/en)} = =9 ll/x — aP Rulw/ea)), |x] 2 L (41)

Now Ry(t) =t — (t2 — 1)V/2 ~ 1/(2¢) to the first-order approximation,
80 that

Oipole = a{d/k;) = —1/r;, (42)
(31 + 92) = (Fikral + Ook2aP)/2: (43)

But equation (35) gives k1a{? = koa{® so that k1a{’ = 2 and equa-
tion (23) gives

9ipol (Yo — 2/k%) = —1/r;. (44)
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If the obstacle is symmetrical then

4
9 B s 2
. r
e, SR (45)
Y1 4 l 4
. 2
k3 k}

The compatibility equation becomes

2 l l 2
dy— 2 4 91po f [R1 (—) -a{' R, (i‘—)}dx +dy— 2
2ry c1 X c1 2rg

+ Yapo fl [R1 (;i‘) -a®R, (f—)]dx =0, (46)
c2 . 2

which yields, when ry = rg,

(di+doy)yr R¥I+RE 2R2 2k}
= - T, — To, 47
12 T T 7
where
Ti=uj—uj'+Ink; = 2Iny;, uj=1+(1-kHY2  (48)
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The results obtained from this approximation are shown.on all the
graphs and it is clear that they in general show excellent agreement
with the computed results. The contact pressure is not particularly
closely approximated but it is still very closely proportional to (1 —
x2/c})l/2,
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Plates!

Exact Equations for the Large
Inextensional Motion of Elastic

The governing equations for plates that twist as they deform are reduced to 14 differential
equations, first-order in a single space variable and second-order in time. Many of the
equations are the same as for statics. Nevertheless, the extension to dynamics is nontrivi-
al because the natural coordinates to use to describe the deformed, developable midsur-
face are not Lagrangian. The plate is assumed to have two curved, stress-free edges, one
built-in straight edge, and one free straight edge acted upon by a force and a couple. There
are 7 boundary conditions at the built-in end and 7 at the free end.

Introduction ‘

Helicopter blades, aircraft wings, and inflatable buildings are ex-
amples of thin-walled structures that undergo large elastic deflections.
If shell theory is used to model the large motions of such structures,
then, except for rubberlike materials, the midsurface deformation
must be nearly inextensional. This is because the strains will be small
compared to the rotations. The degree to which inextensionality ap-
proximates the actual kinematic state depends on the geometric
boundary conditions, the nature of the external loads, and the distance
along the midsurface to an edge. Fortunately, the error in an inex-
tensional solution can be assessed a posterior: and used, if need be,
as an outer solution in a singular perturbation analysis of the original
problem. Indeed, even if plastic flow occurs, it may be reasonable to
assume that the major portion of the shell is in a state of elastic,
inextensional deformation.

The theory of large, inextensional motions of elastic shells is vir-
tually undeveloped. For example, it is only within the last year that
exact static equations have been derived for simplest, nontrivial case
imaginable, namely, the inextensional bending of an end-loaded
cantilevered plate [1, 2].

Nowadays, large computer codes are used to solve special cases of
the equations of motion of nonlinear shell theory. In developing new
codes of greater generality, it would seem desirable to incorporate near
inextensionality explicitly. Otherwise, most of the computational

1 This work was supported by the National Science Foundation under Grant
MOS-73-08659A02.
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ment. Manuscript received by ASME Applied Mechanics Division, April,
1980.
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effort may be consumed in generating displacement fields that pro-
duce small extensional strains.

As a first step in this direction we derive herein exact equations of
motion for an elastic, inextensional plate that twists as it deforms. The
plate is assumed to be bounded by two straight edges and two curved
ones. One straight edge is built-in and the other may be acted upon
by a force and a couple. The curved edges are stress-free. Inertial and
distributed external loads act over the deformed midplane of the
plate. We shall use the notation of [1, 2] and, for conciseness, refer to
these two papers extensively.2 We introduce a slight change, however,
to simplify the dynamic analysis: in what follows it is the left end of
the plate that is built-in and the right end that is free.

The deformed midplane of the plate is a moving developable surface
and thus of the form [1]

ylamnt) = x(et) + nulayt). (n

Here « is the angle that the generators in the developed midplane
make with the built-in edge, x is the position of the line B that bisects
the built-in edge and is orthogonal to the generators, n is distance
along a generator from B, and u is a unit vector along a generator; see
Figs. 1and 2 of [1].

The dynamic extension of the static equations developed in [1, 2]
is nontrivial because the natural set of coordinates to describe a de-
velopable surface, « and 7, are not material (Lagrangian) coordinates.
Consequently, whereas 7 equation suffice for static problems, 14 are
needed in dynamic ones. Seven boundary conditions are known at the
built-in end (@ = 0), and 7 at the free end (o = &). Numerical solutions
of these equations will be considered in a later paper.

2 We take this opportunity to correct a minor error in {2]: in equations (15)
and (65) replace sin vy by cos vy.
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Vector Equations of Motion

The first step is to add inertial loads to the force and moment
equilibrium equations in {1} and to switch from the independent
variable £, that measures distance along B, to a. Primes and dots are
used in [1, 2] to denote differentiation with respect to £ and «, re-
spectively. These two operations are related by p( )" = ( ), where
p is the geodesic radius of B. Let y** denote the acceleration with
respect to an inertial frame of a particle on the deformed midsurface.
Equation (69) of [1] then implies the following equation of conser-
vation of linear momentum:

F+a=pl), (2)
where, from (67) of {1},
Q= f(p~npdn 3
and
PO = f(p — g)my**dy. (4)

Here m is the mass/area of the undeformed midplane. We recall that
S is short for {7, where 7+ and - denote the (unknown) distances
along a generator to the curved edges; see Fig. 1 of [1].

For a plate that twists as it deforms, it seems best to take moments
with respect to the point x + pu on the edge of regression of the de-
formed midplane. Thus, from equations (70) of [1] and (12) of [2], we
obtain the following equation of conservation of angular mo-
mentum:

M+uX(pF+pP?—1)=0, (5)
where
L= f(p - n)?pdy (6)
and
P@ = f(p — n)?my**dn. (7)

Acceleration and Inertial Load Vectors

Let x and y denote the Cartesian coordinates of a particle in the
undeformed (= developed) midplane. The position y of the particle
during the motion may be regarded as a function of x, y, and t. By
definition,

v* =y (xy.t), (8)

where ( ); = 9( )/ot. In the developed midplane we have, from Fig.
1 of [2], the following relations between the coordinates (x,y) and
(en):

x = ployt) cos a + r{e,t) sin a — 7 sin & )

vy = pla,t) sin & — reyt) cos o + 7 cos a. (10)
Here p is the perpendicular distance in the developed midplane from
the center of the built-in edge to the generator « = constant, and r
is the distance along this generator from 3 to the foot of the perpen-
dicular; see Fig. 1 and equation (95) of [2]. Thus «and 7 are functions
of x, y, and ¢, even though we cannot express this dependence ex-
plicitly. From (1) and (8),
¥* = yaloynidor + yolamt)n + ye(a,n,t)
= a;(x + qu) + neu + x; + Nug. (11)
But
(12)

x = pt, x(0,t) =0,

where t is a unit tangent to B, and from equations (3) and (4) of [2],
‘= u + Am and v’ = —t, where m = t X u and X is the torsion/curvature

ratio of the edge of regression. Thus
y*=at(p—7])t+mu+xt+77ut. (13)

We now express a; and 7, in terms of p; and r;. Differentiating both
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sides of (9) and (10) with respect to t and noting from equations (54)
and (55) of [2] that

p=p—r, p0t)=0, r=p, riOx)=0, (14, 15)
we have
O0=low(p—n) +pleos o+ (ry — ) sin (16)
0= [a(p ~ ) + p¢] sin & — (r; — 1) cos a. (17)
Hence
(o =mas=~p;, n=re (18, 19)
and (13) reduces to
y* = —=pit+riu+x; + nug. (20)

Inextensionality implies that, in general, the geodesic curvature
of B does not vanish with the deformation, and, thus, neither do p
or r. More precisely, from Fig. 1 of [2], we have

S pBomBIas + riaiu@) - plaiT@ =0, ()

Here

T(a) =icosa+jsina, Ula)=—isina+jcosa (22, 23)

are unit vectors, tangent and normal, respectively, to B in the devel-
oped midplane, and 1 and j are fixed unit vectors, | pointing into the
plate and tangent to B at the built-in edge and j lying along the
built-in edge.

To obtain well-conditioned differential equations, i.e., to avoid
situations in which groups of relatively large terms must add to nearly
zero, we introduce in place of x the new dependent variable

z=x+ru—pt. (24)

Clearly, in view of (21), z does vanish with the deformation. From (12),
(14), (15) and equations (3) and (4) of [2], it follows that z satisfies the
differential equation and boundary condition

z=-—pkm, z(0,t)=0. (25)
In terms of z, (20) reads ' 7
v =z +pt+ (n—r. (26)

Again using the chainrule, ( )*=( )ea; +( )yme +( ), and
noting the differential equations for t, u, p, r, and z, we obtain

y** = Ap ~ ﬂ)—ipt Zm + z;:+ pty + (TI = rug. (27

Let

I,= f(p~n"mdy, n=0123, (28)

and assume, for simplicity, that m is constant. With the aid of equa-
tion (21) of [2] we have

8(14u)
I,=m f onde = mémH (L + W)+ — 1)/(n + 1). (29)
]

(The geometrical meaning of § and u may be found in Fig. 1 of [2]).
Inserting (27) into (4) and (7), we obtain for the inertial terms that
appear in (2) and (5),

PW = I, Ap:?m+ I(zee + ptes) + Joprue, v =12, (30)

where
Ju+l=(p_r)lu_'lu+1=q1u_lv+ly (31)
the seqond form of J,+1 coming from equations (52) and (95) of [2].
The Dynamic Finite Rotation Vector
In [1], Libai and the author introduced a finite rotation vectorr to
describe the position of the triad (1,u,m) with respect to the triad (i,j,k),

where k = i X j. In dynamic problems it is convenient to introduce the
vector s that measures the rotation of (t,um) relative to the triad
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(T,U,k). The reason is to obtain well-conditioned equations. Although
the triad (T,U,k) rotates, recall that T and U depend on « only and k
is constant. Thus, if the deformation is small, so will be s.

For conciseness, set (t,u,m) = (uy,up,ug), (T,U,k) = (Uy,U3,U3), and (1,},k)
= (e1,e2,e3). Then in terms of s [3]

u = Up+ [s XU + s X (s. X U;)]Q =555, (32)

where

@=(1+%s-5)"L (33)

In (32) i = 1,2,3, a repeated index is summed from 1 to 3, and the s;

are elements of a proper orthogonal (rotation) matrix. Note that s;;s;

= §;, the Kronecker delta. As —s inverts the transformation that

sends the triad (uy,ug,ug) into (Uy,Us,Us), it follows that s has the rep-
resentations

s = s;u; = s;U;. (34)

Substituting (34) into (32), we obtain the well-known representation

3]
sij = (1 — 5 Qspsp )by + (eijnse + 4 5:5))Q
= 5,']' + &y, (35)

where ¢;j, is the permutation symbol.
To derive differential equations for the components of s, consider
first the Frenet equations for the u;’s. From (97) and (98) of [1]

= pw Xug, (36)
where
pw = —Aug + us. 37
On the other hand, from (32),
u;' = 5;5°Uj + s U5 (38)
1t follows from s;jsz; = 6;; and (32) that
8ij'Uj = sij'sgjup = & (sij'Skj — SijSkj Iup. (39)

But the coefficients of the uy’s in (39) are elements of a skew matrix.
Hence there exists a vector p§) such that

siU; = pQ X u;. (40)
Furthermore, from (22) and (23),
5ijUj" = s;jk X Uj = k X u;. (41)

Inserting (40) and (41) into (38) and comparing the resulting equation
with (36) we see that )
pw = pd + k. (42)

Now the relation between r and w, as expressed by equation (108) of

[1], is precisely the same as that between s and €, i.e.,
sifu;=Q+LsXQ+1(Qs)s. (43)

Adding initial conditions, setting ( )’ = p( ), replacing pQ by pw
— k, and noting from (32) that

k=Us=u3+ fuz Xs+3sX (s Xu)lQ, (44)
we obtain the following component form of (43):
s =82+ % As3 — % Asosy, $1(0,t) =0 (45)
s = =N —sy—1Ase2, s9(0,t) =0 (46)
s3 = — 4 Asy — % Asoss, s3(0,t) = 0. 47
Components of the Inertial Loads
Let & = 9/dt. Then from (32) and (35)
V{w) = V(t;)U; = sp;V{ti)up, (48)
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where V(¢;;) is to be computed in terms of the s;’s from (35). Like-
wise,

V2(u;) = sp;V 2(t;;)up. (49)
Further, let
z=2zU; (50)
Then
V2(z) = V2(2;)U; = 55V 2(z;)u;. (51)
Inserting (49) and (51) into (30), we obtain
P = {65 1,1A + s;{1LB) + o1V 2(tg))]Ju; = PiWu;, . (52)
where
A =NV Bj=Yz) +pVity). (53, 54)
Component Form of (25)
Insert (32) with { = 3 and (50) into (25) to obtain
2°U; = —z;U;" — phsa;U;. (565)

As noted in (41), U;* = k X U; which, since Uy’ = k' = 0, is equivalent
to the statement U, = €,5Up, where ¢€,g is the two-dimensional per-
mutation symbol. Thus the component form of (25) is

2y =29 —pAsa, 21(0,t) =0 (56)
2y’ = —2z1— pAsap, 22(0,) =0 67)
23 = —phsgs, 23(0,t) =0. (58)
Component Form of the Equations of Motion
Set

F=Fu. (59)

Then, with (52) and equations (3)-(5) of [2], (2) implies that
Fy=Fo+ NF3+ PN, F1(0,t) =? (60)
Fy =F;+ Py, Fy(0,t) =? (61)
Fg = =A\Fi + P, F3(0,t) = ? (62)

For simplicity, assume that there are no distributed external loads

Ap = 0). Insert (52) and (59) into (5) and, as in [2], set

M=Mt+Tu+M,m (63)
to obtain the scalar equations
My =Ty = AMm + pFs+ Ps® =0 (64)
Ty + M, =0 (65)
M, + \M; — p'F; - P1® = (. (66)

It may be verified immediately that equations (16)-(49) of [2] are
unchanged, save P cos ¢ is to be replaced by F3 wherever it ap-
pears.

Nondimensionalization

All variables that appear in both the static and dynamic equations
are nondimensionalized by equations {(59)—(63) of [2]. The new vari-
ables that appear in the dynamic equations are scaled and nondi-
mensionalized as follows:

(zay23) = eL(Zo,23), a =12 67)

(F o, P, W), F3,PsD) = (eD/L)(€F »,6Po,F3,Ps), (68)
(P, Py) = D(PDPo®)  (sr50) = cuneSs),  (69)
(Sa3,930) = (batrtse) = €(Sambas), (taptss) = €2(Tqplaz) (70)
A = (eD/mL»A, (B,,B3)= (eD/mL3)(eB,,Bs) (71)
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In;Jn = an+1(7m7n), t= L2(m/D)1/2Z' (72)

In these equations ¢ = PL/D, where P is a measure of the vertical force
at the built-in edge, L is a typical length of the plate, and D is the
bending stiffness. ‘

If we drop overbars then of the equations needed in what follows,
only (35), (45)—(47), (52) for i = 3, and (62) and (64) change form;
(45)—(47), (62), and (64)-are given by (82)—(84), (90), and (91), re-
spectively; (35) breaks down into

Sap = Oap + Etap, S33 =1+ €g3 (73, 74)
tap = [€apS3 + B 5058 — § (sy5y + €2532)0,4]Q (75)
Sas = tas = (€ga5g T 5 €25453)Q (76)
S50 = t3a = (€apsp + § €25,53)Q (77
t3s = — 354548, (78)
where
Q= [1+1 5050+ 537)]7, (79)

and (52) implies that P35 takes the form

P3® =1, 1A + sgs[[,Bs + J41V2(t23)]

+ 2543ll,Ba + Jo1V2(E2a)].  (80)

The Complete Set of Dimensionless, Dynamic
Differential Equations

Scattered throughout [2] and the present paper are differential
equations for the unknowns [+, s = 5;U;, z = 2;U;, F = Fu;, My, M,,,,
A, and u. These are equivalent to a set of 14 scalar equations and are
listed next together with the known or unknown values of the 14 de-
pendent variables at & = 0. These equations contain a number of
auxiliary quantities that, ultimately, can be expressed in terms of ,
the 14 dependent variables, or prescribed load and geometric pa-
rameters. To avoid too much rewriting, we have preceded each dif-
ferential equation with a pair of braces containing information giving,
first, the source of the differential equation, and second, the equations
that define the auxiliary variables. Thus, for example, {{56)—(58); [(51),
2], (74), (77)~(79)} means that the differential equations are (56)—(58)
of the present paper and that the auxiliary variables on their right
sides are defined by equation (51) of [2] and (74) and (77)-(79), of the
present paper. Equations for the angles 5. and . can be found in
terms of [+ once the equations y = f..(x) for the curved edges of the
undeformed midplane have been specified. (For example, for a
quadrilateral plate, these angles are constants with S = v.+.)

In these equations there are 7 unknown boundary conditions at the
built-in edge o = 0. Six of these represent the unknown components
of the force and moment vectors. The seventh, u(0,¢), represents a
measure of the distance from the center of the built-in edge to the edge
of regression. At the free end, @ = &, there are also 7 boundary con-
ditions: the force and moment must be prescribed and éu must be
equal to dimensionless length of the free edge.

{[(41), 2]; [(33), 21}

I+ = dsec(a—fB4)eos (vy—B4), 1+(0,t)=0. (81)
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{(46)-(47)}
s1'=s2+ 4 e2x(s3 — §s189), s1(0,t) =0 (82)
sg=—N—s1—5e¥so? s2(0t) =0 (83)
85 =—4As1—Fe2so83, s53(0,6) =0 (84)
{(56)-(58); [(51), 2], (74), (TT)-(79)}
21 =zg2— pAsz, 21(0,t) =0 (85)
2y = —z1 — pAssz, 22(0,t) =0 (86)
23 = —pAszs, 23(0,t) =0 (87)
{(60)-(62); [(33), (51), 2], (29), (31), (52)—(54), (73)-(79)]
Fy=Fa+ AF3+ P10, Fi(0,t) =7 (88)
Fy=~F) + P, Fy(0,t) =2 (89)
F3 = —e2\F1 + Pg®, Fy(0,¢) =? (90)

{(64), (66); [(26),.(33), (44), (49), (68), 2], (29), (31), (52)—(54), (73)=
(791

1)

M, = MMy, — In (1 + p)] — pF3— Ps®, M, (0,t) =?
My = =AM, + pF1 + P1®, M, (0t) =? (92)
{l(46), (66), 2]; [(48), (49), 2]®
A= [(L+ 3 )M, +6(1 + pw)Fs — MuAl/E,
MO,t) = =T, (0,t)/In [1 + u(0,t)] = ? (93)4

w=(1+ (A — /N0 + wFs]ln (1 + )
— uMN/E, p0f) =7 (94)

Conclusions

Although we have ended with a relatively large number of equa-
tions, it must be emphasized that they involve only one spatial vari-
able. This is a consequence of incorporating explicitly the constraint
of inextensionality. Also these equations apply to plates of essentially
any planform. '

In a subsequent paper we intend to compute numerically the mo-
tion of a skewed quadrilateral plate that is subjected, at its free end,
to a static dead load that is then released suddenly.
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Manson has given a well-known conventional approach to thermal shock problems in a
plate. In his investigation, however, the inertia term and the thermomechanical coupling
term were neglecied in the governing field equations. As a result, the treatment became
quasi-static, and then it was inadequate to model thermal shock problems having a steep
time-gradient in the thermal and mechanical fields. In the present paper, we examine a
rigorous treatment to find the exact solution for thermal shock problems in a plate when
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the following two effects are taken into account:

(a) Dynamic treatment due to the presence of an inertia term.
(b) A coupled thermal stress problem in the presence of a thermoelastic coupling

term.

Thus we can determine the significance of these effects on the thermal stress distribution
when a sudden change of temperature occurs.

1 Introduction

When thermal stresses are generated by a sudden change in tem-
perature, this is called a thermal shock problem. In Manson’s well-
known approach [1] on this subject, the conventional treatise for
thermal shock problems in a plate under an unsteady-state temper-
ature field, rests on the assumption that the inertia term may be ne-
glected in the governing equation of motion, and that the thermoe-
lastic coupling term may be neglected in the heat-conduction equa-
tion. This hypothesis, based on the quasi-static process, is known to
yield useful results in practical engineering applications without
significant errors.

Strictly speaking, however, in a conventional analysis such as
Manson’s, time enters only as a parameter in transient thermal and
mechanical problems. It is evident that the quality of approximation
must depend both upon the size of the relevant intrinsic inertia or
coupling parameter and on the nature of time variations inherent in
the temperature distribution. In particular, if the temperature field
exhibits sufficiently steep time-gradients, dynamic effects disregarded
in the traditional treatment of the problem may become significant.
When the inertia term is taken into account, the character of the
problem is considerably altered.

Moreover, if presence of a thermoelastic coupling is taken into ac-
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count, an exact analysis would require the simultaneous determina-
tion of stress and temperature distributions.

In order to check Manson’s theory, the present paper has consid-
ered both effects separately for the thermal shock problem in a plate,
and we have learned which effect is most significant for determining
thermal stress distribution.

From an analytical point of view, the effect of the coupling term
appears in the heat conduction equation, and the effect of the inertia
term appears in the mechanical field equation. Therefore, it is an
important and interesting problem that the treatments are individ-
ually pursued for the uncoupled dynamic problem and for the
quasi-static coupled problem when the boundary and initial condi-
tions used in a plate are the same as those of Manson’s problem.

From our results, it seems more important to consider the coupling
term rather than the inertia term for ordinary metals.

2 Dynamic Thermal Stresses in a Plate

In this section, first we limit consideration to the uncoupled dy~
namic problem of thermoelasticity. :

The inertia term has been taken into account in several thermoe-
lastic investigations since the appearance of Danilovskaya’s [2] and
Mura’s [3] original papers. Most papers deal with the problems of
infinite or semi-infinite regions, and present only the first wave of the
thermoelastic stresses. Only Singh and Puri’s papers [4, 5] deal with
the dynamic thermal stresses in a plate with finite width. However,
their investigations found solutions for cases having an infinitely large
heat-transfer coefficient in a surrounding liquid, and obtained only
the components of thermal stresses normal to the boundary (oy5). As
for thermal shock problems, the component of stress normal to the
section (g,y) is greater and the solution for this stress component is
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Fig. 1 Boundary conditions on a plate

more important. Moreover, in Puri’s work, numerical results were not
given, so we cannot imagine any of the characteristic behavior of a
thermal stress distribution due to the dynamic effect.
As shown in Fig. 1, an infinitely long plate with width 2/ is suddenly
heated by liquid at the high temperature T'.
The uncoupled heat-conduction equation is given by
KT,xx = T,t (1)

in which the comma denotes partial differentiation with respect to
a variable and T' is the temperature change, « is the thermal diffu-
sivity, and ¢ is time.

For the sake of convenience, we introduce the following dimen-
sionless quantities:

X=x/,Y=y/l,Z=2/l, Tp=T/To, tp=«t/I2, H=hi (2)

where b is the relative surface heat-transfer coefficient. Upon sub-
stitution of these in equation (1), we have

Tp,xx = Tpup ' 3)

The initial and the boundary conditions can be written in the non-
dimensional forms

Tp(X,00=0 at tp=20 (4)
Tpx+H(Tp—-1)=0 at X =4+1 (5)

Applying the Laplace transform over time, denoted by a bar, the
system of the heat-conduction equations is reduced to

Toxx=pTp 6)
" Tpx:tH(Tp-p =0 at X==z1 (N

where p is a parameter of the Laplace transform.
It follows from equations (6) and (7) that

o H cosh (\/EX)
b p(/p sinh /p + H cosh /p)

Inverting the Laplace transform, we obtain the temperature solu-
tion

(8)

@ 8in w, cos (w,X)
—En BOS Wn?) .

Tp=1-2 3% - ~on’tD 9

n=1wp + 8in w, cos w,

where w, are the positive roots of the equation
wn tan w, = H (10)

The one-dimensional thermoelastic equilibrium equation with the
inertia term can be expressed as :

Uyxx — vp_zu,tt ={1+ /(1 — V)}aT,x (11)
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where u is the displacement component in the x-direction, » is Pois: .
son’s ratio, E is Young’s modulus, p is the density, « is the linear
thermal expansion coefficient, and

vp?= (1L — v)E/{(1 + v)(1 — 2»)p}

For the present problem, the stress components can be expressed in.
the dimensionless forms

oxx = {(1 - »)/(1 - 2»)}{up x + »(Cip + Cop)/(1 — v) ~ Tp}

oyy = [{(1 - »)/(1 = 2n}}iv(upx + C2p)/(1 = ») + C1p = Tp} =
’ (12
ozz = {{1 = »)/(1 = 2v)}{r(up x + C1p)/(1 — ») + Cop — Tp}

where
up = u{(l — »)/(1 + v)laTe}

{Cip, Copl = {(1 — v)/(1 + v)aTolfe1(t), ca(t)

{oxx, ayy, 022} = (1 = V)/EQTN02x,0yy, 022}

(13)

and c1(t) and ca(t) are the normal strain in the y and z-directions,
respectively, to be determined by the boundary conditions. It follows
from equations (11) and (13) that

up,xx = V™ 2upny = Tnx (14)
where
V = vpl/k
Now we assume that the initial conditions are given by
up(X, 0 =0, Cip(0)=Cep(0)=0 (15)

Applying the Laplace transform to equation (14) with conditions (15),
it follows that

up,xx — (p%/V¥up = Tpx (16)

~Substituting equation (8) into (16), the solution of Zp is therefore,

ap = A sinh (‘Pi() + H sinh (v/pX) :
V] 1 -p/VAp+/p (v/psinh+/p+ H cosh+/p)
(17)

where A is an integral constant.
Applying the Laplace transform to the first equation of (12) with
the conditions of (15), we have
pX

_ 1—-v|p
N P 4 coshZ>
XX 1—-21/[V sty

+ H cosh /pX
V2(1 - p/V2)(+v/p sinh /p + H cosh /p)

+—— (Cip+ Cap)| (18)
1—-v»

For the traction-free surface, the normal stresses must vanish at the

boundaries
oxx=0 at X =zl (19)

Substituting equation (18) into equation (19) we obtain

H coshv/p
V2(1 — p/V2)(y/p sinh v/p + H cosh \/p)

+——(Cip+Top) =0 (20)
1—v

%A cosh (p/V) +

The remaining boundary condition is given for the following three
end conditions:

(i) The displacements are not restrained in either the y and z-

directions
1 1
f FyydX = f FuzdX =0
-1 -1
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(ii) The displacement is restrained in the z-direction (or y)
only

1 —
f FrvdX =0, Tep=0 29)
(iii) 'The displacements are restrained in both directions
Cip=Cap=0 (23)

By using the foregoing conditions of equations (20)-(23), 4, C1p,
and Cap can be determined, and then the subsidiary solution of Tp
can be obtained. Thus, applying the Laplace inversion formulas with
the theorem of residue, the final expression of up can be expressed
as

=hX-2Y
up = & ngl 1+ Q,V Y (w, + sin w, cos wy)

in wp X 1-2 i
x[__snw +{Qn cos wn—nk( yV+ Q,,) £ wn}
I—v wWn

—wnl .
e~ 9n"tD gin w,

wn
% sinh Q,X ]
@n2(1 — 797k Qn " tanh Q) cosh 2,

—2H Y. {(Kplx —~LaGr) cos (Vpntp)
n=1

+ (K,Gr + Lply) sin (Vpnkt[))} sin ppe X (24)

in which the subscripts & to n are used to indicate the foregoing
boundary conditions of equations (21)—(23), and then 1, is taken as
follows:

m=2v, me=v/(l-»), 93=0, (25)

and »
E=0-0»)/0+v), E2=1-v, &=1, Q=w,2V"],

Ap = anp Dy + H cos app, Br = ankEr + H tanh oy, sin apg,

Ky = (0nrArV 1 = Be)[(1 + pap?V—3)
X(Ar2 + Bp2){ppe? = namk (1 — nane)i sin pne]™,
Ly = (Ap + preBr V" Y)Kr/(Par A V™1 — By),

Dy, = tanh o, cos au, — sin ang,

I = pne V1 cos onp — (mi/2ani)prrEr V-1
+ (1 — 20)Dp/(1 — »)}

Gr = —=pnx V=1 tanh app sin apr + (7%/2008)
X {(1 — 20)ER/(1 = v) — prxDr/V},

Ej, = tanh anp €08 otng + Sin app,  ank = Vpae V72 (28)
where pp. are the positive roots of the equation
€08 Pk — (M20k SI0 Ppp)ppr "L = 0 @7

In a similar way, after the inversions, coefficients C1p and Cyp can
be uniquely determined.

Substituting the foregoing results into equation (12), the complete
expressions for thermal stresses are

1-v 2
2

1—2lln=1

Oxx =

% 2 sin wy, - =980
(1 4+ Q, V1) (wy, + sin wp cos wp){1 — nonk tanh Q,/Qy}
% {'ﬂk (1 - Qp + Qn) {cosh QX 1] sin wy,

1—-vp 7 cosh 2,

Wn
NNk tanh {,

+ (cos wy, — cos wpX) v

+ {cos w, X — (cosh 2,X cos w,)/cosh QnIQnV“ll

+2H((1 = 0/ = 2] T (Kuli = LuGi) cos puaVip (28)

" Journal of Applied Mechanics

+ (KpGg + Lply) sin ppi Vip}

X (¢ c08 Ppr — €08 preX)Pnr  (28)
(Cont.)

1—py =

oYy =
1—2pp=1

% 2 sin w,, - e~“n?tD
(1 + Q, V- Yw, + sin w, cos w, {1 — (o tanh Q,)Q, Y

x [(1 -~ 2v + Qﬁ)[ cosh 0, X o ]
1—-v \% 2k cosh Q, ,k

sin
X =+ (Pp €08 Wy — Mk €08 wpX)(ns tanh Qp)/V
Wn

+ Q,V-Ycos wnX — v cosh w, X cos w,/(1 — ») cosh Q)

+ {(1 — 20)/(1 — »)}{1 — name tanh Q,,/Q,} cos wnX]

+ 2H{(1 — »)/(1 - 20}l S_fl (KL — LaGr) cos pm Vip

+ (KrGr + Lily) sin ppe Vip} X (g sin ppy — Py €08 pppX)
+ (pr — ¢1)  (29)

where ¢1 = 1, 2 = 1, ¢p3 = 0.

For the sake of brevity, the expression of ¢zz is omitted here.

It is obvious from equations (28) and (29) that thermal stresses can
be represented as the sum of the term decaying exponentially with
time and the term oscillating as a pulse with time.

Numerical Results

Numerical calculations based upon the foregoing derivations were
carried cut for the first end Condition (i). In our computations we
adopt the following values as material constants:!

v=1/3, H=10, V=100

In evaluating the eigenvalues in equations (10) and (27), we found
50 terms by Newton’s approximation technique. The calculation of
the stresses was truncated at 50 terms, and it was successful enough
to obtain convergence. Figs. 2 and 3 show the variations in thermal
stresses on the normal section with thickness for several dimensionless
times. Figs. 4 and 5 show the variations in stresses at the middle sec-
tion and at the boundary surface with dimensionless time.
Throughout the figures, the classical solutions are plotted as dotted
lines.

The maximum value of oxx occurs at the middle surface of the
plate. However, since the maximum oyy or ozz is much larger than
the maximum oxy, it is very important to find oyy and ozz.

3 Coupled Thermal Stresses in a Plate

Next, we consider only the effect of the coupling term for the same
problem in a plate.

For coupled thermal stress problems, there have been several ap-
proximate solutions for a short time period in the works of Hetnarski
and others [6-8]. However, they only treated the problems for the
infinite or semi-infinite region, and for limited time of heating.
Therefore, there has been no rigorous solution for the plate with a
finite thickness for the whole time period.

As was noted earlier in this paper, in a precise analysis of thermal
shock problems, the treatment requires simultaneous determination
of temperature and deformation due to the possibility of a large
coupling parameter or a large volumetric strain velocity. For the
present case, the corrected heat-conduction equation can be written
as

Tpxx — Tpup = 6(up,x + Cip+ Cap)sp (30)

1 We use exaggerated value for V to find a particular behavior of the stress
propagation due to the dynamic effect; see Table 1.
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-005 Fig. 4 Propagation of dynamic thermal stresses ¢ yy in the middle plane of
the plate
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V=17 ) 0
-01%
L . . -04 =y —
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Fig. 2 Dynamic thermal stress distribution of g xy in cross-sectional direction
for very short time N
o =0.21—v =100
l H=10
T — t=0008 — DYNAMIC
S RN , - QUASI-STATIC
o . 3\
ol L L |
0 02 04
tD
-01 Fig. 5 Dynamic thermal stresses variation of ¢yy on the surface with
time ,
-02 Applying Laplace transforms to equations (30) and (32), we obtain
Upxx = Tpx (33)
Tp.xx = pTp = 0p(@p,x + Cip + Tan) (34)
-03F—v =100 Solving the foregoing two equations simultaneously, we obtain
3 = 33 Tp=AcoshqX = 8/ + O)(Tip+Top+ D) (35)
—— DYNAMIC p = (A sinh gx/q — 6X(Cip + Cap)/(1 + 8) + DX/(1 + 5) (36)
04— .. QUASI-STATIC where A and D are integral constants, and ¢ = /(1 + o)p . ,
Substituting the results of equations (35) and (36) into equations
(12), we have
-05 ' Fxx = v{Cip + Cep + (1 ~ »)D/n}/(1 — 2v)
0 02 74 086 08 1 _ - -
X 0 oyy= — A cosh ¢X + i (: t (22) 13:)?6”3
Fig. 3 Dynamic thermal stress distribution of g yy In cross-sectional direc- 7)( )
tion v+ (1= »)8)(Cop + D) @7
‘ 1-2v)(1+8)
where 6 is the coupling parameter ozz=— A coshgqX + w+ (= »dlCip+ D)
1~ 2p)(1 ~
(L4 »EeT* b ( v)(1 + v) e .
,———“—(1_”)(1_2y)p0u . +S v+ (2 ~ 3»)8jCap
Th ation of equilibrium is given b =20 +9)
e equ of equilibrium is given : _
q a4 g y Unknown constants A, C1p, Cop, and D can be determined by the
up,xx = Tpx (32) ’conditions of equatiqns (7), (19), and (21)—(23).
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Fig. 6 Coupled temperature varlation In the cross-sectional direction for the  Fig. 7 Coupled temperature variation in the cross-sectional direction for the
Boundary Condition (/) Boundary Condition (/i)

10 T - ,
———— §=0 :’ //,
It follows that the subsidiary solution can be expressed as o 6=02 // 7/
Tp = A(cosh ¢X — R sinhq/q) 05 ,// }
X . — —
Tip = A(sinh ¢X/q — PX sinh q/q) e
- / !
oXx = 0 (38) /
oyy = A(— cosh ¢X + @ sinh q/q) 0 e — ot
10° 107 10° . 10!
Frr= Al— . ) 0
ozz (= cosh ¢X + S sinh ¢/q) Fig. 8 Coupled temperature variation with times
where .
A = (H/p)(q sinh ¢ + H cosh ¢ — HR sinh ¢/q)~1
P, Q, R, and S are to be taken for each boundary conditions of (i)~(iif), . l _
respectively ’ 02— & ;g 1
OP=2p+Q-»)d/li+v+31—-v)8, Q=1, n
) et
R=21-20)8/1+v+3(1-»)8), S=1, 2o
b ™
@P=p+Q-»dfL+20-18, Q=1, (39) AN
. N
R=(1-2)0/(1+2(1 -0, S=P, 02 A
i) P=Q@=R=S=0 R
\\
Applying the theorem of residue and inverting the transforms, we \‘\
obtain -04
© N
Tp=1- Y B,fcos (0. X) — (R sin w,)/wple~wn*n/(1+8)  (40) \
n=1
- ol — oLl : s
up = (X — Y Bplsin (0, X)/wn — (P sin wp) X/wy}e ~on?tD/(1+8) 107 107 10° to o
=1 :
" (41) Fig. 9 Coupled thermal stress variations of g yy with time for Condition(/)
oxx =0
ovy=—1— T Bal—cos wnX + (@ sin wn)/waeern/1+) B, = Zentnis (44)
n=1 i wn? + w, sin w,, cos w, — 2R sin 2w,
672=— £ = 3 Bpl—cos wnX + (S sin wp)/wnle—en¥0/1+2) £=(1-»/0+v), n={=0, forCondition (@),
n=1 “g=1-vp, 5=0, {=1—-yp, forCondition (ii),
(42)

¢=n={=1, forCondition (iii).

where w,, are the nth positive roots of
Numerical Results

H - 2 4+ HR) si =0, 43 X
n €08 wn ~ (wn ) sin n v “3) The foregoing solutions will be illustrated numerically by the fol-

and B,, £, 5, and { are given by the forms as lowing values of material constants:
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Fig. 10 Coupled thermal stress variations of oz with time for Condi-
tion( i)

v=1/3, H=10, §=0.1

The foregoing coupling parameter is representative of commercial
alloys. For example, when T* = 293°K (20°C), typical values of the
coupling parameter § are

aluminum alloy = 0031, lead = 0.079.

Figs. 6-8 show temperature variations with thickness and dimen-
sionless time when § = 0.1, 0.03, and 0 for the three boundary condi-
tions. Figs. 9 and 10 show the thermal stress variations with the di-

mensionless time and thickness for the Condition (i) and (ii). In all -

the figures, the dotted lines express the results of uncoupled cases.
It is obvious that there is a distinct difference between the coupled
and the uncoupled treatment. As is seen in Figs. 9 and 10, one observes
that the maximum stress at the surface must be decreased in the first
short period of heating when the coupling effect is taken into ac-
count. ’

4 Conclusion

There have been a lot of papers which have dealt with coupled
dynamic thermoelasticity. However, most of the papers solved only
pure one-dimensional problems for an infinite or a semi-infinite re-
gion, and only oxx was obtained in their results. In engineering
thermal shock problems, it is more important to consider the problem
of a finite domain having moderate thickness, and to find the stress
component oyy or ozz for the actual engineering problems, even if
it is limited to one-dimensional treatment. Moreover, in industrial
machine design, it is a truly important problem which effect is to be
considered in calculation as well as being theoretically interesting.

This paper is divided in two parts, dealing, respectively, with inertia
effects and thermoelastic coupling effects. First, we reconsidered
results of the dynamic problems discussed in Section 2. The present
exact analytical stress solution, which vanishes at time t — «, is valid
for the whole time interval, while Singh’s solution is valid only for the
short-time interval.

In general, the magnitude of this dynamic effect depends on the
parameter V = vpl/k. In the case of V = 100, adopted in the present
analysis, the dynamic effect is fairly large in stress distributions for
Gxx, Oyy, and o,,. However, if we take [ = 1 cm in computing for an
actual steel, then the value of V becomes very large, that is, V = 5.18
X 108, For this value, therefore, in actual problems, the corrections
introduced in the foregoing from the present calculations are so small
that the dynamic thermal stresses may be approximated closely by
a quasi-static solution. In other words, the ratio of dynamic to

118 / VOL. 48, MARCH 1981

Table 1 A glance at dynamic and coupling parameters
Fundamental equation:
(Dynamic)  u,yy-T uyyy = T,y (Pav72) (18)
{Coupled)  T,,,-T,, = Slusytertey),, (30)
Parameter Materials
mild steel aluminum Tead
r 3.78x10718 5.95x10" V7 7.23x707 '8
8 0.0083 C 0,03 0.079
where T=293%, Z =10cm

quasi-static values of thermal stresses is unity for a large value of V,
and hence the dynamic effects can be neglected in usual materials.
Thus Manson’s formula can be approximately justified when one
considers the dynamic effect of thermal shock problems.

Now, let us consider the thermal shock problems in a plate when
considering coupling thermoelastic problems in the absence of an
inertia term. It appears from Figs. 6-9 that coupled solutions exhibit
explicit differences between the coupled theory and classical ones in
temperature and thermal stresses, even if computation is carried out
for practical engineering materials. For the temperature solutions,
for example, the ratio of coupled to uncoupled values is about 5 per-
cent smaller for § = 0.03 and ¢p = 0.4. This means that the coupling
effect reduces temperature rise, and the thermal stresses are slightly
relieved in the beginning of the thermal shock for the Boundary
Conditions ({)-(iiz). However, the thermal stresses become slightly
larger than the uncoupled results after some time interval, due to the
delay in temperature rise between the outer surface and the middle
one. As a whole, the maximum thermal stress is larger in the case of
the coupled theory. Therefore, it is necessary to modify Manson’s
uncoupled quasi-static formula.

In summary, as illustrated in Table 1, it should be pointed out that
the coupling parameter in a fundamental heat-conduction equation
eventually appears in value to effect the temperature distribution.
Hence, we can guess that the dynamic parameter gives very small
effect.

In conclusion, it is more important to consider the coupled effects
than to consider the inertia effects for thermal shock problems be-
cause the coupling effects are much larger than the inertia effects for
ordinary metals. In the usual case, inertia effects may disappear in
pure thermal stress problems in contrast to the coupling effects which
result in a small lag in the stress distribution.
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The acoustoelastic effect is investigated for the Rayleigh surface wave propagating in a
homogeneous isotropic material. The initial deformations considered are uniform and
nonuniform only in the direction of depth. The formulas for the velocity change versus
the change in the applied static stress are derived in the first-order approximation. The
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and the velocity change proportional to the principal strains. To be noted is the result
that the Rayleigh wave becomes dispersive under the nonuniform stress state, depending
roughly on the product of the wave number and the characteristic depth over which the
stress varies. The dispersion is remarkable for the relatively low frequency and diminishes
as the frequency increases. The analytical results are verified by measurements with

mild-steel samples on the basis of the sing-around technique.

1 Introduction

The relationship between the stress in solids and the characteristics
of elastic wave propagation has been studied through the years as a
branch of the nondestructive evaluation (NDE) of materials. One
hopes to provide a new and powerful technique for the stress mea-
surement by means of ultrasonics. The basis of study is the stress-
induced change in the propagation velocity, which is referred to as
acoustoelastic effect [1-5]. The property of this effect depends on the
material nonlinearity and the type of wave propagated, including the
directions of propagation and polarization. Linear relationship for
the velocity change and the change in the applied static stress has been
confirmed experimentally within the elastic region of most materials
[1, 3, 5]; an exception is copper [5]. )

Main part of the experimental work reported up to now has been
confined to the usage of ultrasonic bulk waves, i.e., longitudinal and
transverse waves. By the bulk wave acoustoelasticity, the applied or
residual stress averaged over the total path-length can be measured,
provided that the second and third-order elastic constants and initial
anisotropy are given in advance, and vice versa. One of the short-
comings of current bulk-wave usage is the inability to detect the
through-wall stress distribution, for example, the residual stress in
cold-rolled plate. In some applications, moreover, the knowledge of
the surface stress is only required. The acoustoelasticity of the Ray-
leigh wave [6] is hopeful for such possible applications, although it
has been long untried. The Rayleigh wave travels the free surface of
solid half space and the depth of penetration into the solid is ap-
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proximately one wavelength. Therefore, in the case of nonuniform
stress state, the Rayleigh wave acoustoelasticity is expected to depend
on the frequency. The main purpose of the present research is to verify
this expectation by both analysis and experiment and discuss the
property of this type of Rayleigh wave dispersion.

The Rayleigh wave acoustoelasticity was first analyzed by Hayes
and Rivlin [7], together with that of the Love wave. For aluminum
alloys, Martin [8] investigated the relative effects of stress and pre-
ferred grain orientation. Also, Adler, et al. [9], utilized the Rayleigh
wave velocity change to measure the residual stress of circumferential
welds in pipe. These works, however, restricted themselves to the case
of uniform deformation, so that the Rayleigh wave dispersion due to
stress application was neither discussed nor observed. In this paper,
we shall first analyze the Rayleigh wave acoustoelasticity in the uni-
form case and present the experimental data from the uniaxial tensile
loading. The velocity change shows good agreement between analysis
and experiment. The formula for the nonuniform case is next derived,
which shows the Rayleigh wave dispersion as a function of the degree
of stress variation within the penetration depth. The experiment with
the simple bending of plates, where the stress varies linearly with
depth, supports the analytical result. In the experimental work, the
transit time variation of the Rayleigh wave in the megahertz range
is measured by the sing-around technique.

2 Basic Equations
We are concerned with the Rayleigh wave propagation on the free
surface of a semi-infinite homogeneous isotropic material which is
initially under static deformation. The theoretical foundation of this
problem has been established on the basis of the second-order elas-
ticity [4, 10] and here we will only outline the important results.
The infinitesimal displacement w;, superimposed on some given

stress state is governed by [4]
2wy, o

2wy,
+— (Sklmn

=g . (1)
ot2 ™ ox0xm | om

bwm)
Oxn ’
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Skimn = AOkiOmn + 1 (OemSin + OpnOim)
+ [(—)\ + v1)0pibpn + (—u + vo)(Opm b + 61",51,,,)]9
+ 2(A + v2)(eniBmn + emndi1)
+ 2(u + v3)(€hmOin + €knim + €imOhn + €1ndkm), (2)

where e = ey, a Cartesian coordinate system x; (i = 1, 2, 3) specifies
the position in the initial deformed state, p is the mass density, og;
the stress, and e the strain in that state. There holds the generalized
Hooke’s law between oy; and e;. The second and third-order elastic
constants are denoted by (A, 1) and (vy, vo, va), respectively. The latter
characterizes the material nonlinearity in the first-order approxi-
mation. The fourth-order tensor S, which carries the slight anisotropy
due to the stress, can be considered as the elasticity tensor for the
prestressed isotropic material. Since the acoustoelastic effect is dis-
cussed to the first-order, higher-order terms in the initial deformation
gradients have been ignored. Hereafter, we employ summation con-
vention for every repeated suffix unless otherwise mentioned.

Let us consider a solid half space occupying the region x2 = 0 and
assume that the stress acting is uniform in the whole region or a
function of the depth x5 only. Moreover we take the coordinate axes
so as to coincide with the principal directions of stress. Then, from
the equilibrium equation and boundary condition, we have o3 = 0
for k # | and 092 = 0. When the Rayleigh wave propagates in the
x1-direction, the problem degenerates to two-dimensional and the
displacement associated with the Rayleigh wave has the form

w; = fi(x9) exp [ik(x1 — V)], (=12 (3)
and w3 = 0 just as the classical treatment. The component w3 corre-
sponds to the SH mode which is also possible in the semi-infinite solid
but now independent of the Rayleigh wave. In equation (3), & denotes
the wave number, V the phase velocity, and f;( = 1, 2) the amplitudes
that depend on the depth.

One more assumption is that the path of the Rayleigh wave is along
a straight line. Then, the boundary condition can be written in the

following simple form [10]:

Guli+ ouli=0 at x9=0, @
where
, ow, ow oWy ow,
= =k —+ Opm——+ Ot — + Shimn —, (5)
Xm X X Oxn
and
, fa} 9 Is
Ij== z,z In ( Ym w")—z B ®)
0x, OXm, oxi

are the increments owing to the displacement w, respectively, in the
stress and the unit normal to the boundary surface. Making use of the
fact that!=1[0,~1,0]7, w3 = 0, and w; (i = 1, 2) isindependent of x3,
we find the relevant boundary condition in terms of f;

Dfy +ifs =0
St122f1 + S2222Df2 = 0
where D = d/d(kxs). Since the particle motion by the Rayleigh wave
is confined to the vicinity of the free surface, the amplitudes should

decay with depth
Substitution of wy, into equation (1) leads to

] at x9=0, (N

[D(S1212D) = (011 + Sun1) + uV¥HVEfi
+ i[(S1212 + S1122)D + DS1219)f2 = 0

[D(Sag29D) = (611 + S1912) + 1V2/VEIf2
+ i[(S1212 + S1122)D + DSiy9lf1 =0, (8)

where V4 = u/p. By setting

f1 = =i[{S1212 + S1122)D + DS19)9]F,

9
fo=[uV%/V} = (o1 + S1n1) + D(S1212D)]F, » @

the first of equations (8) is automatically satisfied. Then, applying
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equations (9) to the second of equations (8), we have the fourth-order
differential equation for £

[uV2/VE = (011 + S1111) + D(S1202D)][uV2/VF — (11 + S1212)
+ D(S2022D)]F + [(S1212 + S1122)D + DS99}

X [(S1212 + S1122)D + DS1212)F = 0. (10)

Equation (10) and boundary condition (7) are the basic equations for
the following analysis.

3 Uniform Deformation

The acoustoelastic analysis for the uniform deformation and cor-
responding experimental data are to be presented in this section. The
analytical result does not differ essentially from that of Hayes and
Rivlin [7].

Analysis. When the initial deformation is uniform, equation (10)
reduces to

[V VE = (611 + S1111) + S1202D2[uV2/V} — (a11 + S1:12)

+ Sg209D?|F + (S1912 + S1122)2D2F = 0. (11)

The general solution to this equation is

4
F =3 A; exp (—m;kxg), (12)
i=1
whete A’s are the constants and m’s are the real roots of the charac-
teristic equation. Since F should tend zero as x2 tends infinity, the
two of the A’s with m < 0 must vanish. Thus we obtain
2
F =73 Aiexp (—mkxy), (13)
i=1
wherem; > 0 (i =1, 2).
On substituting equation (13), the boundary condition (7) yields
a set of linear homogeneous equations for A; and As. From the con-
dition that the solution be nontrivial, we have the frequency equa:
tion

[Szaaster — (o171 + S111)) + Suae2?ller ~ (o171 + S1219)}

= S1912S82090(e = 011) % — (011 + S11)),  (14)

for a = pV2. In the derivation, the characteristic equation has been
used to eliminate m; and ms, and a degenerate case m; = mg has been
omitted. The possible degenerate cases were fully discussed in {7]. The
frequency equation (14) determines the Rayleigh wave (phase) ve-
locity in uniformly deformed niaterial as the function of the initial
strains.

Since g2 = 0, only two of the principal strains are independent with
each other and the following convenient expression is assumed:

(15)

a = oy + arey; + agesn.

Applying equation (15) to equation (14) and neglecting the higher-
order terms in the strains, the expressions for the constants a’s can
be deduced. The resultant o’s are, of course, exactly the same as those
given by Hayes and Rivlin [7] with the formal difference of definition
of elastic constants. T'o save space, they are not presented here. The
relative velocity change is then given by

AV/Vo=(V = Vo)/Vo = (a1/2a0)ens + (az/200 — u/Nezs,  (16)
where Vj is the Rayleigh wave velocity in the natural state, being
defined by (ao/po)*2, po is the density in the natural state or
(Vo/Vr0)® — 8(Vo/Vro)* + 8[(BA + 4p) / (M + 2u)](Vo/Vro)?

— 16\ + p)/ (N +2u) =0. (17)

In view of equation (16), the Rayleigh wave in the uniformly deformed
material undergoes no dispersion as in the stress-free case. This
property might be foreseen, since all the quantities appeared in the
nondimensional form in the starting equations (7) and (11).
Determination of Elastic Constants. Throughout the present
study, the specimens were machined from the rolled plate of mild steel
(C; 0.17 percent, Si; 0.25 percent, Mn; 0.72 percent). They were tem-
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Fig. 1. Measurement system based on the sing-around technique

Fig. 2 Rayleigh wave signal produced by 2MHz strip-type transducers [ab-
scissa; 5 usec/div, ordinate; 0.5 Volt/div]

pered at 900°C for % hr and subsequently air-cooled. The surfaces
were finished by plane-grinding and mechanical-polishing.

To evaluate the coefficients of equation (16), five elastic constants
and the density should be known. For this, the acoustoelastic effect
of bulk waves was first measured on the 20mm-thickness tensile
specimens, employing 5 MHz PZT transducers and the sing-around
apparatus which will be explained in the following. The load was
uniaxial tension up to 150MPa in stress and the path of the ultrasonics
was taken to be normal to the load direction. The result of averaging
several measurements is as follows: A = 10.74 X 104, u = 8.19 X 104,
v = —0.13 X 105, pg = p3 = —2.0 X 105 (all in unit of MPa) and po =
7.837 X 103 kg/m3,

With these values of elastic constants and density, the coefficients
o’s are calculated to render

AV/Vy = —0.31e11 ~ 0.69e299, (18)

and Vg = 3.00 X 10%m/sec. In the following experiment, the Rayleigh
wave is propagated parallel to the direction of uniaxial tensile load.
In this situation, we have AV/Vy = —0.11ey; by substituting egz =
—oeq1, 0 being Poisson’s ratio (o = 0.284). Since the rate of the Ray-
leigh wave velocity change is very small, i.e., about a tenth part of the
strain in the propagation direction, more care was required in the
acoustoelastic experiment for the Rayleigh wave than that for the bulk
waves, For comparison, the longitudinal and transverse waves pola-
rized parallel and normal to the direction of uniaxial load underwent
the relative velocity changes at the rates 0.32, 0.26, and —1.48, re-
spectively; all three propagated normal to the load direction.
Experimental Result. The electronic equipments used for the
Rayleigh wave acoustoelasticity is illustrated schematically in Fig.
1. An electronic pulse of 0.1 usec width was sent out from the sing-
around unit. The transmitting transducer converted it into the ul-
trasonic Rayleigh wave pulse. After traveling the specimen surface,
the pulse reached the receiving transducer. Then, the Rayleigh wave
was transformed back into the electronic pulse and fed back to the
sing-around unit. This pulse was therein amplified to +1.5V from the
zero level through the auto-gain controller and after preselected delay
time retriggered the pulse generator, thus circulating the closed loop.
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Fig. 3 Relative variations of Rayleigh wave transit time and velocity versus
the uniaxial tensile strain

The trigger level was fixed to 0.5V in the present experiment. The
counter, having a reference frequency of 10MHz, displayed the av-
eraged period over 104 sing-around cycles. The oscilloscope and the
testing machine completed the measurement system.

The Rayleigh wave was generated and received by a pair of thick-
ness-mode 2MHz PZT ceramic strips, of 14mm length and 0.75mm
width, attached in parallel on the specimen surface. The strip width
corresponds to a half wavelength of the Rayleigh wave to be generated.
Under this condition, optimum efficiency for Rayleigh wave excitation
and reception could be achieved. This type of Rayleigh wave trans-
ducer was found to be superior in resulting a sharply rising signal to
the wedge and comb transducers [6]. A disadvantage is the low tol-
erance of the ceramic strips to high loading, so that we set the load
limit to be 50MPa in the surface stress. Fig. 2 shows the Rayleigh wave
signal generated and received in this way.

In order to obtain the relative velocity change experimentally, the
relation

AV/V() =e51 — AT/T(), (19)
was used, ey; being the surface strain in the propagation direction.
The relative change in the transit time (AT/Ty) was determined from
the change in the sing-around period T', while e11 could be monitored
by the strain gauge method. The typical result of the tensile experi-
ment is shown in Fig. 3. The same specimens that were used to de-
termine the elastic constants were tested and the strip-type trans-
ducers were spaced about 100mm apart. The straight lines are drawn
according to the analytical result, i.e., AV/Vy = ~0.11e1; and AT/Ty
= 1.11e1;. Data taken during the loading sequence are designated by
solid circles and data during the unloading sequence by open circles.
Within the tested range of strain, the Rayleigh wave velocity appears
to vary linearly with the applied strain as predicted by the analysis
based on the second-order elastic theory. Taking the low rate of
change into account, the analytical and experimental results agree
well with each other.

4 Nonuniform Deformation

The stress application to the material causes the slight change in
the elastic properties and then in the response to the elastic wave
propagation. As the consequence, the acoustoelastic phenomena do
occur. When the initial deformation has a distribution in the direction
of depth, the degree of change in the elastic properties also varies with
depth. In this sense, the material subjected to such a deformation is
qualitatively similar to the layered or stratified material, in which the
Rayleigh wave is known to be dispersive. This section is devoted to
the analytical and experimental verification of the natural expectation
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that the Rayleigh wave will be dispersive in the nonuniformly de-
formed material.

Analysis. As in the preceding section, the solution F is constructed
s0 as to satisfy equation (10) and boundary condition (7) within the
first-order approximation. Since the coefficients of equation (10) are
no longer constant in this case, the calculation turns much compli-
cated. Based on the smallness of initial strain, which is in the order
10~ at most for mild steel, we shall seek the solution F in the per-
turbation scheme and assume the expansion

F=F04 1, (20)
The zeroth-order solution F? corresponds to the classical one when
the initial stress is absent, while the first-order solution ! denotes
the small perturbation from it due to the initial stress, reflecting the
acoustoelastic effect. The order of magnitude of F1 relative to FO is
that of the initial strain.

Substituting equation (20) into equation (10) and collecting the
terms with the same order, the respective equations for F® and F! can
be yielded. One for F0 is

kD% + [(k + 1) VE/V}o — 2k]D?

+ (V& Vi — kNVE/VH —1)}F0 =0, (21)
from which we obtain
Fo= 2271 A; exp (—nikx), (22)
where »
m= (L= VB/VEI2, np= (- VBVE2,  (29)

and k = (A + 2u)/u. When the stress is removed, m1 and m3 of equa-
tion (18) reduce to nq and ng. On the other hand, the equation for F1
is inhomogeneous one with homogeneous part identical to the left-
hand side of equation (21). By using the solution F? and then the in-
tegration, we have

2 2
Fl=hk S Agngenike f Rie=(ni+nkesdy, — pignskrs
i=1 o
x2 . x2
f Rie—(nitnakasgyy — pog—nikxe f R;e~(ni=nkag
® 0

X2 .
Xdxg + nie~nzkre j; Rie—ni—ndkxady,]  (24)

where h = [2knina(n? — n§)]~1. The explicit expression of R;(i = 1,
2) is presented in the Appendix.

The solution F thus constructed obeys the restriction that f; and
f2 should tend zero as x3 tends infinity, irrespective of the external
stress acting, Applying F = FO + F1 to boundary condition (7), we
obtain after tedious but straightforward computation

[knd — (k — Dn?+z + U ey + UPens + VIP Deyy

N

...
]
-

 + VP Degz + WP D2%ey; + WiPD%s
+ h(k = Dnof(1 + ndli — 2nanaligl] A = 0,

2 -
Y [k — 1)k — 2) — k2nd + kn? + kzin; + UP ey
i=1

+ U o3 + VI Doy + V§ Deg + Wi D%er; + WD s

+ h(k — V)nanof2lin — (1 + nhlpllA; = 0, (25)
where
z = 2AVVo/Vy, (26)
I = j; " kRje=tnitniksady,
= [nf —n?+ k(n? —nd(ni + nj)" 2
+ é =M en+ [LP + (i + n) MPIED),  (@7)
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Fig. 4 Configuration of coordinate system for simple bending of plate;
Raylelgh wave is propagated along x-axis

E,(J" = j(‘) keye ~mitnjdkxadys  (not summed on ) (28)
The bar over the strains and their derivatives indicates the values at,
the free surface xo = 0. Here recall that oy = 0 and e1; and egg are
independent with each other. For U’s, V’s, and W'’s, see the Ap-
pendix.

With the aid of equation (27), equations (25) can be written in the
matrix form

(Gij + azjz + byj)A; = 0, (29)
where
—(1+nd)  -2n}
Gii=(xk—1 s 30
j= k—1) 2n4 na(1 + n? (30
aij =

1+ &=-1D[1-(1+nd/
nilny + n2)l/2«

1+ (k = D[ + nd/(2n1)?

= na/(ny + na)l,

—kny+ (xk— D1 = 1+ nhHn,
— (n1 + n2)}/2n4,

—kng — (k= D{(ny —no)~1 |
— (1 + nd)/4na)/x
(31)

and b;; is the linear combination of ey, Dey, DZey and Ef (1 =1, 2;
not summed). The nontrivial condition for A; then requires

|Gij + a2z + bijl =0, (32)
Note that z and the elements of b are of the order of the initial strains.
Neglecting these small terms, we obtain the zeroth-order solution |G|
= 0, which leads to equation (17) and gives V. The variation of the
phase velocity owing to the external stress is determined by the
first-order solution as

z = —(Guboz + Gab11 — G1abas — G21b12)/(Gr1as2 + Gazann

— Giaa91 — Gorayz).  (33)

Equation (33) defines z as the function of the principal strains, their
derivatives up to the second-order evaluated at x2 = 0, and also the
integration over the half space. Since D = d/d(kx2) and the integr'ation
(28) is involved there, z depends on & as well. Therefore the Rayleigh
wave is dispersed in nonuniformly deformed material as opposed to
the stress-free and uniformly stressed cases. The extent of the Ray-
leigh wave dispersion is roughly determined by the ratio of the .
wavelength to the characteristic depth over which the initial stress
varies or, in other words, how abruptly the stress varies within the
penetration depth. For a given stress state, the dispersion is re-
markable for a relatively low frequency and diminishes as the fre-

" quency increases. It was numerically checked that, approaching to

the high-frequency limit, the result of equation (33) is asymptote to
that of equation (15) for the uniform case.

As an illustrating example, the foregoing formula was applied to
the Rayleigh wave propagating the surface of the simply bent plate
as shown in Fig. 4. In this situation, o11 = 022 = 0 and the terms in k!
do appear since the remaining stress component aa3 is the linear

function of x2. As a final result, we obtain
AV/Vo = (Bo + Br/kH)ers, (34)

where H denotes the plate thickness. The constants 8y and 8 can be
written in terms of (A, u) and (vy, v, v3), although the expressions are
much cumbersome. Using the elastic constants obtained previously,
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Fig.5 Dispersion of Rayleigh wave propagating the surface of bent plates;
theoretical curve is asymptote to AV7vy =084 X 104

they are evaluated as Sy = —0.99 and 3, = 3.55. Equation (34) implies
that the phase velocity of the Rayleigh wave changes linearly with the
initial strain and furthermore its rate of proportionality consists of
the constant and (kRH)~! terms. The latter term does cause the Ray-
leigh wave dispersion. It should be noted that the group velocity re-
sulting from equation (34) is frequency-independent.

Experimental Result. Inorder to confirm equation (34) exper-
imentally, mild-steel plates of 5, 10, 20mm thicknesses were simply
bent. The Rayleigh wave was generated and received, as before, by
the strip-type transducers whose resonance frequencies were nomi-
nally 2, 3, and 5MHz. They were transversely situated on the surface
about 120mm apart. We thus obtain the data as to AV/V, for nine
different values of kH, ranging from 21 to 209.

“In Fig. 5, the experimental result is compared with the theoretical
curve according to equation (84). The plate thickness was much larger
than the Rayleigh wave penetration depth, so that the elastic waves
observed were completely Rayleigh waves. Otherwise, such guided
waves that obey the Rayleigh-Lamb frequency equation will be pro-
duced. The theoretical curve for kH < 2 is drawn with broken line,
suggesting that the plate thickness is less than the wavelength.

Considering the experimental error, correspondence of the theo-
retical and experimental results is satisfactory. The slight disagree-
ments could derive from some sources. First, the elastic constants may
be inaccurate in a degree. Above all, the precise determination for the
value of v; was difficult, which has been the usual case [5]. An addi-
tional error source might be the anisotropy or texture developed
during the rolling process and the specimen making. The anistropy
has some distribution across the thickness, since the material un-
derwent the inhomogeneous plastic deformation. Therefore it may
affect the measurement of the Rayleigh wave dispersion due to the
nonuniform stress state, although the relative order of magnitude to
the acoustoelastic effect seems to be small in reality.

Concluding Remarks

The acoustoelastic theory has been developed to derive the ap-
proximate formulas for the Rayleigh wave velocity change induced
by the stress. The corresponding experimental data were obtained
on the mild-steel samples by using the sing-around apparatus. The
result of the uniform case was essentially the same as the case of bulk
waves in point of no dispersion and linear relationship between the
changes in stress and velocity. The analysis for the nonuniform case
revealed the Rayleigh wave dispersion due to the stress nonuniformity
in the depthwise direction as well as the proportionality to the surface

stress. The analytical result was supported by the experiment with -

Journal of Applied Mechanics

the simple bending of plate. If the higher surface stress were available,
the degree of dispersion could be enhanced to make the measurement
easy and accurate. Unfortunately, however, the strip-type transducers
prevented it because of the low tolerance to the high surface stress.
The acoustoelastic formula obtained in this paper allows the de-
tailed prediction of the dispersion property for a known stress state.
But it should be noted that the inverse does not hold in general, that
is, the experimental data on the dispersion are not sufficient in
themselves for the full estimation of the stress distribution.
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APPENDIX

: 2
Ri(x2) = [n? — n + k(n} ~ ndlz + ¥ LPeu + M{PDey), (35)
=1
where
L® = 2krgn} + 2[(VE/ Vi — Drg— k(1 + 2rg) — 1 — 2r3]n}f

+ 2(1 + 2r3 + drond + 21 + ryni,
M® = 2[(n} = «ny)?rs — (x — D(r3 + ro)ln;,
L® = [ro(ry + 2rg) + 4(ra + 2ry) + k(rorz + 2rg)nt
+{[(r1+ 8rg—1 = k)ro+ 4r3 + 10)‘4]V(2)/V'21'0 + 2k(1 — rorg =
+ 2(1 — rory — 2rorg — 2r3 — 4ryin}
+ [(r1 + 2re + VE/VEro — 2In? + k(VH/ Vi — 2 + rora + 2rynd,
Ml(z) = —1[(7‘1 + 27‘2)7‘0 + 4(7‘3 + 27‘4)]71.,'2 + (rorz + 2r4)(/<n,-2 + n%)
+ k[(r1 + 2ro)ro + 4(rg + 2ry]ni
= (k= Df(rs +ro)ro+ 2(ra + rolin;.  (36)

2ry)

In equations (25),

UP = =21 + 2(rs + 2rq) + ranf], V= 2(rs + ron;,

WP = —2ry,
U = =(VE/Vio—r1— 2roro — 2 — (ror1 + 2ra)nf,
V@ = [(r1+roro+ 2(rs + ro)lni, WP = —roro — 24,

Ul =
Vi = 2[—k(1 + 2rg) + (2kn? — 3k — 2)r4],

2([K(1 + 3"4) + 2(27‘3 + r4)]n1 - Kr4n;3},

WP = —2krn;,
37
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UP = —{k[(r1 — ra — V&/Vig)ro + 2(2rs + r4] WP = —k(rore + 2ryn;. 37
~ (rora + 2r)(2 4 kn?) — 3(ror1 + 2r3) + [(r1 + 2ro)ro (Cont.)
) +4(r3+ 2rg)](n? + ndn;,  In the previous expressions,
VP = Qun?+ &k — 2)(rorg + 2rg) + k[2 = (ry + 2ra + VY VEral,  ro= —2/\ry=(=\ 4+ nMu, re=—=14vo/u,ra=(\+ v/,
37 ra=1++v3/u. (38)
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Propagation of Elastic Pulses and
Acoustic Emission in a Plate
Part 1: Theory

Transient waves generated by a variety of dynamic nuclei of strains including a concen-
trated force, a single-couple, a double-force, a double-couple without moment, a center

of rotation, and a center of explosion in an elastic plate are analyzed. Some of these
sources, or a combination of them, could be used to model the dynamic process of material
defects. The analysis is based on the generalized ray theory and Cagniard’s method and
the solutions are presented in terms of Green’s dyadics for a plate.

1 Introduction
This investigation arose out of a need for a better understanding
~of the nature of the stress waves generated by defects upon their
origination and expansion. It is known that whenever a material
undergoes a plastic deformation or local failure, transient elastic waves
are generated due to the rapid release of localized strain energy. Such
radiation of elastic waves is known as acoustic emission in the field
of nondestructive testing of materials [1]. In spite of a great number
of research done on the subject, the mode or type of stress wave that
dominates in the immediate vicinity of the source of acoustic emission
is still unknown. This question cannot be answered unless the dy-
namic process of the source, and the propagation characteristics of
the elastic wave are studied in detail.

In this paper we present several point source models which can be
used in describing the mechanism of acoustic emission. The approach
is analogous to the modeling of statical point defects in crystalline
materials [2}, and the mechanism of earthquakes in the field of geo-
physics [3]. It has been pointed out that the seismic radiation from
an earthquake is likely to be connected with the solution of a problem
of dislocation, that is, a sudden creation of discontinuities in either
the displacement or the stress field across the fault surface. Burridge
and Knopoff [4], have shown that such discontinuities can be replaced
by a distribution of forces called equivalent body forces, which pro-
duce the same radiation when applied over the fault surface in the
absence of the fault. They have also shown that while concentrated
forces represent discontinuities in the traction field, self equilibrating
forces, i.e., forces with zero resultant, can be used to model discon-
tinuities in the displacement fields. An infinite isotropic elastic plate
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is chosen as the medium where transient waves due to point sources
such as a single-force, a double-force, a single-couple, a double-couple
without moment, a center of rotation, and a center of dilatation
propagate. These sources, known also as nuclei of strains, or some
combination of them can be used as equivalent body forces in mod-
eling defects-such as initiation and growth of cracks, voids, etc.

Transient response of an elastic plate is usually analyzed by Fourier
synthesizing all normal modes, the theory of which was investigated
by Lamb [5] and Pursey [6]. The Fourier synthesis can also be effected
by applying the Laplace transform. The inversion of the Laplace
transform usually involves a summation of residues which are infinite
in number, hence, the accuracy of the final answer depends on the
number of terms taken in the series. .

As an alternative, we have chosen to use a method based on the
generalized ray theory. In this theory, the total wave motion is de-
composed into disturbances that travel along a multitude of ray-paths,
each of which undergoes different number of reflections at the plate
surfaces. Since the travel times along ray-paths with a large number
of reflections are longer than those with a few reflections, only a finite
number of rays are to be considered in each study. The solution thus
obtained is exact from the onset of waves up to the time of arrival of
the next generalized ray which is not included in the calculations. A
review of the method was recently given by Pao and Gajewski {7}. In
a half space, the ray-path undergoes, to the most, only one reflection
at the surface. Hence, the results given in this paper also include so-
lutions for the aforementioned point sources in a half space {3].

The development of the generalized ray theory goes back to 1939,
when Cagniard [8] studied the transient waves in two homogeneous
half spaces in contact. In his monumental work, he had shown that
by going through a sequence of contour deformations and changes of
integration variables, one can find the inverse Laplace transforms of
the expressions for each ray. Details of this method related to transient
waves in a plate will be given in Parts 2 and 3.

Generalized ray theory and Cagniard’s method were first applied
to study the wave propagation in elastic plates by Mencher [9] who
used the Bromwich expansion to recast the normal mode solution into
the form of summation of individual rays. His results were confined

MARCH 1981, VOL. 48 / 125

Copyright © 1981 by ASME

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Zo

N
—
=
lm ~

Fig. 1 Geometry of an oblique, concentrated force

to axisymmetric loading and epicentral response. Other works on
axisymmetric problems were done by Knopoff [10], Davids [11], Mi-
klowitz [12], and Pao, et al. [13]. Contributions on nonaxisymmetric
plate problems were made by Pytel and Davids [14], and Davids and
Lawhead [15) where they have considered shear impacts and oblique
impacts. However, their results were all for the epicentral responses
of the plate. Off-central results were given by Shmuely [16, 17}swhere
he considered a line source on the surface of a plate. Mention should
also be made of the works by Fulton and Sneddon [18], Scott and
Miklowitz [19), Norwood [20], and Wu and Norwood [21] who have
considered distributions of normal surface loads. In addition to a
concentrated force, results for a double-force and a center of dilatation
were also reported by Pao, et al. [13]. We note that a plate is a special
case of a multilayered solid. A comprehensive study of transient waves
in a multilayered medium based on the method of generalizated ray
theory was made by Miiller [22].

In this paper, the solution to nonaxisymmetric point sources such
as a concentrated force, a double-force, a single-couple, a double-
couple without moment, a center of rotation, and a center of dilatation
‘will be presented using the generalized ray theory [3, 7]. The paper
is divided into three parts. Part 1 presents the Laplace transformed
solutions for the general response of a plate. All solutions are ex-
pressed in terms of Green’s dyadics and their derivatives for a plate.
In part 2 the details of the Cagniard’s method for inverting the La-
place transforms of the epicentral response of the plate will be pre-
sented along with numerical calculations. Part 3 will be devoted to
the general off-epicentral response of the plate.

2 Concentrated Force in an Elastic Medium

1 Green’s Dyadic of Unbounded Medium. Consider a con-
centrated force of magnitude f(t) acting at the point (0, 0, z¢) along
an arbitrary direction indicated by the unit vector a (Fig. 1). The so-
lution for this problem is well known [3, 23]. For the purpose of
applying this solution to analyze waves in a plate, we recast it in terms
of displacement potentials ¢, Y, and x in cylindrical coordinates (r,
6, z) [7, equation 6.11]. The displacements are related to these po-
tentials through the relations

2 1
2, % 12x

u, =
dr Qdrdz r af
10 1 02 o
uy=128,10% ox W
rof robdz or
92 92
20, O 0

- K
0z 022 ot?
while the stresses at a surface z = constant are given by
k2-210% 2 2 [o¢ o %Y
Tz = — =+ < -
k%2 [ ot? k20z\0z 0222 ot2
12/ 9 02 % 119 [d
____..(2__(!).4.2__‘//_ 2__¢)+__.‘____(_)_<) (2)

Tre T x2or\ oz dz2 . ot2)  k%rof\oz
110 P 92 2 1
12 (00,,0 2 10 oy

k2rof\ oz 22 ot2]  k2or\oz

The potentials satisfy the wave equation of the type ¢?v2(¢, ¢, x) =
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02(¢, ¥, x)/0t2; where ¢; = ¢ for ¢, and ¢; = C for ¥ and x. The two
wave speeds and their ratio « are defined in equation (6).
Denote the Laplace transform of a time function f(¢) by f(s),

Fs) = j; " ft)e=stat. 3)

The Laplace transformed displacement potentials for the wave field
generated by a concentrated force as shown in Fig. 1 are then given

by [7]

%(r, s;a) = a,F(s) j;mSp(E)e_sﬂlz_zouo(sf")gdf
+a,F(s) fo " S, (el (sr)Ed
T10, 55 8) = —azs~1F(s) fo © 8, (Be=stlzmsolo(sEr)dt
- a,s~1F(s) j;m S (Bye—stlz—ol g (sEr)d

1r, 51 2) = —agF(s) j; " Su(®e—stlwoly(sirydt.  (4)

In these equations
F(s) = f(s)/t4mc2uh?) (5)

and a, (o = r, 0, 2) are the components of the unit vector a in cylin-
derical coordinates. The wave speeds ¢ and C of the pressure (P) and
shear (S) waves, respectively, are given by

C%=u/p,

where A and u are the Lamé constants and p is the mass density of the
material. The 5 and { are the slowness along the z-direction for the
P and S-waves, respectively,

n= @+ 07,

c2 = (A +2u)/p, k =c¢/C. (6)

=@+ Y

and £ is the slowness in the radial direction. Note that & is any con-
venient length, introduced to normalize length, and the quantities
given in equation (1)—(7) have beén nondimensionalized while those
given in reference [7] were in dimensional form. The quantities in this
paper are related to those in reference [7] through the relations

(En O =clE* 9% ), 7* =249
g’* = (5*2 + C"'Z)I/Z

=r*/h, z=2%h, u=u*h
(6,20 = h™2p*, x*), ¢ =y*h~3
t =ct*/h, s=s*h/c

where the quantities with (*) are in dimensional form as given in
reference [7].
For a concentrated force,

Sp=—¢, S,=-t/n
Sy =&/, S,=¢ Su=«¥S (8

where the subscripts p and v pertain to the pressure waves and ver-
tically polarized shear waves (SV-waves), while H denotes the hori-
zontally polarized shear waves (SH-waves). These source functions
together with others are tabulated in Table 1. In equation (8) and the
table, € is the directivity constant and it has the value 1 according
to whether the waves are propagating in the direction of £2-axis from
the source. '

Substituting equation (4) into (1), we obtain three displacements
in Laplace transformed state. The component in the z-direction is

U,(r,s;a) = sF(s)[az j;m SpD pe~snlz—zolJo(skr)EdE

+a, 7 SyDepemrlesol (st ©)
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Table 1 Seurce tunctions

— ) i
SOURCE FUNCTION INTERIOR ON SURFACE f‘(s)
TYPE : P sV SH ® P sV SH

GeDid=2]{E =1 =1 (1=2) (1=H)
M f(s)
Center of S* 1/n - _ B _ _ o
explosion J i lanzuhs
5, -e | ere e | vae®wHm ~ac’en/n | P F_¥(s)
single force J ) r 2 2 2 _%_2_2
SE.I -£/n 3 4y Et;/Ar -y2c T (E°4L )/Ar " 4mcTuh’s
S n ~€f KZ/C - - -
Single couple, i
Double force, & Sj -E/n € -—EKZ - - - Mo-f(s)
Double couple 33' er -z _ _ _ __ 4WK2U52h3
without moment 2
s -e£ | £7/L - - - -
+ 2 2
Center of rot. Sj - |-x"/r |~ex - - -
i) 2
S. - - - - -
i k“/t
e=tl according to the direction the ray travels with rlespect to * z-axis,
y=t1 whether the source is at z=0 or =z=1 surfaces.
2 2. 2.2
A =48 L - (B 407)
n2=c2+1, g2 = g2+
k2= (/)% = L+ 20) /u
h 1is the thickness of the plate which is taken as unity in the calculations, and M, = lim(FOS)

as 8 > 0, TFor a double force the same limit is denoted by Do'

+ SF(S)laz f Sszve_3§'|Z—20|J0(s£r)£d£
0 Table 2 Receiver functions Dy ; definitions and notations are given in Table 1

+ar f SyDpe~s812=20ld (str)EdE ) :
0 (Cont.) MODE k [ INTERIOR POINT ON SURFACE
where , P [1 - ux*ene /n_
u
DzP =—en, Dy= _E (10) r svio- —eL 'ZKZYC(EZ'H;Z)/AI_
are the receiver functions associated with the displacement u,. These Yy : 1 >
receiver functions together with those for the radial and angular SHH
displacements are given in Table 2. Each term inside the brackets in
equation (9) represents a single ray propagating the distance between 2 2 2
the source and the receiver. The first term corresponds to the ray that u P 1 —€en —2c"yn (€74 T) /8
propagates as a P-wave; it is characterized by the source functions (Sp, z v |2 —F i 7 .
S,), receiver function D,, and the phase function |z — 2zq|. The ’ R
second term is for a ray traveling as a SV-wave and it is characterized
by the functions (S,, S,), D.,, and {|z — zo|. Note that SH-waves do 2
not contribute to the displacement in the z-direction. If each ray is . P11 2enc/x ‘ 0
denoted by i@,;(r, s; a), then one can write equation (9) as rz sv |2 (EZ+C2) /|<2 0
— 2 — ¢ ‘ 2
Z(r,s,a) = 2 Us;(r, 5; 8) 1 sulum —er/x 0
J
where
— - , P {1 G 0
;i (r, 3 8) = sF(s)|a j; S;IILD, je 4D o(skr)EdE .
. 22l gv)2 2e£r/ic? 0
+a f SiTID e =<8/ 0J (sEr)EdE|. (1)
) 0
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The index j indicates the mode of rays, j = 1 being the P-mode and
J = 2 the SV-mode. The function IT}; which is related to the reflection
of rays in a half space is inserted at this point for later discussions. For
an unbounded medium such as in equation (9), I1}; equals 1. The g;(z,
£) is the phase function of each ray and is given by

gi(z, &) = nzpj + {2y (12)

where zp; and z,; are the projections along the z-axis of the ray-path
in P and S-modes, respectively. In an unbounded medium, for the
P-rayweset zp, = |z — 2¢], 2, = 0; and for the S-ray, we set 2, = 0, 2
= |z — zo}.

Note that the first integral in equation (11), after it is inversely
transformed, represents the displacement u, due to a concentrated
force acting along the z-axis (a, = 1, a, = ay = 0); it will be denoted
by G¥,. The second integral is the displacement u, due to a force ap-
plied along the radial direction (a, = 0), and will be denoted by GZ.
In similar manner, one can define G, G%j, etc. Then the quantities
3 G, summed over all possible j’s (j = 1 and 2 corresponding to P
and SV-waves, respectively), plus G, for the SH-wave are the
components. in cylindrical coordinates of the Laplace transformed
Green’s displacement dyadics G(r, 5). Since they appear repeatedly
in the ensuring calculation, we group all the components, together
with VG which will be needed later, in the Appendixes A and B, re-
spectively. In terms of the components of Green’s dyadics, the dis-
placement field in an infinite medium is

R .
i, s;8) = F(s) ¥ .Gl + agGly + a,Gl)
j=1

+F)a,GH + a)GH]  (13)

where j = 1 pertains to a P-mode, and j = 2 a SV-mode. Note that for
G/J, four of the nine components, Gy, Gy, Gy, and Gy, vanish
identically, and the only nonvanishing components of GH are G and
G,

2 Green’s Dyadics for Half Space. Waves that originate at a
point inside a half space behave just like those in an infinite medium
until they reach a point on the boundary where they are reflected and
refracted. Hence, the particular solutions obtained in the previous
section represent incident waves on the boundary. Due to mode
conversion, elastic waves of either P-mode or SV-mode when incident
on a plane surface, will be reflected as two waves, one in each mode.
However, the SH-waves reflect only as SH-waves. Following the ap-
proach of Spencer [24], we express the displacement potentials for
the rays reflected by the surface z = 0 and propagating in the region
z20as

et = F(s)|a, f ‘”SpRpPe—sn(z+zo)J0£d£
0

+a, f ) s;,Rppe—sv(z+zo>J1gdg]
0

+ F(s)

a: . SuRvemsttm ot
ta fo 7 S;,R”Pe‘s(fzohz)Jlde]
PlreD) = s—lﬁ(s)[az fo "8, Rove 8+ a0 Jyd
+a, j; ) s;vae—mmo)Jldg]
+s_lﬁ(s)[az j; " S Rpve=stizotin Jod
+ a, j;m S, Rpve=stizotiz) ) dE

e = F(s)ay J; "SR e~ste+20 ], dE (14)

For brievity, the argument (s¢r) of all Bessel furictions are omitted
in the foregoing. The phase functions in all integrals are changed by
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an additional term according to the mode of the reflected wave; the
unknown functions RPP, Rvv, RvP, RPv and RH which are called the
generalized reflection coefficients at the free surface z = 0, can be
determined by satisfying the boundary condition on this surface. The
total field in the half space is then determined by combining results
in equation (4) and (14)

@0, %) = (@1, ¥1, X1) + (lref), Pieed, o)

For a traction-free surface, the boundary conditions that must be
satisfied by the total field are

Tz (r, 6; 0,s) = 7. (r, 6; 0,5) =Ty(r, 8,0,5)=0

(15)

(16)

The stresses are calculated from the potentials of the total field ac-
cording to equation (2). It was stated by Chandra [25] and were also
proven by Ceranoglu.[26] that the last two boundary conditions are
satisfied if the following reduced boundary conditions are satis-
fied:

ap o _

2—+2——«%

oz 22 ¥
Substitution of the potentials given by (15) into the boundary con-
ditions yields ‘

ox
o, X
z=0 oz

=0.

z=0

(17)

Rop = R0 = [4£%8 + (2 + {DU/A,
RPv = —4mi(8 + /A, RvP = —4TE(E + (/A
RH =1
A, = 4Em8 = (€ + ¢

These reflection coefficients are the same as those for plane waves at
a traction-free plane boundary.

In the half space occupying the region z < h (h > z¢), expressions
similar to those given by equation (14) can be written with the un-
derstanding that the reflection coefficients pertaining to the surface
z = h are used. The phase functions should be changed accordingly.
Hence, following the same procedure, one obtains, for the half space
z < h, the reflection coefficients at z = h as

(18)

Rpp = Ry, = RPP = Rvv

Rpy = —RP
Rvp = —~Rvp
Ry=1 (19)

Thus, for reflection with mode conversion, the value of downward
reflection coefficient is negative of the upward one.

One can now write the total displacement 7, at a point inside the
half space (z = 0)

ez __. . y _ _
Uolr, s3a) = F(S)[ > [0.Gl + agGlily + a, Gl + [0,GE + a4GY, 1]
j=1

_ 2 _. . _ _
+ F(S){ > ¥ (eG4 apGlh + a, Gk + [a,GH + a,GE, 2]
J=1k=1

(a=r02) (20)

The superscripts j, k (= 1, 2) for Green’s dyadics indicate a P-mode
(J, £ = 1) or SV-mode (J, k = 2); and the superscript H indicates the’
SH-mode. The subscript 1 of all bracket denotes the first group of rays
directly radiating from the source to a receiver. For this group we take
n = 1,and [I}; = 1 and II% = 1in Green’s dyadics (Appendixes A, B).
The subscript 2 denotes the second group of rays which have been
reflected once at the surface. For this group, we take I1}; = RPP, 115,
= Rvw I1%, = RP?, 1% = RvP, and I1%; = R¥ = 1 whilen = 2.

There are, in general, eight rays in the evaluation of &, in a half
space, two direct and four reflected P and SV-rays, plus one direct
and one reflected SH-ray. For the convenience of future discussion,
the previous result is symbolically expressed as

8
Tar,s5a) = Y Gulr,s;a) a=r,0,z2 (21)
i=1

The index i no longer pertains to P or SV-mode as in equation
(20).

Transactions of the ASME

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



O r

A
(')" \‘

\{'( ) 2‘\
1,62)

a

-—3‘_——.

Fig. 2 Ray groups In a plate

3 Green’s Dyadics for a Plate. In a plate, the waves generated
at a point by the source can propagate along many different paths
before they reach the receiver. Fig. 2 shows some of the possible rays.
For example, along Path 1 there are two rays traveling the distance
between the source and the receiver; the first is a P-wave and the
second arriving at a later time is the S-ray. These two rays are the
same as those rays propagating in an unbounded medium. The waves
traveling along 2% or 2= (+ or ~ denote the direction of the source
segment of a particular ray, with respect to the z-axis) have been re-
flected by the boundaries once. Since a P or SV-wave gives rise to two
waves while SH-waves gives rise to one SH-wave upon reflection by
a plane surface, a total of 22 + 1 = 5 rays will travel along each of the
Path 2. Pp, Pv, Vu, Vp, and Hh are the five rays traveling along Path
2~. The letters P, V, and H represent the P, SV, and SH-modes; the
lower and upper case letters denote the downward (+z2) and upward

- (—z) propagation directions, respectively, of the wave along each seg-
ment of the path. The number of rays traveling along the Path 3+ is
23 + 1 =9, pPp, pPv, pVp, pVu, vVu, vVp, vPv, vPp, hHh. Each of
these rays are identified by their source function S;(£), phase function
8n(z, £), receiver function D (£), and the product of the reflection
coefficient function I1};(£). For the rays along Paths 1, 27, and 3* these
functions are tabulated in Table 3 where the thickness of the plate
is taken as unity. The final solution of the plate problem can be
written as

IR
Uu(r,s;a) = F(s) 1 {Z > @GR+ ayGlhy + .G,

n=1\lj=1k=1
+ [arégr + aliaf;lli n] (22a)

The superscript j will represent the mode of the first segment (from
the source) and k the last segment (to the receiver) for the nth ray in
a plate. Although the double sum on j and k& is from 1 to 2 (P or SV-
mode) it implies 2 rays for n = 1;4 rays forn = 2; 8raysforn =3;. ..
etc. When all rays are arranged in a sequence, the previous result can
be expressed symbolically as, like equation (21)

Ualr, 55 8) = 3 Uai(r,s58)  {a=r,0,2) (22b)

13

Since each ray has a distinct travel time, only a finite number of them
are to be added when the inverse Laplace transform is completed.

4 Surface Source and Receiver Functions. The analysis so
far was for a source and a receiver both located inside the elastic me-
dium. The source and the receiver functions have to be modified as
discussed in the following sections, if the source or receiver is situated
on a traction-free surface. The final expressions are shown in T'ables
1 and 2.

(a) Surface Source. Consider a half space (z = 0) with the
source and receiver both buried inside. In general, both P and S-waves
will be generated at the source location. The rays that arrive at the
receiver are those that travel along the Paths 1 and 2~ (Fig. 2). Con-
sider now the rays p, Pp, and Sp. As 2¢ approaches zero, these three
rays coalesce to form a single direct ray which will be called the P-ray.
Hence, the three ray-integrals can now be combined to form one in-
tegral with a new source function, say, S:,, for the P-waves

8% =S, + SpRPP + S,RvP. (23a)
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Fig. 3 Dynamic nuclei of stralns; (a) Single-force; (b) Single-couple; (c)
Double-force; (d) Double-couple without moment; (e) Center of rotation; (1)
Center of explosion :

In a similar manner, combination of the rays s, Ss, and Ps yields the
surface source function for the SV-waves, S},

Sy =8, + SR + S,RPY (236)

The surface source function for the SH-waves is obtained by applying
the limiting process to the i and Hh rays, yielding

S;{ =Sy + SHRH = 2Sy (23¢)

Hence, if the source is located on the surface of the plate, all of the
source functions have to be replaced by those given by equations
(23).

(b) Surface Receiver. Expressions for the case of a surface
receiver on z = 0 can be obtained in a similar manner. For the P-wave
receiver function, one has to consider the rays P, Pp, and Ps. As z
approaches zero, all of these three rays coalesce and once again the
three integrals can be combined to one with a new receiver function,
D},

D:p = Dup + DupRpp + D ,RPY (24a)

In a similar way the SV-wave receiver function is obtained by com-
bining three rays V, Vv, and Vp and the SH-wave receiver function
by combining the H and Hh rays,

D:‘w =Dw+ DR+ DupRUp
D:H = D(\’H + DLYHRH = 2D(yH

(24b)
(24¢)

If the receiver is at the surface z = h of a plate and the source is
either in the interior, or on the opposite side, we should replace the
reflection coefficients in equation (24) by the corresponding ones Rpp,
Ry, Ryw, and R,p as given by equation (19).

3 Other Point Sources in a Plate

Solutions for waves generated by other types of point sources such
as a single-couple, a double-force, a double-couple without moment,
a center of rotation, and a center of explosion can be all derived from
that of a single concentrated force. These solutions are simply ob-
tained by calculating the directional derivatives of the displacement
field due to a concentrated force, equation (22). In an infinite medium,
these point sources are called nuclei of strains, [23]. :

1 Single Couple. Configuration of two forces which resultin a
single-couple is shown in Fig. (3b). The unit vector a which denotes
the direction of the concentrated force of magnitude F; forms an or-

thogonal triad with two other unit vectors b and ¢ such that
c=aXb (25)

The vector ¢ then indicates the direction of the resultant moment.
Let @iy denote the displacement field due to the force Fg acting at
the point P1(0, 0, 2o) and in the direction of vector a. Then
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d(r, s) = Filr, s; a) (26)

where the components of ii(r, s; a) are those given by equation (22).
Now, consider a second force of magnitude Fy acting along the di-
rection of the vector —a at a point Py which is § units away from Py
along the vector b. Then the displacement field, &z, due to this second
force is given by

Ug(r, s) = —Fou(r — b, s; a). @27
The total field due to these two forces is the sum of the individual
fields, i.e., uy + Uz, In the limit as § approaches zero, the two forces form
a single-couple acting at the point (0, 0, zo) and the total field is given
by

ut(r, s) = Mo(b-V)u(r, s; a) (28)
where
o] 10 o)
Mo =lim (Fpd); bV =b.—+b + b, —
0 al—r-%( 00) or er of oz

Components of @¢ can be expressed in terms of § = VG or GV as
listed in Appendix B.

EZ (l', S)

w© 2 2
F(S) > LZ Z [ zaz zzz + brargﬁrr“" bzargézr

n=1 lj=1

+ brazg{zrz + bﬁaﬂq Ml}
n

— © 2 2
lT,c.(l’, S) = F(S) Z [/Z Z [ zazgrzz + brarg)]'rr + bﬂaﬁgrﬁa
n=1 =1 k=1
+ b,a, Gk + bra, Gk

+ (et BE, + boasThy + bya, T, + bras é‘”]]
n

2
kZ (brag@ifs + boar Gl + bea.Gik, + baeFil]
1k=1

™o

7o £ |

i

+ [boa, G + brag8ily + boa S, + bzaeﬂ{w]}n (29)
where
= Mof(s)/ (4mx?uh®)
The SH-waves, indicated by the superscript H of §'s, contribute

F(s) (30)

nothing to the Z¢ component. In an infinite medium, explicit ex- .

pressions for u®(x;, ¢) in Cartesian components are given in reference
[27, p. 40]. Upon the completion of the inverse Laplace transform as
discussed in Parts 2 and 3, equation (29) yields the displacements due
to a single couple'in an infinite space (n = 1), a half space (n = 1, 2),
aswellasinaplate (n =1,2,...).

2 Double-Foxce. Going through the derivation as explained in
the previous subsection, one obtains the displacement field due to a
double-force as shown in Fig. 3(c),

64(r, s) = Do(a-V)u(r, s; a)

Do = lim (—Fg0)
50

(31)

Comparing equations (31) and (28), it is seen that the former is ob-
tained from the latter by simply replacing by, by, b, by a,, as, a,, re-
spectively. In vector notation, the results are

a?(r,s) =a°(r, 5)lb=a (32)

where in this case
F(s)

= Dof(s)/ (4mk2uh?) (33)

Numerical results for a double-force in a half space were reported in
reference [28).

3 Double-Couple Without Moment. Superposition of two
single-couples with moments in opposite directions yields a point
source known as the double-couple without moment, Fig. 3(d). From
equation (28), the displacement field is given by
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ude(r, s) = Mo(b-Vilr, s; a) + Mo(a-Vulr, s; b) (34)

The components of the displacement for each ray are then given by
the relations

@ 2 2
L_t—gc(r, s)= F(S b [Z > [ zazgzzz + 2brargjzrr + ZbHaBgzM
n=1lj k
+ (bzar + a,b, )(g]zﬁz + g]zr)]}

—'dc(rx S) F(s) Z ‘Z Z [szazg{ga + 2brarg{'rr + 2b0aﬂgrﬂﬂ
+ (b.ar + arbz)(g{-l;r + g)’—}rzz)] + [2bzazgrl‘gz + 2brar rrr

+ 2b0aﬁgr00 + (b:a, + a,b, )(grl:lzr + grrz)]}
n

(e, s) =FGs) % {Z 3 [(brag + a,be) @ + Gl

+ (boay + ash, Yy + Sif)] + [(brao + b} (G, + €5

+ (bsa, + ﬂb‘bz)(aggo + §6}’I01))} (35)

where F(s) is given by equation (30).

4 Center of Rotation, A center of rotation is obtained by su-
perposing two single-couples with moments in the same direction, [23],
configuration of the two single-couples being shown in Fig. 3(e).

uér(r, s) = Mo(b-Vulr, s; a) + My (a-V)ilr, s; —b) (36)

The vertical components of the displacement field is
Ty (r,s) = F(s)(bra, = b,a,) Z [Z ¥ (9, - @'Z)} (37)
n

Substituting yms’s from Appendix B into the foregoing expression,
and also into those for Z§" and Z¢" we find that these expressions can

be written as
pRzd

Thler + 5 [ > @k ?;%”
n=2 {k=1

B2 5) = cha[ s + 5

n=2

29, s) = F<s>ca[[§;% "
ayr,s)= F(S){cz[g + T )1 + e[S + 9H0=

+ Z Z (298 +cr9F) + . FF + 594!

k=1

] (38)

where c¢; are the components in cylindrical coordinates of the vector
c given by equation (25), and the expressions for ?’,ﬁg are given in
Appendix C. Note that only S-waves are emitted by the source, but
rays with segments in P-mode are generated upon reflections.

5 Center of Explosion. The displacement field due to a center
of explosion can be obtained by simply superposing three mutually
orthogonal double forces. Hence, using the expressions derived for
a double-force, one obtains after some simple mampulatxon the fol-
lowing expressions for the displacement field:

ﬁie(r,z,S)=F(S)[(9 Dn=1+ Z Z g; )]

TE(r, 2, 8) = F(s)[( ) Yy (z g ) ] (39)
n=2 \k=1

where

@) =2 f SITL,D e ~s8ntdo(skr)dE

@), = 52 f SIIID, e ~s8ntd 1 (s£r)dE

Si=1/n, g = (zpﬂ+zs§)n

Note that only P-waves are radiated at the source location while the
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gegments in S-mode are generated upon reflection from the
boundaries.

As shown in reference [7)], the results for a center of explosion can
be derived directly from the solution for an inhomogeneous equation

for ¢.
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APPENDIX A

In this Appendix we list the components of the Laplace transformed
Green’s dyadic, G(r, z, 9, s), appearing in equation (13). For simplicity

Journal of Applied Mechanics

the limits of the integrals will be omitted with the understanding they
all go from 0 to «. The index n for each component of G.indicates the
number of segments of each ray path, the first superscript j identifying
the mode (P or SV) of the first segment (from the source), and the
second superscript k the mode of the last segment (to the receiver).
The two subscripts, r, 8, or z are the indices for dyadic components.
Thus G,s means the displacement component in the direction of
wa-coordinate that is generated by the 8-component of the source.

Pand SV-Components. (j, k= 1 and 2 for P and SV-mode, re-
spectively)

(Gi)n =5 f SI1BDoe~58nJo(str)EdE
(Gzr n =5 § SALHDpesénd (sEr)EdE
@5n=0
G, = —s § STI%Dne ~ndo(str)EdE

+= f S/TI%D e ~58ndy (sEr)dE

. Gifn=0
Gi¥)n = s [ ST NDppe~s8nd1(sEr)EdE

1 ,
( {9k) == ;‘ ijH}’kDake‘sg"Jl(sfr)df

(é'bl:)n =0

_]BI;)n =
where
n = (an + zsg‘)n:

zp and 2, are the sums of vertical projections of all segments in P and
S-modes, respectively, for a ray with n-segments. S; and D, are the
source and receiver functions which are given in Tables 1 and 2, re-
spectively. I1% is the product of (n — 1) reflection coefficients for a
ray with n-segments.

Note that, from Tables 1 and 2, the product S}Dzk (for u,) equals
8Dy, (for u,). Hence Gi equals G4 for an unbounded medium (IT i
= 1) as expected. This is also true for a surface force/surface receiver
and buried force/buried receiver in a plate. However the equality does
not hold for surface force/buried receiver or buried force/surface re-
ceiver combinations.

SH-Components.

(Gzz n= (Gzr n (Grﬂ n (Gzo n= ) (Grf) n* (Gar n=0-

@l == f SyTI%D, e~y (sEr)dE
r
(G =5 fSHIIYDgpe~8ndo(sr)td
1
= f SuTl%Dsme—senJ (str)dE
r

Note that the SH-components only contribute to the rays that have
all of their segments in S-mode, i.e., 25, = 0, and g, = ({zx)n.

The inverse Laplace transform of each integral will be discussed
in Part 2 of this series of papers for r = 0; and in Part 3 for r > 0. When
the time function of the source is harmonic in the form of exp(—iwt)
the preceding Green’s dyadics G% are also the displacements for
steady-state response if the parameter s is replaced by iw [29].

APPENDIX B

In this Appendix the components of the third-order Green’s tensor,
G which appears in the displacement field expressions for higher-order
force systems as discussed in Section 3 are given.

P and SV-Components. (j, k= 1 and 2 for P and SV-modes, re-
spectively)

(G4 ) =52 f &1 Dove—#ndo(sbr)EdE

@0 =57 [ $TUDessndo(str)Edg
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Fhadn = 52 [ S4TlpDusre—sbetIo(sr)dt

-8 f STl hDgre =] 1 (s£r)dg

Ehhdn = @ = Fh)n = G = FH )0 =

Once again the components due to SH-waves only contribute if all
of the segments in a given ray are in S-mode, i.e., 2p=0,2, =2y in
&n.

In cylindrical coordinates r, 8, z, because four of the nine compo-
nents of G (Grg, Gyr, Gz, Gz0) vanish identically, the nonvanishing
components of @ = VG are the same as those of §¢ = GV, that is («;,
B=r,0,2),

-(’}ruﬁ' = gfxﬂr = aGnﬂ/ar,

(9022 n_O

aff = r, 0r, 02, 26,
Goup = 95p = OGt,ﬂ/éz, afl # ro, ér, Bz, 240,

Soap = Gopn
where the four nonvanishing components of the last group are
(Grr —~ Gu)/r

Soz0 = Gor/r

Goro = Goor =

o = Gra/r,

The 14 nonvanishing components of the Laplace transform of g¢
are listed in this Appendix where the superscript ¢ is dropped for
convenience. Note that the Green’s stress tensor is given by [27
30]

Z = AN(V-6) + u(VGa + GV)

where | is the idem-factor. Hence the components of § are useful in
calculating Green’s stress tensor.

APPENDIX C

The displacement field in terms of the third-order Green’s tensor
due to a center of rotation is given by equation (37). These equations
can be written in a much simpler form by introducing the expres-
sions

(-z/y’fl)n = (-?f)—"k - (’)';’:r) ’ ((’) k)n = ((’){'éz - (’)Jkr)n
()= (Gl —

Substituting the expressions for 94, from Appendix B we get
P and SV Components.

(k) = —s2 f S§I15D,ne % nd \(skr)EdE

{Irll)n; {rr)n = ((’Ilzll - :(?{lllz)n

— S
@k =" f SUIIG,Dae—#nd (s £r)dE

((’)rﬂ n = 52 f SEHEkD;ke‘“HnJO(SE)')EdE - (Elllkz)n

SH-Components.
@ == ShIDesnr(str)dg
(G, = 52 § SUIIEDope~sénd ((sér)E2d§
@8 =52 | ShTlDunewndolstr)tdt |
- ; § SiTDime (st d
In analogous to the case of center of explosion, the solutions for a
center of rotation can also be obtained directly by assuming a proper

body force potential for the rotational part of a body force and then
solving the inhomogeneous equations for Y and x.
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Propagation of Elastic Pulses and
Acoustic Emission in a Plate
Part 2: Epicentral Responses

In the first part of this paper expressions for Green’s dyadics in terms of the generalized
ray integrals for both unbounded and bounded media were given. In this part Cagniard’s

method is applied to obtain the transient response along the epicentral points of an elas-
tic plate. Numerical results are shown for a concentrated force, a single-couple, a double
force, a double-couple without moment and a center of rotation up to 10 transit time re-
quired for the longitudinal (P)-wave to cross the thickness of the plate.

4 Response of a Plate Along the Axis of the Source

General expressions for the displacement field due to different
point sources were given in Part 1. These expressions are simplified
considerably if one is interested in the response of the plate along the
axis passing through the source, i.e., r = 0. Displacement fields, per-
tinent to the axial points are obtained by taking the limit of the
foregoing expressions as r approaches zero. In the limit as &« — 0 the
following expressions are applied: ’

lim Jo(a) = 1; lim Ji(a) = /2.

a—0 a—>0

(40)

Applying the aforementioned limiting process to the components
of the Green’s tensor Gumn(r, 2, s) and Gimn(r, 2, s), one obtains the
corresponding expressions at the points along the axis, r = 0, which
are listed in Appendix D.

In what follows, we show how the inverse Laplace transform of these
ray integrals for epicentral locations are computed exactly by applying
the Cagniard’s method. It is seen that, excluding the factor s or s the
integrals for each ray appearing both in G (0, 2, s) and Gimn (0, 2,
s), (see Appendix D) are all of the form

Iz, s) = J; E(f)fe-settadt (41)
where g(£, 2) = n2p + {2, is the phase function and E(£) is an even
function of { involving the source function, receiver function, and the
product of the reflection coefficients. The indices j, k, H, etc., for a
particular ray have been omitted. The factor of s or s2 can be com-
bined with the function F(s) which appears in the expressions for the
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displacement field due to an arbitrary time function. Hence, knowing
the inverse Laplace transforms of the integrals of equation (41), one
can obtain the complete solution through a convolution integral. The
inversion of the integral 7(z, s) will be carried out as discussed in the
following.

Note that s, the Laplace transform parameter, appears only as a
factor in the exponent of the integrand of 1(z, s) and nowhere else in
the integral. This permits an explicit determination of the Laplace
inversion. If a new variable of integration, ¢, is introduced such

that
t=g(&2)=2pn+2¢ (42)

the integration over the real variable £ is then transformed into an
integration over another real variable ¢. This is a one-to-one trans-

‘formation over the interval [0, ], and one can solve for { as a function

of t, when z is specified,

E(t) = __1__

, ) {t2(z5 + 22)2 =222t [t2 + (1 — k) (22 — 22)]1/2
2p —2s

+(22 — k2 @E - 22WV2 2z, =z (43)
1
£() = —{[t2 —2(1 + kD)2 — dzpx P2 2, =2,
2pt
Hence, equation (41) is transformed to
- = d
Iz, s) = f E[E®]EE) (—[)e—stdt (44)
. ta »' dt

where
a__
dt E(zp§.+ 257)

and t4, the value of ¢ at £ = 0, is the arrival time of a particular
ray.

(45)

ta=2zp+ Kz (46)

The lower limit of integration in equation (44) is changed to zero
by introducing the Heaviside’s step function
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I(z,5) = j; [E [S(t)]E(t)( e)H(t - tA)] dt (47)
The aforementioned equation simply means that I( z, s) is the Laplace
transform of the quantity inside the curly bracket, hence,

Iz, t) = E[E@)]E@)(dE/H(E ~ t4)

where £(t) is given by equation (43).

As mentioned earlier, the coefficients of these integrals, 1(s), ap-
pearing in the expressions for the displacement field are either sF(s)
or s2F(s), where F(s) involves the Laplace transform of the time
function, f(s), for the source. From Table 2, it is seen that these
coefficients in general can be written as s™f(s). Now, from the con-
volution theorem

(48)

L s™(s)(s)] = aat—",; j; tf(t — )(r)dr

= j;tf""’(t — )(r)d7 + f=D(O0)(t) +. ..

+ F(O)n=1)¢)  (49)

where .£ 1 denotes the inverse Laplace transform operator and the
superscript in parenthesis denotes the order of differentiation with
respect to the argument. For a concentrated force, m equals 1 while
for the other sources discussed in this paper, m equals 2.

Equations (48) and (49) give rise to the exact transient response
for pulses traveling along a particular path from the source to any
point on the z-axis passing through the source. The total response is
obtained by summing up waves along all possible ray-paths as ex-
plained in the next section.

In the next section, we show numerical results for the epicentral
responses of a plate excited by six types of buried sources, a single-
force, a double-force, a single-couple, a double-couple without mo-
ment, a center of rotation, and a center of explosion, and also a surface
force. The time function for the source is either a step function, or a
parabolic ramp function. General responses due to an arbitrary time
function can then be determined by a convolution integral as shown
in equation (49). By measuring the general responses at the surface
of a plate, it is also possible to determine the source time function by
deconvolutions [31]. Hence, the exact step responses as shown in this
paper will be useful to evaluate the time function of a source.

This inverse process of deconvolution is not only useful in charac-
terizing the time function of a source, but also a powerful technique
to calibrate a transducer [32]. The Lamb’s solution for a half space
has been applied to deconvolute a loading function [33], and to cali-
brate an ultrasonic transducer [34). Experimentally, it is easier to do
the calibration on a plate, than on a massive block which simulates
a half space [35].

5 Numerical Results and Discussions of Responses at
Epicenter

In a plate, the waves radiated at the source location travel along
many different paths before they reach the receiver. Hence, the first
step in the calculations is to sketch the possible ray-paths as shown
in Fig. 2 and assign modes as P or S systematically to all segments of
each ray. The vertical projections z, and 2, of the segments in P and
S-modes for the jth ray are then obtained. The arrival time, £ 4, cal-
culated from equation (46), is then compared with the maximum time
of interest and if the former is less than the latter, the contribution
due to this ray is calculated.

Excluding the source and the receiver segments, i.e., the first and
the last segments of a given ray, let m;, and m; be the number of seg-
ments traveled in P and S-modes, respectively. These (mp, + m;)
segments can be arranged in (mp + m,)l/(mpim,!) number of com-
binations. Each possible configuration has a unique product of re-
flection coefficients, I1},. However, those rays that have the same total
number of P to P and S to S reflections will have the same numerical
value of I1%,. This is because RPP = Rpp, R = R, RPY = ~Rpy, and
RvP = —-R,,,

As an illustration, consider a ray with 10 segments (n = 10) where
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Fig. 4 Response of the surface z = 1 due to a concentrated force at zp =
0 and 1/2; ordinate is the normalized displacement T h2uy/ Fyag(a = 1,
z)

both the source and the receiver segments are in P-mode, j, k = 1, and
let m, = 5, ms; = 3. The total number of possible combinations is then
(5 + 3)1/(5!3!) = 56. However, it does not mean that 56 different cal-
culations are needed. These 56 rays can further be grouped into three
subgroups with

II{Y = (RPP)S(RY)2R PRy,
Of = (RPPYHR*)(RP*)2RVPR,yp
O = (RPPYYRYPY(Rp, )3

In the first group, there are 6 rays with a value of T} = IT{}, in the
second group 30 rays with I1}$ = I1{, and in the third group 20 rays
with IT3} = IT{}. Since the source function, receiver function, phase
function and the arrival time for all these rays are the same, the con-
tribution due to these rays can be calculated at once with one integral,
where

S1IT¥D . = S1[6IT§Y + 3011 + 20IIP]D 1.

Hence, by choosing the proper source function, receiver function and
forming the product I1%, the expressions for the rays are assembled
for numerical evaluations. In the following numerical examples it was
assumed that 2 = 3, corresponding to the case where the two Lamé
constants are equal (A = u).

1 Concentrated Force. The displacement fields at the epi-
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Table 3 Parameters of the three groups of ray Integrals for U,{z > 2,) In a plate due to a concentrated force at

Z= 29
. Source Fur'\cti('nn Sj Receiver Function Dak gz?izztig: Phase Function
n N IEA ST B IEM I DY RS O N Iclgefﬂcients Bn
ik
P -1f - |-&/m| -| - -n -l -e - |- 1 n(z-2)
1 -le/d - L) - R T T i A 1 n(z-z )
h o B B Bl P B B N e 1 t(z-z,)
. Pp 1| - |-g/n} -| - -n - | -¢ - |- RPP n(z+z )
Pv 1} -|-&/m -t - - |-el - |-t - rPY nz +z
2w | -lergd - (-1 - AR R t(z4z)
Vp - l&/d - |-1] - - |-} - 1|- R'P tz tnz
Hh -l -1 -1- KZ/C - - - - 1 1 L(z+zo)
pPp -1 - |-&/n - - -n |- -] -1- RppRpp n(2+z+z )
pPv | -1| - |-g/n| -] - - ey - |- Rppva n(2-z )+iz
pVp | -1| - |-&/n) -| - |-t - |- RPVRVP n(l+z 2)+C
pw | -1 - {-&/nf ~|. - - -] - [z~ RPVRW n(1-2_)4¢ (1+2)
3 pwv | -dered - J1] - - el -1t ]- R R L (2+2-2)
wp | - le/d - 1] - |- q-e |- ]- rR_R"P nz+g (2-2,)
vev | - Jefg - f1f - S A B I Rvapv N+ (1-z +2)
vep | - lg/g - | 1| - - l-e |- Rvapp n(1+2)+2(1-2 )
wah | - - - f-kEE] - - - -2 1 t(2+z-z )
central locations are calculated from equations (13) and (22) where Table 4 Superposition formulas for time functions
the components of Green’s dyadics G(0, z, s) are listed in Appendix Rise time
D. The value of m in equations (49) is 1 for a concentrated force. Tyres durat ton Functton
Hence, if f(t) is taken to be Heaviside’s step function, i.e., f(t) = H(¢),
then the only contribution in equation (49) comes from the term Step 0 H(t)
fOM(2).
Fig. (4a) and (4b) show the response of a point on the surface z = Lincar ramp A £ (ONCE) - £ CE-AN(E-A)
1 due to a buried (z¢ = 0.5) and a surface (z¢ = 0) force. The ordinate
is the normalized displacement muh2uq/(Fo), (@ = r, 8, z), and the ~ Triansular pulse 2 F{ON(E) - 20 (L-A)R(E=A) + £, (e-28)H(E-20)
abcissa is the nondimensional time ¢ = ct*/h. The results in Fig. 4(a) ’
are in complete agreement with those given by Knopoff {10], and Pao, Parabolle ramp 2 T (RIRCL) = 20, Le-t)N(E-A) + £ (c-20)H(E-20)
et al. [13], and those in Fig. 4(b) are similar to those given by Davids
[14] who calculated the response due to the incident wave generated Faravolte putac “ f'z(t)H(,t) "IN R (e
by a shear impact on the plate. The vertical displacement, u,, expe- - £, (E-4A)H(E-4A)
riences jumps at the arrivals of the rays with all segments in the P-
mode while the displacements u, and 1y have jumps at the arrivals -
of rays in S-mode. The magnitude of these jumps calculated from the ~ f,(®> = ¢ AL

corresponding rays by setting ¢ = {4 or £ = 0, are
(muh?/Fo)[u,(0, 2, ta)] = a/{yx?2p)
(muh?/Fo)[ua(0, z, t4)] = ar/(vzs)

where v is 1 for a surface force and 2 for a buried force.

A total of 156 and 381 rays are calculated for surface and buried
sources, respectively, in order to obtain the exact response up to ¢t =
10. The arrival time of the P, pPp, pPpPp, . .. are indicated on the
figure for the surface source.

2 Double-Force and Center of Explosion. Motion of a plate

~ due to a buried double-force and a center of explosion for each ray are
calculated from equations (32) and (89), respectively. The case of a
vertical double-force and center of explosion were first studied by Pao,
et al. [13]; some of their results are reproduced here for complete-
ness,

Since a center of explosion is obtained by superposing three mu-
tually orthogonal double-forces, it is expected that the response of
a plate due to a'vertical double-force be similar to that of a center of
explosion. This is shown in Fig. 5 where three different time function,

a=rb (50)

Journal of Applied Mechanics

Heaviside’s step function, a linear ramp function, and a parabolic
ramp function are considered. Superposition principle for these ramp
functions are given in Table 4. The rise time of the ramp functions
were taken to be 0.4. It is seen that by introducing a finite rise time,
the response signatures become smoother. The displacement field due
to these two kinds of sources exhibit a delta function behavior at the
arrivals of rays with all segments in P-mode, Fig. 5(a). A period equal -
to twice the travel time of a P-wave to cross the thickness of the plate,
T* = 2h/ec, can be associated with these curves. This periodic behavior
is due to the interference of those rays with 2m and (2m + 1) reflec-
tions from the surfaces of the plate.

Responses due to a horizontal and an oblique double-force are
shown in Fig. 6. These results have not been reported previously. Note
that for a vertical double-force, Fig. 5, and for a horizontal double-
force, Fig. 6(a), the only nonvanishing component of the displacement
field is u,, however, for an oblique orientation of the double-force, Fig.
6(b), both 1, and u, are nonzero. This shows that the response for an
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Fig. 5 (b) Linear ramp time function

Fig. 5 (c)

Parabolic ramp time function

Fig. 5 Epicentral response of the surface z = 1 due to a point source at 2z
= 1/2; the ordinate is the normalized nondimensional displacement 7 -
h 3Uz/ Do

oblique double-force cannot be obtained by adding vectorially the
results due to two mutually perpendicular “components.” This is due
to the fact that the Green’s function for a double force is a third rank
tensor, 9, which is symmetric only with respect to the first two in-
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Fig. 6 (a) Vertical a = (0, 0, 1) and horizontal (1, 0, 0} double-force (i, = 0)
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Fig. 6 (b) An oblique double-force, v/2 a = (1,0, 1)

Fig. 6 Epicentral response of the surface z = 1 due to three different or-
ientations of a double-force at zg = 1/2; the ordinate is the normalized dis-
placement & puh3u,/Dol{e = 1, 2)

dices, i and j. Contrary to the vertical displacement which is nearly
periodic with the period 2h/c (T* = 2), the radial displacement has
an oscillatory behavior with a period of T* = 2h/C, and ¢/C = /3 in
this case.

3 Single-Couple and Center of Rotation. Eventhough asin-
gle-couple is not a self equilibrating force system, it is known as Type

- Iforce system of Honda in geophysics, and has been used in modeling

some of the earthquake mechanisms, [36]. Epicentral responses of the
plate calculated from equations (29) are shown in Fig. 7 for three
different orientations of the couple. In these figures the time-de-
pendency of the source is a parabolic ramp function with a rise time
of 0.4. The vertical displacement due to couples whose generating
forces initially lie in a plane parallel or perpendicular to the surfaces
of the plate vanishes (Fig. 7(a), however, it is nonzero for other or-
ientations (Fig. 7(b). An interesting feature of the single-couple is
observed when the generating forces, lying in a plane that contains
the z-axis, and make an angle of w/4 with this axis. For such an or-
ientation, there is no contribution to the radial displacement from
those rays which originate as a P-wave. Similar to the double-force
case, periods of 2k/c and 2h/C can be associated with the long-time
behavior of the vertical and radial displacements, respectively.
Superposing two single couples, the moments being in the same
direction and the generating forces along two orthogonal vectors,
results in a force system known as the center of rotation. This source
generates only S-waves at the source location, however, the P-waves
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) Fig. 9 Response of the surface z = 1 due to three different orientations of
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F are generated upon reflections (see, equation (38)). Fig. 8 shows the
I T R R T T T R response due to a buried center of rotation at; zg = 0.5 with a parabolic

o 1 2 3 4 54 6 7 8 9 10 ramp function of rise time 0.4 as its time-dependency. The ordinate
Fig. 8 Response of the surface z = 1 due to a center of rotation at zg = 1/2; in this figure is the normali?ed displa(.:ement mh 3{" / (M 4cg) where
the ordinate is the normalized nondimensional displacement, wu- €0% arb, — a;b,. The long-time behavior of the radial displacement
h3u/ (Mocy) has a period of 2h/C.
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4 Double-Couple Without Moment. Double-couple without
moment is the most widely used self-equilibrating force system in
modeling the earthquake mechanisms. Known also as the Type II
force system of Honda, [36], it represents the strike slip motion of the
fault where the unit vector a is along the direction of the slip motion
[3, Chapter 3].

Fig. 9 shows the epicentral response of the plate due to three dif-
ferent orientations of the double-couple without moment, equation
(35). In all these figures the time-dependency of the source is a par-
abolic ramp function with a rise time of 0.4. As seen from these figures,

aperiod of T* = 2h/c and T* = 2h/C can be associated with the ver-

tical and radial displacements, respectively. Note that the vertical
displacement due to a double-couple without moment is very much
similar to those due to a double-force and a center of explosion, hence
these two sources can be distinguished only from the responses at
off-center points.
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APPENDIX D

Both the Green’s dyadics and the third rank Green’s tensor simplify
considerably at the epicentral locations, i.e., r = 0. Going through the
limiting procedure as explained in Section 4 of this paper we get for
the Green’s dyadic:

P-SV components. (j, k = 1 and 2 for P and SV-modes, respec-
tively)

(@) =5 f SjIIpDpe~oenEdE

@)= =5 S 8 ThDppe g

. s ,

@)=~ 3 S S; WhDere~sentdE

(FG.]ZI;'— n= (—G—Jr’; n= (@ZIZ n= (ajr’;)n = (G_éﬁ)n = O

138 / VOL. 48, MARCH 1981

SH-Components.

— s
(Gﬁ)n = 5 f SHH'Il{DrHe—sg"Edg

— s
(G = 2 J Sull4Doye8ntdE
All other components are zero.

In the case of the third rank Green’s tensor the only nonzero com-
ponents are:

P-SV Components.
(Fh)n =52 f $;IMBD pe~"EnkdE

_. 1 ,
(Gt = 532 & UnDpesenE2dE
(gjzlzo)n = (§}z}:r)n
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SH-Components.
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For a center of rotation:
P-SV Components.
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SH-Components.
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Propagation of Elastic Pulses and
Acoustic Emission in a Plate
Part 3: General Responses

In the first part of this paper, the Laplace transformed solutions in terms of the general-
ized ray integrals for point sources in a plate are presented. The inverse transform and

the exact solutions for the epicentral responses together with numerical results were given
in Part 2. In this part a modified version of Cagniard’s method is applied to obtain the
transient response of the plate at any location due to point sources applied at the surface
or the interior of the plate. Numerical results are shown for a concentrated force, a single-
couple, a double-force, a double-couple without moment and a center of rotation, at loca-
tions up to six plate thicknesses from the source.

6 Source and Receiver on the Same Surface

The general expressions for the Laplace transformed displacement
fields due to different point force systems are given by equations
(22)~(29) in Part 1, [30]. It was also explained in Section 2.4 how to
modify the ray integrals to take into account the cases when either
the source or the receiver was on the bounding surface of a half space,
or when they were on the opposite sides of a plate.

The problem where both the source and the receiver are on the
same surface of a plate requires special attention. The solution for
this problem is derived from the general plate solution by taking the
limit as both zg and 2z approach zero. The order of this limiting process
with respect to z and 2 is immaterial.

Consider first two rays, P and S, and four reflected rays, Pp, Ps, Ss,
and Sp as shown in Fig. 10. The three rays P, Pp, and Ps form a P-
group in a half space or a plate and the remaining form a S-group. If
we combine the three ray integrals of the P-group, as given by equa-
tions (9) and (20), and then take the limits when both z and 2 ap-
proach zero, we obtain a single integral devoid of the exponential
phase function because both exp [—sn(z + zo)] and exp [—s {(z + 2z0)]
reduce to unity. This ray integral represents a P-wave which propa-
gates directly from the source to the receiver along the surface. The
coefficient of the Bessel functions in the integrands can be expressed
ag S;113,D, and S1I1},D 1 where S; and S equals the surface P-
source, S}, and S, respectively, as given by equation (23a), and Dy
equals the interior P-receiver function D, as listed in Table 2. The
[1}; equals unity (no reflection) in this case.
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Fig. 11 A group of nine rays which coalesce into a pP ray as both receiver
and source approach to the top surface of a plate

Combination of the three rays of the SV-group gives rise to a single
SV-ray integral with similar results. The case of the SH components
of a surface source can be treated in the same manner except that the
resulting SH ray integral is formed by combining only two rays, H and
Hh.

We note in passing that when the surface force is a vertical force
0, a, = 1), the result so obtained is the solution for the .
surface response of a half space originally investigated by Lamb [37].
When the surface force is a horizontal force, the results so obtained
agree with that obtained by Chao {38].

Next, consider the nine rays shown in Fig, 11. All these rays, in the
limit as z and zo approach zero, coalesce into a single pP ray that starts
at the source location as a P-wave and reaches the receiver as a P-wave
after one reflection. Going through the same limiting process, we find
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that the resulting ray integrals will contain the products S1I1},D

and S1I1$.D 1. The S; and S} equal the surface P-source functions.

S, and S}, but D1 equals the surface receiver function D}, of equa-
tion (24a), (see Tables 1 and 2 of Part 1), and 11}, = Rpp.

Similarly, we can group nine rays to form a single pS ray, a sS ray,
or a sP ray. The corresponding products H?k are Rpy, Ry, and R,,p,
respectively.

In summary, when both source and receiver are on the same surface
of the plate, the surface source and surface receiver functions are to
be used in all ray integrals except the three rays, P, S, and H that
travel from the source directly to the receiver along the surface. In the
latter case, the surface source function and interior receiver function
should be used.

7 Inverse Laplace Transform of the Generalized
Rays

The integrals appearing in the general expressions for the compo-
nents of the second rank Green’s tensor G(r,z,s) and the third rank
Green’s tensor §(r,2,5) (Appendixes A and B in Part 1) are, in general,
of two types: those that involve the Bessel function Jo(sér) and those
that involve J1(s&r). For the jth ray propagating inside the medium,
these integrals can be written in contracted notation as

I(s) = ‘fo " E(BesEo(skr)dE

I = [ B/ @esep (st (51)
where E and F’ are even functions of £, and involve the source func-
tion, receiver function, and the product of the reflection coefficients;
g(£,2) is the phase function of the jth ray, and s is the Laplace trans-
form parameter. Once the inverse Laplace transforms of these inte-
grals are obtained, the final solution due to the jth ray can be calcu-
lated through a convolution integral as explained in Section 4. Since
the application of the Cagniard’s method to the integrals, given by
equation (51) were explained in detail in |7, 26], we simply state the
results

1

K(rz,t§£) bdg

2 £1lr,z,t)
1) =~ H(t = t4) m j; E®

P(6) =2 H(t - t4) Im f“"“) Bt sl (s
Tr 0

K(r,z,t;£)
where
K(rzt€) = [E2r2 4 (t — nzp — {2,)?12 (53)
ta =2zp+ k2 (54)
t= =ik +zp (83 4+ 1DV2 4 2, (8 + ()12 (55)

The symbol Im means that the imaginary part of these integrals are
to be taken. -

The integrations in equations (52) are along the Cagniard contour
in the complex £-plane from the origin to £; as shown in Fig. 12. Along
the imaginary axis, E at 1 and F at « are two branch points, R is the
Rayleigh pole, and M is a stationary point. At the point M, the value
for ¢ in equation (55) is stationary, that is when & = £

d
(—5-) =0=~—ir+zpEp(E + 1712 4 2,54 (8 + D712
d&ila=¢um ’

(56)

It can be shown that the foregoing equation has only one root and it
is pure imaginary.

The upper limit of the integrals, £1(r,2,t), is obtained from equation
(55) for a given value of t at a given point (r,z). When the point M lies
below the point E (Fig. 12a), these integrals are all real-valued until
£y reaches the point M where £ = £37 and t = t5. Hence, I(¢) and I'(¢)
are both zero until the time £ is reached, and ¢t is the arrival time
of waves traveling along the direct-ray paths. )

For rays with all segments in SV mode, it is possible to have the
stationary point M situated above the point E{|£p] > 1 in Fig. 12b).
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Fig. 12 Cagniard’s contour (heavy line) and alternative paths for numerical
integrations; (a) - Direct and reflected rays; (b) Refracted rays; (c) First
P and S-rays for the case where both the receiver and the source are on the
same surface

In this case a part of the wave is refracted along the surface of the plate
and it reaches the receiver faster than the waves along the direct-ray.
The arrival time of this SV ray with refraction is obtained by setting
zp = 0 and &, = 4+ (point E) in equation (55),
tg =r+ 2,(k2 — 1)1/2, (57)
Waves along this refracted ray are also known as “head waves.”

When the integrands of all ray integrals are assembled as explained
in Part 1, one is ready to carry out the numerical integrations of the
integrals as represented by equation (52) along the path AME, as
shown in Fig. 12.

The upper limit of the integration, £, (r,2,t), in equation (52) moves
along the imaginary £-axis from the origin. The integrand is real-
valued when £; is below the point M, or the branch point F, the latter
is for refracted or head waves. Since only the imaginary part of these
integrals are used for the answer, the response is zero until the point
M or E isreached. At the point M, Cagniard’s path leaves the imagi-
nary axis and stays in the first quadrant of the complex £-plane. Since
the path itself is given by a complicated equation, equation (55}, in-
tegration along it is difficult. Several methods have been proposed
by Pekeris and Longman {39}, Sherwood {40}, and Abromovici and
Alterman [41] to evaluate these integrals. A comparison of these
methods is given by Gajewski {42], who also developed a method of
direct numerical integration of the ray integrals. His method first
reported in 1971 {43] will be applied in this paper.

The original path of integration AM¢; is replaced by the path QM £,
where § is located below the point M or E since the value of the in-
tegral along AQ is zero. Note that the function K(r,z,t;£) has a branch
point at the point £1(r,2,t) and the required branch cut is taken to
extend along Cagniard’s path from £; to infinity such that K has
positive real part on the left side of the branch cut. Cauchy’s theorem
is then applied to find an alternative path of integration QP¢; as
shown in Fig. 12. Since within the closed path QM £,P@ there are no
singularities, the integral along QM£; is equal to that along QP#,.
Integration along the straight lines QP and P, is much easier than
the integration along the original path. The criteria that were used
in the selection of the points Q and P were as follows:

1 Q@ = 0.8|&p] if £ is below the first branch point (direct and
reflected rays) and @ = 0.8 otherwise (for head waves).

2 Pisfixed for a certain time interval, and hence a certain range
of complex values of §£1. It is then shifted to another convenient lo-
cation. As a starting value, P is taken as (0.2 + )| £4]-
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3 The lengths of the path QP and P£; are kept approximately
equal and as short as possible. In the case where both the source and
the receiver are on the same surface of the plate, the alternative path
QP1P2¢, shown in Fig. 12(c) was used.

The new path of integration stays away from the singularities on
the imaginary axis, namely, the branch points E and F, and the
Rayleigh pole R (point where the denominator of the reflection
coefficients vanish). However, the integrand is still singular of one half
order at the upper limit of integration, which are the zeros of the
function K in equations (52). This half-order singularity can be re-
moved by introducing a new variable

a= (8- (58)

Then the integrals in equation (52) along the path P§; transform
into

ada
K(rz,t§(a)]

1’(t)=H(t—tA)—Imf E'[E()[t - zpn(a)
wr ap

It) = H(t—-tA)—Imf E[£(e)]

— 2 fla)] —222

Klrz,t;§()] )

where qp, is the value of « at the point P. Note that as £ — & both «
and K approach zero. To remove this indeterminancy, the function
K is expanded into a Taylor series around the point & = 0 where a
common factor of « is factored out to cancel the « in the numerator.
This power series expansion is only used when the point in the inte-
gration algorithm is near the point e = 0.

Each of the integrals along the straight lines QP and P&y, in the
complex £-plane can be transformed into an integration with respect
to a real variable v and w in the interval {—1,1] [43]. The relations
between £ and v along QP is

1 1 d 1
=—(Ep+ EQ) 4+ = (kp — EQlv; —=—(ép—
H 5 r+ £ 2(5513 &qlv o 2(EP £q)  (60)
and that between « and w along P&
1 d 1
==(1-whap; —=—= 1
a 2( w)ep o 5 P (61)
Hence, the integrals in equation (59) become
d
1) = H(t—tA)—{f Im [Ei—g]du+f Im E—-— a’w}
I/(t) = H(t _tA)_{f Im [E/Méﬁ d
ar{J-1 K
1
i [Et_z__z_{ da dw] 62)
-1 K d

These integrations can now be carried out by using standard nu-
merical techniques for integration of real variables.

8 Numerical Results for Responses at the Surface of
a Plate

In the following numerical examples the plate material was assumed
to have A = u, corresponding to k2 = 3. In'evaluating integrals, given
by equation (62), we have used Gaussian quadratures with 10 or 20
points,
~ 1 Concentrated Force (Figs. 13-19). The case of a vertical
force was discussed in some detail [9-13] but no off-central results
were reported for a horizontal force. The surface motion of the plate
at the locations r = 2, 4, and 6 due to step-time function are shown
in Fig. 13 for a buried vertical force and in Fig. 14 for a horizontal force
applied in the direction of § = 0°. The receiver for the latter is also at
6 = 0°. In both cases the force was located at the midplane. The or-
dinate in these figures is the normalized displacement 7 uh?u,/Fo,
(a = r,2) and the abcissa is the nondimensional time ¢t = c¢t*/h. Note
that the initial stage of the response becomes weaker as the receiver
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Fig. 13 Response of the surface z = 1 due to a buried vertical force at z,
=, the ordinate is the nondimensional displacement wh?u,/Fo (ot = 1,2),
and the abscissa the dimensionless time

is moved from r = 2 to 4, to 6. At equal r, the vertical motions of both
surfaces due to a vertical force are in phase, while the radial dis-
placements are antisymmetric with respect to the midplane. This
shows that such a loading excites the antisymmetric modes of the plate
[13]. In the case of a buried horizontal force, the vertical motions are
antisymmetric while the radial motions are symmetric. Hence, the
symmetric modes of the plate are excited.

Figs. 15 and 16 show the response of the plate due to a vertical
surface force; these results were first given in reference [13]. As seen,
for same r, while the vertical motion of the both surfaces are in phase,
except at the arrival of the Rayleigh wave, the radial motion is out of
phase.

The responses of both surfaces due to a shear impact are shown in
Figs. 17 and 18. The force is in the direction of a, its components in
Cartesian coordinates being a; = 1, a, = 0, a; = 0. In cylindrical
coordinates, the components are calculated by the formulas

ar = ay cos f + ay sin §
ag = ay sin § + a, cos 0
(63)

Comparison of Fig. 13 with Fig. 14; Fig. 15 with Fig. 17; and Fig.
16 with Fig. 18 shows an interesting relation between G,, an G,,. The
G, is proportional to the vertical displacement due to a horizontal
force, shown as u, in Figs. 14, 17, and 18. The G,. is proportional to
the radial displacement due to a vertical force shown as u, in Figs. 13,
15, and 16. Even though these two components are equal to each
other for an unbounded medium, they may be different for a

Qa, = Qg

MARCH 1981, VOL. 48 / 141

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



0.8

0
-o0s8l L. J-0.08
0.5r t , Joos

r

-0.3b J-003

Fig. 14 Response of the surface z = 1 due to a buried horizontal force at
;o = 1/,; the ordinate Is the nondimensional displacement wuh?u,/(Fy cos
Yo =nrz)

bounded medium. These components of the Green’s dyadics are
symmetric when the source and receiver are both buried in the plate
or when they are on opposite sides (Figs. 16 and 18), but they are an-
tisymmetric when both source and the receiver are located on the same
surface of the plate (Figs. 15 and 17). However, they are completely
unrelated if either the force or the receiver is buried while the other
is on the surface (Figs. 13 and 14).

We have shown in Fig. 19 the angular variation of the displacement
field on the surface z = 0 due to an oblique force (a = 1,0,1) acting on
the same surface.

2 A Single Couple (Figs. 20-21). The expressions for the dis-
placement components due to a single couple were given by equation
(29) in Part 1. There are 16 different integrals in these expressions;
11 of them appear in the radial displacement &Z,; and 5 in &Zz;. Even-
though the inversion of these integrals are similar to those given by
equation (51), the calculations of these many integrals become very
laborious and expensive in computer time. Hence, only the numerical
results pertaining to the displacement v, (r,t) are presented. Similar
to the epicentral results presented in Part 2, a time-dependency of
parabolic ramp function with a rise time of 0.6 will be considered for
the source.

Fig. 20 show the response at the points (r,0,1) r = 2,4, and 6 due to
two different buried couples with vectors a = (1,0,0), b = (0,0,—1) and
a = (0,0,1), b = (1,0,0), all in Cartesian components. The ordinate is
the nondimensional displacement wuh3u./(Mg cos 6). Eventhough
these two couples are statically equivalent, the transient response due

142 / VOL. 48, MARCH 1981
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to each one is quite different. The response of the plate is antisym-
metric with respect to y-axis in Cartesian coordinates or # = /2 and
3m/2 in polar coordinates. Hence, these are nodal lines. Similar to the
previous examples, the initial part of the signals becomes weaker as
the receiver is moved further away from the source.

Fig. 21 shows the response due to a single-couple with moment axis
along the z-axis. The two vectors are a = (1,0,0) and b = (0,—~1,0). The
ordinate in these sets of figures is wuh3u,/(Mg sin 26). Hence, the 8
=0, /2, 37/2, and 7 are nodal lines.

3 Double-Force (Figs. 22-23). Pao, et al. [13], have studied the
axisymmetric response of a plate due to a vertical double-force; their
results along with the new results for a horizontal double-force are
presented in Fig. 22. Again a parabolic ramp function with a rise time
of 0.6 was considered as the time function of the source. The first large
peak in all these curves is due to the arrivals of the first three ray
groups, i.e., the rays with 0, 1, and 2 reflections. Note that except for
a phase difference these two transient signals near the source are
similar in their gross behavior.

Fig. 23 shows the angular dependency of the vertical displacement
at r = 4 due to an oblique double-force whose generating forces act
along a = (2,0,1) in Cartesian components. As noted in Section 5.2 of
Part 2, the response due to an oblique and double-force cannot be
obtained by superposing the responses due to the vertical and hori-
zontal components of the oblique double-force.

4 Double-Couple Without Moment (Fig. 24-26). The tran-
sient motion of the surface z = 1 for two double-couples without
moment at different orientations are shown in Figs. 24 and 25, In Fig.
24 the couple axis is along the y-axis with a = (1,0,0) and b = (0,0,—1).
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Fig. 16 Response of the surface z = 1 due to a vertical force on the surface
z = 0; the ordinate is the nondimensional displacement xuh?u,/Fp (@ =
nz)

In Fig. 25, the axis of the couples is along the z-axis with a = (1,0,0)
and b = (0,—1,0). The center of the couples is at zg = 1. The angular
dependency of the vertical displacement for the first source is cos §
and for the second source sin 28, These angular dependencies are the
same as those for single-couples with same orientations, Figs. 20 and
21. It is also seen from Figs. 21 and 25, that while the two responses
have exactly the same behavior, the one due to a double-couple
without moment is twice that of due to a single-couple for this par-
ticular orientation of the sources. The effect can also be shown directly
from the equations (29a) and equation (35a). Comparison of Fig. 25
with Fig, 22 shows that the responses due to a horizontal double-
couple without moment and a horizontal double-force are very similar
in nature. Such a similarity was noted by Stauder [36].

In Fig. 26 we show the angular variation of the u, at r =4 duetoa
double-couple without moment whose generating forces are along the
vectors v/3a = (1,1,1), +/6b = (—1,2,—1). In all the aforementioned
cases the time function was assumed to be a parabolic ramp function
and the rise time was taken to be 0.6.

5 Center of Rotation (Fig. 27). Finally, in Fig. 27, we show both
the radial and the vertical motion of the surface z = 1 due to a buried
center of rotation at zg = %. The axis of the couple (the unit vector
¢) is along the arbitrary vector (c,,cq,¢.). Eventhough only S-waves
are generated at the source location, the initial response outside the
critical range r. is due to head waves which arrive prior to the direct
S-waves to a receiver located on the surface. The critical distance r,
is related to the source depth 2 and the wave speeds in the material
through the relations ‘

re = zg tan 6%, sin8* = C/lc = 1/k (64)
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Fig. 177 Response of the surface z = 0 due to a horizontal force on the same
surface; the ordinate is the nondimensional displacement xuh?u./( Fo cos
) (a=rnz)

The ordinate in the Fig. 27 is the normalized displacement
wph3uy/(csMo), a = r,z, where cg is the f-components of the unit
vector ¢. Note that if ¢ is parallel to the z-axis, both displacements
ur and u, will vanish, :

9 Conclusions

In this paper, we have shown the construction of the Laplace
transformed Green’s dyadics and triadics (the gradient of the dyadics)
for nonaxisymmetric waves generated by a variety of point sources
in a plate, based on the theory of generalized rays. The transient re-
sponse of the plate is then determined from the inverse Laplace
transform which is accomplished by applying the Cagniard method.
Extensive numerical results are shown for the plate surface responses
at radial distances equal to 0, 2, 4, and 6 plate thickness for an oblique
concentrated force, a double-force, a couple, a center of rotation, and
a double-couple without moment. The time function for the source
is either a step function or a parabolic ramp function. The last men-
tioned source has been used widely in seismology to model the slip -
motion of a fault.

Since the integrand of the Green’s dyadics have been decomposed
into four parts, the source function, the reflection coefficients, the
receiver function, and the phase function, the analytical results, and
the computer codes for evaluating these integrals can easily be mod-
ified for other types of point sources, and boundary conditions of the
plate. For instance, if one side of the plate is rigid, or if the plate is
joined to a semiinfinite elastic solid, it is only necessary to change some
of the reflection coefficients in the product for II;, The Laplace
transformed Green’s dyadics could also be modified for a distribution
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Fig. 18 Response of the surface z = 1 due to a horizontal force on the surface -0.02
z = 0; the ordinate is the nondimensional displacement wuh?u,/(Fy cos ) .
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Fig. 20 Response of the surface z = 1 due to two different buried (z, = 0.5)
single-couples with the same moment vector ¢ = (0,1,0); the ordinate is the
nondimensional displacement wuh3u,/ (Mo cos 6)

of point sources on an area, or in a volume, through a surface or volume
integration [3, 44].

The results shown in all figures are exact for the time duration
considered. At r = 6, a total of 1586 ray integrals are evaluated nu-
merically for each type of sources. Many more ray integrals must be
evaluated if a longer duration is desired. For such a case, the method
of normal modes perhaps should be applied to determine the long time
behavior.

From the analysis, we observe two interesting points about the
Green’s dyadics:

1 Although the Green’s dyadics G;; are symmetric in an infinite
space, they are not symmetric when either the source or the receiver
is on the surface, and the other is in the interior of the plate.

2 Eventhough the response due to a concentrated oblique force
can be obtained by superposing the responses due to its two compo-
nents, a vertical and a horizontal, such a superposition is not possible
for double forces and double couples.

‘T'o apply these theoretical results to the study of acoustic emission,
we note that one of the main objectives is to determine the location
of the source of emission. This is done by the well-known method of
triangulation {44}, which requires a priori the knowledge of the speed
of the predominant signal that is first recorded by a receiver. Although
the fastest signal always travels along the direct path between the
-05L : source and the receiver in P-wave mode, its strength may be too weak,
when compared with slower signals, to be detected by a transducer.
In this regard, the following conclusions as drawn from this analysis

Fig. 19 Response of the points (4,6,0) due to an oblique 1orce, a= (1 0, 1),

on the surlace z = 0; the ordinates are the nondin ional displ
wuhus/ Fy (0 = 1,2) may be of interest.
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Fig. 21 Response of the surface z = 1 due to a buried (zo = 0.5) single-
couple ¢ = (0,0,—1); the ordinate is the nondimensional displacement
wuhtu, /(Mo sin 20)

3 Epicentral responses of the plate due to all kinds of force sys-
tems considered are strong at both the initial and later period.

4 As the receiver is moved away from the epicenter, the strength
of the initial part of the response is weakened for unbalanced force
systems (a concentrated force, a single-couple, and a center of rota-
tion). However, in the case of self-equilibrating force systems (a
double-force, double-couple without moment, and center of explo-
sion), the signal is relatively strong throughout, especially for the case
where the generating forces lie in a plane paraliel to the surface of the
plate.

5 There is a clearly identifiable peak in the signals due to self-
equilibrating force systems. This peak becomes conspicuous after the
arrival of the first three groups of rays, namely, the source rays and
those which have experienced one and two reflections from the sur-
faces. Arrival times of these rays depend on the thickness of the
plate.

The aforementioned results could be also useful to characterize the
nature of the source, which is another main objective of acoustic
emission. In this regard, we offer the following observations:

6 As the rise time of the source increases, the signals become
smoother, The surface response is very sensitive to the distance be-
tween the receiver and the source and to the depth of the source.

7 For sources without axisymmetry, the magnitude of the re-
sponse is strongly dependent on the angular location of the receiver
relative to the orientation of the source. This is evidenced by the re-
sults shown in the Figs. 17, 19, 23, 25, and 26.

8 Displacement fields-due to a single-couple and a double-couple
without moment with generating forces lying in a plane parallel to the
surfaces of the plate have the same angular dependency, sin 26.
However, the amplitude of the latter is twice that of the former.
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Fig. 23 Response of the points (4,0,1) due to a burled (zy = 0.5) double-
force, a = (2,0,1); the ordinate is the nondimensional displacement
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Fig. 26 Response of the polnts (4,0,1) due to a buried double-couple without
moment, a = (1,1,1)/\/5 ,b= (—1,2,—1)/\/6; the ordinate in the normalized
displacement & ih3u./ My

9 For a given type of source, the exact solution as given in this
paper for a step time or parabolic ramp time function forms the kernal
of a convolution integral, equation (49). The time function of the
source can then be determined by an inverse process of deconvolution.
Applications of such a procedure to characterizing a source or to cal-
ibrating transducers were mentioned in Section 4 of Part 2.

Finally, we note that although only solutions for point sources are
discussed in this paper, those for stationary sources distributed over
an area or a volume can be obtained directly from integrating nu-
merically the response of point source [3, 44]. Recently, Israel and
Kovach [45] have shown that, even for moving sources, such as a
propagating strike-slip fault represented by the spreading of dou-
ble-couple without movement over an area, the transient responses
can be calculated effectively by an additional numerical integration
over the time variable.
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e - INVestigation of Stress Waves at a
Junction of Three Bars
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When a longitudinal stress wave impinges on a junction of three elastic bars (where two
bars are collinear and a third is noncollinear to the others), six separate stress waves are
produced. A longitudinal stress wave and a flexural wave are reflected back along the first
bar, and a stress wave of each type is transmitted into the second and third bars. For the
theoretical treatment of these waves, the simple one-dimensional theory is used to de-
scribe the propagation of longitudinal (or axial) waves, and the Timoshenko beam theory
is used to describe the propagation of transverse (or bending) waves. The method of char-
acteristics is used to transform the partial differential equations into total differential
equations. The total differential equations are then solved by a forward differencing fi-
nite-difference scheme. For solution at the junction, the junction is modeled as a rigid-
body element. Impact experiments were performed to verify the analysis, and agreement
between theory and experiment is very satisfactory.

Introduction
Previous studies [1, 2] have been made of reflections and trans-

missions of stress waves at a boundary discontinuity. Reflections and B
transmissions of longitudinal waves in a bar in which the discontinuity |nle(se?l'ig;:
is formed by a change in cross-sectional area is treated by Ripperger Element
and Abramson [3] and Yang and Hassett [4]. Reflections and trans-
missions of waves in which the discontinuity is formed by two non-
collinear bars is treated by Lee and Kolsky [5], Atkins and Hunter {6},

and Mandel, Mathur, and Chang [7]. (8} THREE-MEMBER $ (d) MEMBER 2

In the present study, three bars meeting at a common junction form
the discontinuity. Two bars are collinear to each other and a third is
noncollinear to the first two, as shown in Fig. 1{a). In general, when
a longitudinal wave in one of the three bars impinges on the inter-
section, six waves are produced. A longitudinal wave and a flexural
wave are reflected back along the first bar, and one wave of each type
is transmitted into the second and third bars. In the present paper,
these waves are predicted in each of the connecting bars and are
compared to experimentally measured waves. For the analysis, the
junction is modeled as a rigid intersection element.

This work has applications in determining the internal equipment
response of structures subjected to shock loading.

[

Y3

(b) MEMBER 1 {c} RIGID INTERSECTION (e) MEMBER 3
ELEMENT

Fig. 1 Three-member intersection '
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the two types of waves are not coupled in the bar segments. For
propagation of longitudinal waves, a simple one-dimensional theory
satisfactorily describes the longitudinal response. However, for the
propagation of transverse waves, use of the Timoshenko beam theory
rather than the Bernoulli-Euler beam theory is necessary because
significant rotary inertia and transverse shear are produced. The
Timoshenko beam theory accounts for rotary inertia of the cross
section and for transverse shear, whereas the Bernoulli-Euler theory
does not.

For the longitudinal waves, the deformations of the bar are specified
by the longitudinal displacement u. It is related to the axial force N
by the constitutive relationship.

B
N+EAZ o, o)
ox

where E is Young’s modulus, A is the cross-sectional area of the bar,
and x is the axial coordinate. The equation of motion is obtained by
applying the dynamical equation to a differential bar element. The
equation of motion for longitudinal waves is

2
—+pA— =0 @)

where p is the mass density and ¢ is time.

For solution by the method of characteristics, equations (1) and (2)
are transformed as follows. The longitudinal velocity is first defined
by

V = au/ot.

Then equation (1) is differentiated with respect to time such that the
system of equations can be written in matrix form as

L Jpeta-

or in symbolic form as
[TNUL: + (UL =0 &)

These equations form a set of first-order partial differential equations
inspace x and time ¢. To transform these partial differential equations
into total differential equations by the method of characteristics [8],
each term in equation (3) is multiplied by the eigenvector ¢ of [I'].
The result is

o AT .
(*"52*5?)1 (U} = i), @

where \; is the eigenvalue corresponding to /! and {©} is a column
vector. Along the line A = dx/dt, the partial derivatives combine to
form a total derivative; thus the governing equations in differential
form become

d(IH{UY) = H{Qde. ) ()

The condition required for the foregoing transformation is that A; be
an eigenvalue of matrix I'; that is,

[[T] = N[1T] =0,

where [I] is the identity matrix.
This requirement reduces to

+cp, =V E/p along I't (6a)
A =dx/dt =
—cy =/ E/palong I, (6b)

Equations (6a) and (6b) define two straight characteristic lines, I+
and /~, in the x — ¢ plane. With a convenient set of eigenvectors, the
governing equations (5) can be written as

I+: dN + cppAdV =0
I dN = cppAdV = 0.

(7a)
(7b)

For the transverse waves, the deformation of the bar element is
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specified by the transverse deflection v and the slope of the deflection
curve V. These quantities are related to the bending moment M and
transverse shear force @ by the constitutive relationships

M+ EI 9—\1: = (8a)
ox
ov
Q@ — k'AG (—— - \Il) =0, (8b)
ox

where I is the moment of inertia, k’ is the shear correction coefficient,
and G is the shear modulus. The two equations of transverse motion
are obtained by applying the dynamical equation to a differential
beam element. The equation for rotary motion is

oM o2
— —Q+ pl—=0, 9a
o Q+p o2 (9a)
and the equation for translatory motion is
oQ o2y
— —pA—== 9b
ox p ot? (85)

The procedure for obtaining the characteristic equations is similar
to that described for the longitudinal waves. The translational and
rotational velocities are first defined by

w=V, W=y (10)

The force-displacement equations (8a) and (8b) are then differen-
tiated with respect to time, and the system equations are written in
matrix form.

0 0 EI O

0 0

0
0 —k'AG ' ~k'AG
11e + Q _ w (1)
0 0 w w Q/pl
0 ~1/pA 0 0O « ¢ 0

1/pl 0O
The procedure described for the longitudinal wave response gives the
following characteristic lines for transverse wave response:

(12&)

+c, along IIt
)\_fi_’ﬁ_ —cp along II- (12b)
dt ) +4c, along III* (12¢)
—c¢; along III-, (12d)

where ¢; = v/k’G/p , and the corresponding characteristic equations
are found to be

II*: dM + pleydw = cpQdt (13a)
II-: dM — plepdw = —cpQdt (13b)
III*: dQ — pAc,dW = —k’AGwdt (13¢)
I~ dQ + pAc,dW = —k’AGuwdL. (13d)

Wave Propagation Through the Junction. At the junction the
intersection is modeled as a rigid intersection joining the three bars.
Two bars are collinear, and the third intersects at an arbitrary angle
6 as shown in Fig. 1.1

The response at the junction is governed by

1 The equation of motion for the rigid intersection element.

2 Equations of compatibility at the interfaces of the rigid element
and the deformable bars.

3 Equations of motion for the three bars.

4 Constitutive relationships for the bars.

The equations of motion for the rigid intersection element are de-
rived by considering the forces and moments acting on a rigid inter-
section of unit width shown in Fig. 1. The longitudinal and transverse

1 For the analytical and experimental results discussed here, the three bars
that form the junction are of the same cross-sectional dimensions and of the -
same material properties.
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equations of motion are given with respect to coordinates x; and y1,
and the rotational equation of motion is given with respect to the in-
tersection’s mass center of gravity. The equations for axial, transverse,
and rotational motion are then as follows:

dvi
—N1A+N3A+N2A sm0+Q2A COS0 pA() di (14(1)
dw
—Q1a + Q34 + Qo4 8in f — Noy cos = pAg dt‘ (14b)
Mia — Mo — Msa + £1Q14 — E3Q3a — E262n .
dw
— (Nya — Nsa)m + Noanz = I -——dtm (14¢)

where subscripts 14, 24, and 3A refer to the forces on the left, upper,
and right faces of the rigid intersection; A is the area of the rigid el-
ement; and I, is its moment of inertia of mass taken about the cen-
troidal axis perpendicular to the planar area Ag. They are given as

h ho
A0= 2 [h1 +—-sm«9

) cos 2
phth 2 h% 2]
w=—— |h} + +12d
4 12cos Y !

h} tan 0
+ 22807 s (1 4 tan? ) + 184,

in which h; and hs are the depths of bars 1 and 2, and d; and d5 are
distances between the centers of gravity of the rigid intersection el-
ement and its component rectangle and triangle, respectively (Fig.
1). The vectorial distances & and #; are in the x and y-direction, re-
spectively, from the x; — y; coordinate axes to the rigid intersection
element’s mass center of gravity.

After the derivatives are expressed in finite-difference form, the
nondimensional forms of equations (14a), (14b), and (14c) become

—e12€13N14 + €12N34 + €13N34 sin

' 3o 3 _
+ B2e13Q24 cos § — £Aon == [_AOVIG (15a)
2y 2y

—e12¢13Q14 + €12Q34 + €13G24 sin §

_EENZA cos § — X;AOWM ;S/—AOV_V} (15b)
eloctsM1a — ebMon — ¢}:Msa + eloelsB2%:1Q14
— 63B%3Qsa — €136%2Q24 — ehelymN1a
+ 357N 24 + €31 N2a — 6/ 3 Ipwia = —64/3 @16 (15¢)

where ¢;; = h;/h;j, 8 = cs/cp, ¥ = A7/2,and r; = h;/+/12 . The nondi-

mensional components are expressed as

= Q/(phic?
V=V
W= W
M = M/(phiric)
@ = wri/cy

Ay = Ao/(hshy)
Tcg = cg/(ph %h%)
= nilr;

&= &ifr;

The equations of compatibility of motion are obtained by requiring
that the rigid intersection element and its interfaces with the beam-
columns have the same axial, transverse, and rotational velocity.
These equations in nondimensional form are
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Fig. 2 Characteristic lines for three-member intersection
‘_/ 1A= ‘_/3,4 (16(1)
W1A+51 M = Waq —wsAI 3| (1656)
ri rs
W14 = €13 W34 (16¢)
V1A+wm | ll (VQA —252,4) sin 6
ry rq
5, &l
+ | Waos ~ @aa cosf§ (16d)
rg
W1A+w1A IEl (WZA —sz‘IE—!) sin 8
re

+ (52,4 2_ \72,4) cos® (16e)
ra

(16f)

The equations of motion and constitutive relationships for each
bar are expressed in characteristic form by equations (7) and (13).
Disturbances propagated to the intersection element are governed
by nine characteristic equations, three for each bar. These equations
were derived above in dimensional form. The characteristic lines in
the dimensionless, ¥ — 7 spaces along which these equations apply,
are graphically represented in Fig. 2. The dimensionless spacial
coordinate X = x/r, and the dimensionless temporal coordinate 7 =
cpt/r. The characteristic equations governing bending and shear apply
along the characteristic lines of slopes £1 and ££. The characteristics
equations governing thrust apply only along the characteristic lines
of slope +1. From equations (7) and (13), the required dimensionless
forms of the characteristic equations in finite difference form are

@14 = €12@24

Nig=Via=Nig— Vi (17a)

Mya+ @14 = B2y81a=Mip + @18+ 82yQ18 (17b)
BQ1a ~ Wia + Bv&14 = fl1c — Wic — Bydic (17¢)
Nza+ Vaa = Ngp+ Vap (17d)

M3 — @34 + 82137834 = Mar — w3r — Be1xy@ar  (17e)
BQs4+ Waa + Beraydza = fQsp — Bersywsp + Wap  (17f)
1_V2A + Voa=Nos+ Vay (17g)

Maop — @24 + B2e12v824 = Moy — ®2y — B212vQ2s  (17h)
BQoa + Waa + Berayioa = BQan + Wan — Beroydon  (170)
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Fig. 3 Theoretical wave response at three-member junction

Equations (17¢), (17f), and (17) are expressed in terms of velocities
and forces at points A, C, D, and H in Fig. 2. To simplify the finite-
difference solution, quantities at points C, D, and H are expressed
in terms of those at A, B, F, J, and G, thereby eliminating the char-
acteristic lines of slope £ from the computations. For example, the
quantities at C in equation (17¢) are expressed in terms of those at
B and O by linearly interpolating along line BOF. Then the depen-
dence on quantities at O is removed by interpolating along line AOG.
Equation (17¢) is then expressed in terms of quantities at A, B, and
G as

BB+ 1D)Gia— B+ 1)Wia+ By(8 — B)Bia
= 28[8@15 — Wig — Bywis]l + (1 — B) [8@1c — Wi — Bywic]

The 18 unknown forces and velocities at point A are obtained by
solution of 18 simultaneous equations: three equations of motion,
equations (15a)-(15c); six compatibility equations, equations
(16a)—(16f); and nine characteristic equations, equations (17a)~(171).
These equations can be expressed in matrix form as

[AllU} = {B),

where {U} is a column vector of the 18 unknown quantities at point
A in Fig. 2; {B} is a column vector whose 18 elements are combinations
of known quantities at points B, F, J, and G; and [A] is an 18 X 18
square matrix of constant coefficients.

In matrix notation, the solution for {U} is

{Ul = [A]7'B,

where [A] 1 is the inverse of [A]. Since [A] is independent of time, it
is inverted only once during the analysis; thus it is expedient to de-
termine [A]~! numerically with an available computer subroutine.
The intersection solution obtained in this way can then be combined
with the solutions for the bars which are given in dimensionless fi-
nite-difference forms of the characteristic equations in [9] to give the
solution for the three-member structure.

Theoretically Predicted Wave Response. To characterize the
wave propagation through a junction, the structure shown in Fig. 3(a)
was analyzed. Member 1 of this structure was loaded by a half-sine
wave longitudinal pulse.

wept
P=Posin—>\—by

Journal of Applied Mechanics

<
‘b\o y
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Fig. 4 Geometry of experimental structure and strain gage locations

where ¢, is the bar wave velocity, A is the half-sine wavelength, and
t is time. )

Time histories of longitudinal force, bending moment, and shear
force at the interface of the intersection and its three connecting
members are shown in Figs. 3(), (¢), and (d) for several values of
0.

For member 1, Fig. 3(b) shows that the longitudinal or axial re-
sponse increases with increasing absolute values of . Because the
response at the interface of member 1 and the intersection element
represents a superposition of the incident wave and the reflected wave,
the peak axial response always exceeds the amplitude of the incident
wave. Figs. 3(c) and 3(d) show that the bending moment and shear
response in member 1 are a maximum at about # equals 7/4 rad (45
deg).

For member 2, Fig. 3(b) shows that the axial response increases for
increases monotonically with 8. Figs. 3(c) and 3(d) show that the
largest (absolute) values of bending moment and shear response occur
at # equals zero.

For member 3, Fig. 3(b) shows that the largest axial response occurs
at § equals zero and is less than the amplitude of the incident wave.
Figs. 3(c) and 3(d) show that the largest (absolute) values of bending
moment and shear occur at about § equals —m/4 rad (—45 deg).

Experiments
Impact experiments were performed to measure the stress wave
response at the junction. Fig. 4 shows a schematic of the structure used
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Fig. 5 Strain gage records for three-member structure where 8=+ x/4
rad

in the experiments. The structure was fabricated from 6061-T6 Alu-
minum rods of 1.27 ¢cm (1/2 in.) sq cross section. The junction was
formed by welding a noncollinear bar to a second bar at an angle of
/4 rad (45 deg) to form a junction of three bars as shown in the figure.
The structure was heat-treated to the T'6 condition to remove any
residual stresses induced by welding.

A short-duration load was induced by impacting the structure at
one end with a cylindrical brass projectile fired from a 1.204 cm dia
gas gun. Each end of the target was machined round so that it could
be inserted into the muzzle of the gas gun, thereby aligning the target
with the projectile. A 0.318 c¢m thick Teflon disk was attached to the
impacted end of the target to give the loading pulse a finite rise time.
The impact velocity was about 15.2 m/sec.

Strains induced in the target by the impact loading were measured
with foil-type strain gages. Gages were oriented to measure longitu-
dinal strains in the bar segments of the structure; their locations are
indicated in Fig. 4.

Measured strain-time histories are shown in Figs. 5 and 6. Fig. 5

shows the response for a structure in which the intersection angle is’

+7/4 rad, and Fig. 6 shows the response for a structure in which the
intersection angle is —/4 rad. The gages located at the impacted end
measured the longitudinal or axial wave induced by the impact of the
projectile. Those gages located immediately before and after the
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Fig. 6 Strain gage records for three-member structure where 0=—mw/A
rad

junction measured the superposition of axial and bending strains due
to waves reflected from and transmitted through the intersection
element.

Comparison Between Theory and Experiment

To verify the analysis for wave propagation through the junction,
the predicted wave response was compared with that obtained from
experiments. Figs. 7 and 8 compare the theoretically predicted
strain-time histories with the experimentally measured strain-time
histories. (Fig. 7 shows histories for a three-member structure with
an intersection where # = +=/4 rad, and Fig. 8 shows histories for a
three-member structure where § = —m/4 rad.) The loading for the
theoretical analysis was taken as the axial strain history measured at
station 1 in the experiment. Agreement between theory and experi-
ment is good; however, the theory deviates slightly from the experi-
ment in the latter portion of each strain-time history. This is due to
the arrival of the measured bending pulse at a time of about 10 us later
than the arrival of the predicted bending pulse.

This effect is better shown in Fig. 9, where the axial and bending
components are shown separately. The figure shows strain-time
histories obtained by the finite-difference integration scheme using
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Fig. 9 Comparison of axial and bending strain-time histories for three-
member structure where § = + x/4 rad

two different values of the time increment (grid size) At.2 The axial
response is virtually unchanged by a refined finite-difference grid,
whereas the shape of the bending strain-time history is somewhat
sensitive to grid size, The arrival time of the theoretically predicted
bending pulse, however, is not sensitive to grid size; therefore, a more
refined grid would not improve agreement in arrival times between
theory and experiment. :

2 A time increment of At = 0.2 us was used in most calculations presented
in this paper.
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There are two plausible reasons for the discrepancy between the-
oretical and experimental bending strains. First, the discrepancy may
be due to the difference in the response of an intersection that is rigid,
as modeled in the analysis, and an intersection that is elastic, as used
in the experiment. An incident pulse of wavelength several times
larger than the dimension of the intersection propagates through an
elastic intersection and through a rigid intersection in roughly the
same manner. However, an incident pulse of wavelength comparable
to the intersection dimension is distorted when propagated through
a rigid intersection. Although the experimentally measured incident
pulse (which was also used as the loading pulse in the analysis) is
dominated by long-wavelength components, it also contains some
short-wavelength components. The distortion of these short-wave-
length components when propagated through the rigid intersection
is believed to cause the discrepancy between theory and experiment.
Second, the discrepancy may be due to the bending (Timoshenko)
equations being more susceptible to integration errors inherent in a
linear-interpolation scheme compared to those of the axial motion
equations. A more sophisticated integration scheme such as that given

_in [10] may have improved the correlation between theory and ex-

periment,
In spite of the slight discrepancy in the bending response, the
overall response is satisfactorily predicted by the theory.
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Motion

Reflection, Refraction, and
Ahsorption of Elastic Waves at a
Frictional Interface: P and SV

An approximate method of analysis is presented for determining the reflection, refrac-
tion, and absorption of obliquely incident planar time-harmonic P or SV waves at a fric-
tional interface between dissimilar elastic solids. The solids are pressed together with suf-
ficient pressure to prevent separation, and the angle of incidence is subcritical. General
expressions for the amplitudes and phases of all reflected and refracted waves are devel-
oped in closed form for a broad class of models for bonding friction. Specific results are
presented for the case of identical elastic solids bonded by Coulomb friction, as an exam-
ple of application of the general approach.

Introduction

In a previous paper [1] the authors began an investigation of the
effects of friction and slippage at an interface on the propagation of
elastic body waves. The previous investigation was limited to the case
of antiplane strain (SH) motion. Presented herein are the results of
an extension of this investigation to the case of plane strain (P and
SV) motion. In particular, attention is focused on the reflection, re-
fraction and absorption of planar time-harmonic P and SV waves at
a frictionally bonded interface between dissimilar elastic solids. The
solids are pressed together with sufficient external pressure to prevent
separation at the interface, and the angle of incidence is assumed to
be subcritical.

The effect of bonding imperfections on the propagation of elastic
waves is a subject of potential technological application in several
areas, including soil-structure interaction of burried structures during
earthquakes; and nondestructive testing of materials for bonding
defects [2—4]. Several recent investigations have dealt with theoretical
aspects of the subject. For time-harmonic body waves of P and SV
type, Comninou and Dundurs have consideréd the effects of localized
separation at a lubricated interface [5] and at an interface bonded by
Coulomb friction {6], while Murty [7] considered the effects of slippage
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without separation along an interface with linear viscous bonding.
Comninou and Dundurs have also considered the case of separation
caused by transient (anharmonic} P and SV waves at a lubricated
interface [8, 9]. Similar investigations of Stonely-type interface waves
along an interface with imperfect bonding have been reported [10-12].
Each of these investigations employs an exact solution technique
which depends on the bonding conditions which result for lubricated,
viscous, or Coulomb friction laws at the interface. Any bonding laws
which are more complex or realistic in their treatment of the boundary
conditions at the interface are not tractable by the mathematical

_techniques used in the studies previously described. While simple

models for bonding friction may be adequate for some applications,
there exist applications for which the validity of such models may be
questioned. For example, with regard to smooth metallic surfaces it
is well known that the coefficient of friction in the Coulomb law may
not remain constant, but instead may depend significantly on such
variables as contact pressure, slip velocity, time of contact, temper-
ature, and others [13, 14]. Furthermore, some experimental results
[15] on the nature of friction between sliding steel plates reveal a be-
havior somewhat more complex than Coulomb friction would predict.
With regard to interfaces between soil layers or soil and structural
foundations, little is known about the frictional behavior. Experi-
mental research on such interfaces is currently in progress to inves- .
tigate appropriate constitutive laws between cyclic shear stress and
relative slip [16]. In order to investigate the features introduced by
these more complex and even empirical frictional models, it is nec-
essary to use approximate techniques of analysis. The present in-
vestigation employs an approximate solution technique which relieves -
many of the mathematical difficulties and allows any of a broad class
of models for bonding friction to be considered.

An approximate analytical technique is employed in this paper to
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Fig. 1 Orientation of coordinate directions, angles, and unit vectors relative
to the interface between dissimilar elastic solids

provide closed-form general expressions for the amplitude and phase

of all reflected and refracted waves, and for the partitioning of energy .

in the system. The expressions are valid for a broad class of models
for bonding friction at the interface. As an example of application of
the general approach, specific results are presented for the case of
bonding of identical elastic solids by Coulomb friction. The results
in this case are shown to depend on the angle of incidence and Pois-
son’s ratio in addition to the stress ratio 7* identified earlier [1]. It is
also shown that less energy is absorbed at the interface for incident
waves of P or SV type than for an SH wave of equal shear stress am-
plitude.

Formulation

Consider two semi-infinite elastic solids with a common planar

boundary at x2 = 0, as shown in Fig. 1. Following standard notation,
“let A and p denote the Lamé constants, ¢, and ¢ the longitudinal and
transverse wave velocities, respectively, p the mass density, u; (i =
1, 2) the displacement field, and o (i, ] = 1, 2) the stress field for this
plane strain problem. An overbar is used to distinguish quantities
associated with the upper solid from those of the lower solid.

The solids are pressed together by a static pressure ¢., and
subjected to a planar time-harmonic incident wave of P or SV type
in the lower solid. The incident wave propagates in the direction of
the unit vector p® at subcritical angle of incidence 8y, as shown in Fig.
1. The incident wave is assumed to have displacement amplitude Ao
and frequency w. The resulting reflected and refracted P and SV
waves propagate along the directions p(*} (n = 1, 2, 8, 4), with periodic
but generally anharmonic time-dependence.

Contact between media occurs on the planar boundary xo = 0. It
is assumed that the external pressure 0. is sufficiently large to prevent
separation, but that additional bonding between solids is provided

" by friction only. Thus, when Ay is sufficiently large, local relative slip
is allowed between solids. Let this local relative slip be defined as

s(xy, t) =ui(xy, 0,¢) — Tlxy, O, £). (1)

The boundary conditions at the frictionally bonded interface then
require that

To(x1, 0, 8) = ualxy, 0, t) (2)
aaa(x1, 0,‘t) = g99(x1, 0, t) 3)
Gra(xs, 0, £) = 7F[0w, s(x1, )] ' (4)
o12(x1, 0, t) = 7p[0w, s(x1, t)] (5)
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where 75 is the frictional stress developed at the interface. As previ.
ously explained [1], the functional 7[-] represents a general const;-
tutive law for the frictional shear stress 7 in terms of the externg|
pressure g. and the time history of relative slip.

Approximate Solution for a General Frictional
Model, 7F

For many realistic nonlinear models for the frictional stress 75, the
problem just formulated is very difficult to solve. In fact, as far as the
authors are aware, exact solutions for this problem have been pre:
sented [5-7] only for the special case in which 7 is zero, determined
by Coulomb friction, or is a linear function of s, such as the expres-
sion

os{xq, t)

ks(x, ) + g‘—_bt (6)

where k and { are constants.

No attempt is made here to find an exact solution for the case of
general nonlinear frictional stress, 7. Instead, the approach presented
earlier [1] is used to develop an approximate solution. The approach
involves replacing the nonlinear frictional stress 7 with a linearized
expression of the form (6), with appropriately chosen constants « and
{. The solution to the resulting linearized problem is then regarded
as an approximate solution to the original nonlinear problem. Clearly
the accuracy of the approximate solution depends on the choice of the
parameters k and {. As previously shown, an optimal choice of the
parameters depends on the amplitude of motion in the linearized
solution and the nonlinear constitutive law 7z[-] through the inte-
grals

2

1 T
k= k(0w,S) = —= Tr(6e, S cosny) cosndy %)

7S Jo

s ==L (~ S in 7 d
{= o, )_m.uS\fo Tr(0w, S cosn) sinnd gy (8)

where S is a constant representing the amplitude of the harmonic
wave form of the linearized solution for s of equation (1). These in-
tegrals may be readily evaluated for any of a broad class of nonlinear
frictional models.

Having obtained the linearized parameters « and ¢, it remains to
solve the resulting linearized problem. This may be done by well-
known displacement potential techniques [7], the details of which will

. not be presented here. However, it is noteworthy that closed-form

solutions for a broad class of frictional models may be obtained in’
terms of k(¢'», S) and {(0«, S), and these solutions are presented in
the following. In particular, it may be shown [17] that the linearized
amplitude S of slip displacement is governed by the transcendental
equation

(K(O‘m, S))2 + (w{(am, S) +
ﬂks ﬂks

oA

(1 + ve?)

_ (b4 +v2ass + ass + vaayy) [201 — (v2® — 1)an]|2

2w, = (v — Dan |2

S2
1= v9as —as — U4a41}

[bs + (v2? = Dagg

9y

1 —vsag — agr — v4ag

where, if ¢,, (n =0, 1, 2, 3, 4) represents the phase velocity of the nth
wave shown in Fig. 1, the coefficients are given by

ks = w/es;  ¢s = co/p1@ (10)
vp = (cs2/e,2 —1)2=cot (6,); n=0,1,23,4 11

and for an incident SV wave,
br=-1; bp=—20gy bz=(ve?—1); by=—vy (12)

while for an incident P wave,
bi=vy; by=(va?~1); b3=2v1; bs=-L (13)

The remaining coefficients are given by
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201(1 — v4% + 203v4) + 203 (1 = V22 — 2yD104)
— (a2 = Diyvi(vg? — 1) + va(ve® — 1)]

as1 =
(092 — 1) (1 — 042 + 20304) + dv3(vz + Yv4)
' + (042 - 1)[’)’(U42 - 1) + 21)203]
(14)
2U3(2’)’U4b1 i bz) - b3(1 - 042 + 2[)31.)4)
+ (042 — D){yb1(v4% — 1) — vaby}
agz =
(Uz2 - 1) (1 i 042 + 2031)4) + 403(02 -+ ’)’1)4) +
(va2 = 1)[y(v4? ~ 1) + 2v903]
(15)
(1 = v9? — 2yv104) — 2(vg + Yvgan
az = (16)
Y1 — v2? + 2v304)
(2vwv4b1 — bg) — 2(vg + yv4)a
g = Yu4b1 — b2 (vg + yvyag )
¥(1 = vg% + 20304)
~y01(04? = 1) + va(v2? = 1) + [y(v4% — 1) + 2vovslag;
aq = (18)

Y(1 — 042 + 20304)

—U3b2 + ‘Y(U42 - 1)b1 + [2!)21)3 + ‘Y(U42 bl 1)](122
ag = (19)
Y(1 — 042+ 20304)

where

¥ =n/w (20)

Due to the trancendental nature of equation (9), numerical solutions
for S will generally be required.

After S has been determined, the corresponding phase shift «;
(relative to the incident wave) of the wave form for the relative slip
s may be obtained from the expression

o = tan™! {

w{(0e, S) + uks

(a2 —
o 2v1 — (v9% — 1)ag }/K(GQ,S)]. (21)

1 — voag; — ag1 — v4ay

The displacement amplitudes A, and corresponding phase shifts a,,
(relative to the incident wave) of all reflected and refracted waves may
be determined from S, «;, and By, where

B() = Ao/(U()2 + 1)1/2. (22)
In particular,

(An/Ao) = (Bn/Bo)(wn? + 1)V%/ (02 + )% n=1,2,3,4 (23)

where
{(S/Bo)? cos? oy + [(S/Bo) sin a5 + by

+ voags + ass + viagp]YL/?

(B1/Bo) =

(1 — veagr — as; — v4aq)
(24)
oy = tan~1 {{(S/Bo)_cos o]/ [(S/Bo) sin a5 + by

+ vgags + aze + viasg]}  (25)

{Bn/Bo) = {{an1(B1/By) cos a1 + ana)? + [a,1(B1/Bo) sin a}2}1/2
n=2234 (26)

o, = tan~1{[an1(B1/By) sin a1]/

[0n1(B1/Bo) cos an + anall, n=2,3,4. (27)

Furthermore, the partitioning of incident wave energy into re-
flection, refraction, and absorption may be determined from the
displacement amplitude ratios just presented. In particular, if E, is
the energy flux per unit area per cycle of oscillation associated with
the wave of amplitude 4, (n =0, 1, 2, 3, 4), then a measure of the
portion of incident wave energy carried by this wave is given by the
energy ratio e, where

en = (En/B)V? = B V4 An/A0); n=1,2,3,4 (28)
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Fig. 2 Dependence of energy ratios on the stress ratio 7* for the case of an
incident SV wave

and where, for an incident SV wave,

01(1.)22 + 1) 03(042 + ].) [ 22
=— =1, Bg=vy— =y— (29
va(vy® +1) & b=y v2(vg® +1) b= V2 29
or, for an incident P wave,
va(v12 + 1) v3(vg? + 1) (02 + 1)
B1=1; g == Ba=7v ;
01(02 + 1) U1(U22 + 1) (032 + 1)
v4(v12+ 1)
=y 30
B4 701(022+ ) (30)

The amount of energy absorbed at the boundary may be obtained
by subtracting the energy associated with each of the reflected and
refracted waves from the energy associated with the incident wave.
A convenient measure of the absorbed energy is provided by the ab-
sorption energy ratio e4 defined as

ea = (Ea/EQ)V/? = (1 — 12 — eg? — e3? — e4)1/? (31)

where E, is the energy flux per unit area per cycle of oscillation which
is absorbed at the interface.

Results for Identical Solids Bonded by Coulomb
Friction

As an illustration of the general approach presented in the previous
section, consider the simple case in which bonding between solids is
provided by Coulomb friction. At a given location along the interface,
this model requires that the solids adhere so long as the local shear
stress does not exceed a “slip stress,” whose magnitude is the product
of the local compressive stress and a constant coefficient of friction
between surfaces. When the magnitude of the local shear stress builds
up to the slip stress, local relative slipping occurs between solids. As
a result, a pattern of alternate “stick” and “slip” zones will form at
the interface during the passage of the train of incident waves, as
discussed in a previous paper [1].

Let f denote the coefficient of friction between surfaces, and let
o.(x1,t) denote the net compressive stress at any location along the
interface. The local slip stress then becomes fo.(x1,t). Evaluating the
integrals in equations (7) and (8) for this model of friction, it may be
shown that

k(62,8) =0; {(0=,S) = (4f0=)/(TwS). (82)

Because of the mathematical simplicity of equations (32), it is
possible even in the general case of dissimilar elastic solids, to obtain
closed-form approximate solutions for the displacement amplitudes,

‘phase shifts, and energies associated with each of the reflected and

refracted waves. This may be accomplished by substituting from
equations (32) for « and { in equation (9), and solving for (S/Ap) in
closed form. Closed-form expressions for the other amplitudes may
then be obtained from the remaining equations in the previous sec-
tion. However, in order to avoid the lengthy coefficients which result
in the general case, attention will be focused on the special case of
identical elastic solids for the remainder of this example.
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For upper and lower solids with identical material properties, it may
be shown that

y=1; agn=asy=—2—1)20,

age=0; a3z =-1; asp=bs as=(1-bs) (33)
where, for an incident SV wave,
bs=0 (34)
while, for an incident P wave,
bs = 1. (85)

Using equations (32) and (33), it may be shown for identical solids
bonded by Coulomb friction that

As the amplitude of incident waves is further increased so that 7
= ba/(f|b2}), the local compressive stress vanishes at some locations
along the interface, and zones of separation between solids begin to
form. Since the formulation presented herein does not allow separa-
tion, the results do not apply in such a case. However, it should be
noted that no separation will accompany the slip which occurs at the
interface, even for rather large amplitude incident waves, if the
coefficient of friction f is sufficiently small.

In addition to the stress ratio 7%, it is clear from equations (36)—-(42)
that the solution also depends on v, and vg. Furthermore, it is easily
shown that v; and vq are functions of the angle of incidence 8y and
Poisson’s ratio » for the identical solids. Thus the solution depends

Quabs(vg? + 1) 4 b3 4
(Ve + 1)V2[dvyvy + (v 2—1)2]( "m*); o~ Zw
(S/A=4" e ? (36)
0; 2rm 20
T
oy =T7/2 37
on fpand » in addition to 7*. In contrast, the solution for the case of
(A1/A0) = (012 + DV2(S/Ag)/ (a2 + 1); a1 =0 (38)  incident SH waves was shown in a previous paper [1] to depend on
7* alone. The dependence on 8y and » for the case of incident P or SV
(02 = 1) waves is a result of the mode conversion (P to SV and SV to P) which
(A2/Ao) = (8/Ao); ag=m (39) occurs at the interface in this case.
22(v? + 1)1/2 For the case of normally incident SV waves (fp = 0), the situation
is identical to the case of normally incident SH waves and hence the
(Ag/Ag) = bs + (1 = 2b5) (12 + 1)V2(S/Ag)/ (02 + 1); energy ratios are independent of v, and their dependence on the stress
ratio 7* is as shown in Fig. 2 of reference [1]. When the angle of inci-
dence is increased to fp = 30° in a solid with » = 0.3, plots of the energy
ag =m(l — bs) (40)  ratios as functions of 7* are shown in Fig. 2. (For v = 0.3 the critical
angle is 0, = 32° 18.7°). The curves are similar in shape to those for
0 = 1) the case of SH motion, with the principal differences being the ad-
- v’ —1 . ditional curves for the reflected and refracted P waves which occur
(44/Ao) = (1 = b) + (265~ 1) 2vg(vg? + 1)1/2 (S/40); in this case. For very small values of 7* it is found that no slipping
s = whs (41) occurs, all the incident energy is carried by the refracted SV wave,

where

7% = [uksAoba/(ve? + 1)1/2)/(fo)
= max |o129(x1, 0, t)]/(fo=). -(42)

Asindicated in equation (42), the governing parameter 7* may be
interpreted as a ratio of the magnitude of o515 (x1,0,t), the shear stress
along the interface associated with the incident wave, to an average
slip stress fo.. This stress ratio plays a central role in determining the
nature of the response of the system.

When 7* < (4/7), the approximate solution predicts that S = 0, so
that no slip occurs, and the solids behave as though perfectly welded
along the interface. For this range of small amplitude incident waves,
equations (38)—(41) reveal that the incident wave is simply trans-
mitted across the interface without causing any reflected or refracted
waves, as expected. When 7* = (4/x), a “break loose” condition is
encountered, and relative slip begins to occur in alternate stick and
slip zones which travel along the interface. As the amplitude of inci-
dent waves is increased so that (4/7) < 7% < ba/(f|bg|), the energy
associated with the incident wave is no longer carried across the in-
terface by a single refracted wave. Instead, a mode conversion occurs
at the interface, and some of the incident energy is carried by reflected
P and SV waves, some by refracted P and SV waves, and some is
absorbed at the interface. The energy ratios in this case may be ob-
tained from equation (28) and equations (36)—(42) where, for identical
elastic solids in the case of an incident SV wave,

B1 = B3 = [p1(22 + D)J/[vav2+ 1)]; B2=P4= 1 (43)

while, for an incident P wave,

Bi=B3=1; Ba=P4=[va(v:®+ D]/[i(w2+1)]. (44

158 / VOL. 48, MARCH 1981

and the interface behaves as though perfectly welded. At the opposite
extreme, as 7% — » each curve approaches an asymptote which
coincides with the corresponding energy ratio for a perfectly lubri-
cated interface. At an intermediate value of 7* (7* = 8/7) it is found
that the energy absorbed at the interface is maximized. These features
are found to be independent of 6 and v, and identical with the case
of an incident SH wave. It is also found that as the angle of incidence
fo is increased to the critical angle 6., the energy carried by the re-
flected and refracted P waves vanishes, and the curves are again
identical with those for SH motion.

For the case of incident P waves, the solution presented herein is
valid for all angles of incidence in the range of 0 < 8y < 7/2. Shown
in Fig. 3 are plots of the energy ratios as functions of the stress ratio
7* for the case of a P wave incident at an angle of g = 60° in a solid
with v = 0.3. Again it is found that for small values of 7* the boundary
behaves as though perfectly welded, and as 7* — = the boundary
behaves as though perfectly lubricated. The asymptotic values of the
energy ratios for large 7* coincide with the corresponding values for
a perfectly lubricated interface. Maximum energy absorption occurs
at 7* = 8/x. These features are again found to be independent of 6
and ». As shown in the figure, frictional slippage at the interface does
not absorb much of the energy in this case, and most of the energy is
carried by the refracted P wave. Furthermore, it can be shown that
as By — 0 or as fg — /2, all of the energy is carried by the refracted
P wave, and no energy is absorbed at the interface.

Energy Dissipation at the Interface. Of particular interest in
this problem is the energy which is absorbed or dissipated at the in-
terface. For the particular case of identical elastic solids bonded by
Coulomb friction, it may be shown that the absorption energy ratio

may be expressed as
C (4/wr*)V2 (1 — 4/m7*)V2%  by/(fba|) > 7% = 4/x
4= (45)
0; dfrz1*20
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Fig. 3 Dependence of energy ratios on the stress ratio 7* for the case of an
incident P wave

o4} -

o2k =

00 1 1 1 1
00 02 0-4 06 08 1-0

LG

Fig. 4 Dependence of the energy dissipation coefficient C on the normalized
angle of incidence 8, for the case of an incident SV wave

where C depends on the angle of incidence 8y and Poisson’s ratio ».
For the case of an incident SH wave it can be shown [1] that C = /2,
independent of 8y and ».

Shown in Fig. 4 are plots of the dissipation coefficient C as a func-
tion of the angle of incidence o (normalized with respect to the critical
angle) for various values of Poisson’s ratio », for the case of an incident
SV wave. Similar plots for the case of an incident P wave are shown
in Fig. 5. As inferred from Fig. 4, except at normal and critical angles
of incidence, less energy is absorbed at the interface for an incident
SV wave than for an incident SH wave of equal amplitude. The
maximum value of C is /2, and the minimum value depends on
Poisson’s ratio. -

As inferred from Fig. 5, an incident P wave also results in less energy
dissipation than an SH wave of equal amplitude. In this case, the

minimum value of C is zero, while the maximum value depends on’

Poisson’s ratio.

Conclusions

An approximate method of analysis is presented for determining
the reflection, refraction, and absorption of obliquely incident planar
harmonic P or SV waves at a frictional interface between dissimilar
elastic solids. The solids are pressed together with pressure o, and
the analysis applies only to the regime in which slip occurs at the in-
terface without separation, and the angle of incidence is subcritical.
The frictional stress at any location along the interface is assumed
to depend in some prescribed manner on the local normal stress and
the time history of the local slip across the interface, but remains
otherwise arbitrary throughout the analyais. General results are
presented for the linearized displacement amplitudes and phases of
all reflected and refracted waves, and for partitioning of energy into
reflection, refraction, and absorption. :

The special case of identical elastic solids bonded by Coulomb

Journal of Applied Mechanics
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Fig. 5 Dependence of the energy dissipation coefficient C on the angle of
incidence 8, for the case of an incident P wave

friction with coefficient of friction f is considered in detail as an ex-
ample of the application of the general approach. With regard to the
results for this special case, it is concluded that

1 The amount of slippage at the interface is dependent upon the
stress ratio 7*, which is the ratio of the magnitude of the peak shear
stress along the interface associated with the incident wave, to an
average slip stress, fow. When 7* < (4/7), the interface behaves as
though perfectly welded, and no slippage occurs. When 7* = (4/7),
a “break loose” condition is encountered, and relative slip begins to
occur in alternate stick and slip zones which travel along the interface.
As 7* — o, the interface behaves as though perfectly lubricated.

2 Zones of separation begin to form along the interface when the
magnitude of peak normal stress along the interface associated with
the incident wave equals or exceeds ¢... The results do not apply for
such large amplitude incident waves.

3 In addition to 7%, the energy partitioning in the system also
depends on the angle of incidence, 8y, and Poisson’s ratio, v. However,
less energy is absorbed by slippage at the interface for either an in-
cident P or SV wave than for an incident SH wave of equal stress
amplitude.
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The axisymmetric problem of a vibrating elastic plate on an elastic half space is solved

by a direct method, in which the contact stresses and the normal displacements of the

plate are taken as the unknown functions. First, the influence functions that give the dis-

placements in terms of the stresses are determined for the half space and the plate. Dis-

placement continuity then takes the form of an integral equation. Due to the half space

the kernel is weakly singular, and a special solution technique that accounts for this is

employed. The solution implies a direct matrix relation between the expansion coeffi-

cients of the contact stresses and plate deformations. The solution technique is valid for

all frequencies and avoids asympototic expansion in terms of the frequency, The plate

is represented by the theory of Reissner and Mindlin, which imposes physical limitations

for high frequencies, but the method is easily extended to more general plate theories as

well as nonsymmetric oscillations. The results include displacement and phase curves for

rigid disks, power input for elastic plates, and typical stress and deformation distribu-

tions at selected phase angles. The results show considerable influence from the elastic

properties of the plate.

1 Introduction

The problem of a vibrating circular plate on an elastic half space
is of considerable technical interest, e.g., in connection with trans-
ducers or earthquake response of footings. It is therefore natural that
a large number of papers have been devoted to the subject. Apart from
the explicit solution by Reissner and Sagoci [1, 2] of the torsion
problem, the problems have been formulated in terms of integral
representations. Due to the mixed boundary conditions, dual integral
equations are obtained for the Hankel transforms of the physical
variables. A common approach has been to represent these Hankel
transforms in terms of a Fourier transform, see, e.g., [3, 4]. This leads
to a Fredholm integral equation of the second kind for the unknown
function. This integral equation must be solved numerically.

As demonstrated by Sneddon [5], the combination of a Hankel
transformation and a Fourier transformation leads to a relation in
terms of Abel integrals. Thus the bulk of existing work uses an indirect
method in the sense that the unknown function which is determined
numerically is related to the physical variables of the problem by Abel
integrals. These integrals are inconvenient for numerical calculations,
and this may account for the absence of information about the dis-
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tribution of the contact stresses. Another serious drawback of the
indirect approach is the difficulty of incorporating more complicated
boundary conditions such as those of the contact with a flexible
plate.

Both these difficulties are overcome, if the contact stresses are used
directly as the unknown function. However, in order to do this it is
necessary to be able to represent the relation between surface stresses
and surface displacements accurately numerically. This is possible
by using a simple polynominal relation originally derived by Popov
[6] and later extended by Krenk [7, 8]. The demonstration of this
approach is the main purpose of this work, and its ability to treat
rather complicated boundary conditions is illustrated through its
application to the problem of an oscillating elastic circular plate on
an elastic half space. Due to the difference in method reference is
made to [9] for a review of previous work on rigid plates.

2 Basic Principles

In order not to obscure the basic principles of the method, the
problem is limited to axisymmetric oscillations of an elastic circular
plate of thickness H and radius a assumed to remain in frictionless
contact with an elastic half space, Fig. 1. Vertical oscillations of any
trigonometrical order including rocking and torsion can be considered
in an entirely similar way by use of the formulas of {7, 8]. The problem
of vibrations parallel to the half-space surface is slightly more com-
plicated but is analogous to the problem of shear loading of a circular
crack treated in [7]. Shear modulus, Poisson’s ratio, and mass density
are ftp, Vp, pp for the plate and us, v, pn for the half space. Cylindrical
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Fig. 1 A circular elastic plate on an elastic half space

coordinates {r, 8, z} are used with z directed into the half space. All the
physical variables of the problem contain the factor exp (iwt), where
w is the angular frequency and t is the time. When differentiation with
respect to time d/0t is replaced with the factor iw and all variables
are allowed to take complex values, the time factor can be omitted.
This will be done here.

The vertical displacement of the contact surface of the plate is w(r).
The total load on the plate is composed of the external load g(r) and
the contact stresses o, (r). In the plate theory to be used in Section
4, the thickness of the plate remains unchanged, and the loads
therefore only appear as the sum p(r) = q(r) + 0, (r). When the plate
is linear elastic, the surface displacement is related to the load through
a relation of the form

wi) = f " wplr 2)p()d (1)

wp(r, x) is the displacement at r due to a unit ring load at x. It is noted
that within the plate theory to be used, w, (r, x) is bounded and con-
tinuous.

In order to be able to allow analysis of resonance phenomena, an-
other load is provided for, namely, a surface displacement of the half
space, w*(r), had the plate not been there. Thus the contact stresses
022 (r) shall produce the surface displacement w(r) ~ w*(r) for 0 <
r < a in order to obtain continuity. As in the case of the plate, the field
equations of the half space can be integrated to yield a relation of the
form

w(r) — wh(r) = j; * wn(r, %) 02 (1) dx @)

In contrast to wp (r, x), this influence function turns out to have a
logarithmic singularity in |r — x|. This feature determines the ex-
pansions to be used.

In the case of a rigid plate w(r) can be expressed directly in terms
of the resulting force thus providing an integral equation that allows
the determination of the contact stress o,,(x) corresponding to a
specified surface displacement. In the case of a flexible plate w(r) is
unknown and is eliminated between (1) and (2) yielding the following
integral equation for the determination of o, (x).

j;a [wrir, x) — wp(r, x)] 022 (x)dx = — w*(r)

+ j;a wy(r, x)q{x)dx  (3)

The integral equation (3) is of the first kind and therefore the log-
arithmic singularity contained in wp (r, x) leads to a square root sin-
gularity of the contact stress 0., (r) at r = a. The object of the present
method is to provide suitable representations for the integrals in (1)
and (2) that accounts properly for the singularity of ¢, (x).

3 The Influence Function of the Half Space

The influence function wy (r, x) of the half space determines the
nature of the solution and is therefore treated first. Introduce the
dimenionless coordinates £ = x/a, n = r/a, and { = z/a. Following
Byecroft [10], the displacement components u (7, ) and w(x, {) of the
general solution are given as

162 / VOL. 48, MARCH 1981

um ) =a | °°[A@)ﬁe—ws)+B(s>e—rﬂ<s>} sdi(sm)ds  (4)
and

w(n, {)=a fo “’[A(s>e-fa<s>+B<s>ﬁ—fs~)e—rﬂ(s>]sJo<sn)ds (5)

J» () is the Bessel function of the first kind of order n [11]. A(s) and
B(s) are arbitrary functions, while

(s2 — h2)V/2 s=h
a(s) = 4 i(h2 — %12 Is| <h (6)
—(s2 = h2)1/2 s < —h
and
(s2— k2)1/2 s>k
B(s) = { i(k2—sH2 Js] <k (7
—(s2 — k)12 s < —k

The-dimensionless parameters b and k reflect the relative wave-
number of longitudinal and transverse waves, respectively.

_ 11—2u, w?a?pp

h? 8
21—-vy pa ®
p2 = 2207 ©)

H
The pertinent stress components are [10]
@ 9252 — k2
02:22(n, §) = —pin f [A(S) ¥
0 als)

+2B(s)se—rﬁ<s>]sJ0(sn)ds (10)’

and

ors(n, O = —pn ﬁ‘” [2A(s)se“§'a(s)

952 — k2
+ B(s) ———— =86 sJ (sn)ds  (11)
B(s)

When the surface { = 0 is assumed to be _free of shear stress, the
integral representation (11) provides a relation between A(s) and B(s).
After elimination of A(s) or B(s) inversion of (10) and substitution
into (5) yields the following relation:

ak B a(s)sdo(sn)
,0 =
wm 0) 4uhfo (2 — k)2 — s2a(s)B(s)

X j; L onlE O)EJo(sE)dEds  (12)

The denominator in (12) has a zero between k and infinity corre-
sponding to the occurrence of Rayleigh waves. As shown by Bycroft
[10], the integral representation accounts properly for the Rayleigh
waves, if the integration with respect to s is performed along a contour
indented with positive imaginary part at the pole. The corresponding
formula for u(n, 0) in térms of 6., (£, 0) is

©  s2—1hk2 — a(s)f(s)
0 (52— %k2)? ~ s2a(s)B(s)

X {06 OBIo(sE0dtds (1)

u(n, 0) = — —

2.J
o s2J1(s7)

It is not immediately obvious that the order of integration in (12)
can be reversed, and the asymptotic behavior for large s is therefore
extracted. From the definitions (6)-(9)

. k2 sals)
lim =
sih—o 41 — 1) (52 — Yok )2 — s2a(s) ((s)

It is noted that the limit process only involves the ratio s/k. In the

-1 (14)
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case of a vibration problem k ¥ 0, and the limit is used to extract the

- dominant part of the integral. Alternatively the limit process corre-

sponds to w — 0, i.e., the static problem, for any fixed value of s.

Therefore the dominant part of the integral for the vibration problem

is identical to that of the corresponding static problem. The dominant
part of (12) is

1- v

we(n) = a j; " Jolsm) [— ~

A change of the order of integration would lead to the kernel
[12],

j;l 022§, O)EJo(SE)dE} ds (15)

bl ) 2ef <
5. dotemidatsrds =1 a2 (n
ZoF1 % Y L\1| | = ZK|LJn<
22 1(/2 Yo (5)) y: (E) n<§
(16)

where K() is the complete elliptic integral of the first kind. Asymp-
totic analysis of (16) reveals a logarithmic singularity at £ = , and a
bounded Hélder continuous function w; (1) in (15) therefore requires
042 (£, 0) to have a square root singularity at £ = 1.

What is needed is not a numerical calculation of the singular kernel
(16), but an expansion of o,,(£, 0) for which the corresponding ex-
pansion of w(y, 0) can be easily evaluated. Such an expansion was
found by Popov [6]. Let ¢,,(n,0) be given by

1—v

022(n, 0) = (L= 9?)™V2 TSPy /T~ 79/Pyy0)
2

0<y=<1 (17

where Py, () is the Legendre polynomial of degree m [12]. The poly-
nomials are normalized at # = 1 by the constants
.o f2f
Py;(0) = (~1)i2% ( .’) (18)
J
From Sonine’s first integral and the recurrence relations for the

Legendre polynomials and the Bessel functions, the following formula
is derived, Krenk [8].

1 1
| @ = udm1ePy (VT do(smen
P5;(0) Jo
= (—=1)43i(s) (19)
#m () is the spherical Bessel function of the first kind [11],
b
'm = — J, 20
Fm(s) \/; me+1/2(8) (20)

Substitution of (17) into (15) and use of (19) and the discontinuous
Weber-Schafheitlin integral —Watson {13]—lead to

el =a 3 (1) j; " Jolsm) f2i(s)ds

T
- ~Py(vT=79, 0<n<1
<ay SPy0{2 * 7 K

z (21)
Qe iV 9Z—1),

1<

This formula is a special case of more general results derived by
Gladwell [14] and Krenk [8]. In view of this result it is convenient to
represent the normal displacement within the contact area in the
form

w0 =a Y, WuPo(W/T=7)Psm(0), 0<n<1 (22)
m=0

A similar expansion with coefficients W7, is used for the displacement

w*(r). .
The integral (12) is calculated by extracting the asymptotic value
(14) and substituting the expansions (17) and (22)

Journal of Applied Mechanics

)EO WiPom(v/1 — n2)Pon (0) = ‘io S; {g P3;(+/1 — n?)Py;(0)
m= j=

ek sa(s) }
-1y J:) (L = vh) (52 = k)2 — s2a(s)B(s) 1

X Jo(sn) joj(s)ds ], 0<yn=<1 (23)

The coefficients W,, can be evaluated by use of the orthogonality
relations for the Legendre polynomials, here in the form

1 ndn
Ps; . ) —
Jo PV TP 2
0, jFm

= 1
dm+1’

(24)

j=m

As the asymptotic behavior has been extracted, the order of inte-
gration can be reversed, and use can again be made of (19).

Wn= 3 S; {I — (~1)*mm + 1)
=0 12

sa(s)

- k2
% ‘I; (4(1 — ) (s? — k)% — s2al(s)B(s)

+ 1) Fom(8) fo; (S)dS]
(25)

This formula can be written in the form

W = (4m + 1) ;0 (=1)i+mS; AR, (26)
j=

which is the desired discretized form of the stress deformation relation

(2) for the half space. Due to (14) the integral vanishes in the static

case.

The expression for the matrix Af,-‘,,, is reduced in two steps. First,
it is observed that the term 7/2 in (25) can be written in integral form
by use of the orthogonality relation of the Bessel functions, thereby
cancelling the constant 1. Thus explicit extraction of the singularity
of the kernel proves unnecessary in the numerical calculations. Sec-
ondly, the integral can be reduced to integrals over finite intervals by
calculus of residues. The necessary formulae are derived in the Ap-
pendix. The result is

© K2 sas)
h o=
Alm j; 4(1-vp) (s2 — k)2 — s2a(s)B(s)
B - vIVE -1

42 (8)jom (s)ds

iTk

o A0k fom (R
20— 30 = ADE = B - 2705+ T 2 (kER) fom (RER)
. ' TR
ik ¥ &y —E AP (RE) jom(RE)AE

T4 - Jo -2+ BVI-BVI- B
ik 1 (£2 — ¥2)E8/1T — 2 2 )

- AR m(kE)E,
T Sy BT £ = =y ) D) fam(kE)aE
j<m (27

For j > m it is used that A%; = A%, The material constant v is
defined by

(28)

and £g is the relative slowness of Rayleigh waves, i.e., the positive root
of the denominator of the first intergral formula for A%,. 42 (s) is the
spherical Bessel function of the third kind [11]. Bycroft, who assumed
the pressure distribution of the static case and a rigid disk, was led
to the particular case of j = 0 in (27), a fact that is not surprising in
view of its derivation. The asymptotic method of Robertson [3, 4] leads
to a similar expression but with the Bessel function products replaced
with powers of s. The accuracy of the power series expansion thereby
implied for the spherical Bessel functions clearly depends on the

- magnitude of the dimensionless frequency k.
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4 The Influence Function of the Plate

The plate is described in terms of the plate equations of Mindlin
[15]. They include the effect of transverse shear deformations, and
account for the inertial terms through an assumption of straight
normals. As shown by Reissner [16] this assumption is not true and
is in fact unnecessary, but as shown by Mindlin {15] the rotatory in-
ertia plays a minor role compared to the effect of transverse defor-
mation.

The generalized displacements are the transverse deformation w
of the middle surface and in the present case of axial symmetry the
angle Y between the normal and the z-axis. The nonvanishing mo-
ments and shear forces are

M, =D [l—a— (ry) — (1= vp) f] (29)
ror r
My=D [y,, 12 (ry) + (1~ wp) !] (30)
ror r
Qr = sz,pH ["a—w + 1//] (31)
or

D is the flexural rigidity of the plate D = H3u,/6(1 — v,), and «2is
a parameter that accounts for the averaging of the shear stress dis-
tribution. A parabolic distribution gives k2 = 5/6, while Mindlin {15]
suggests k2 = w2/12, because this value gives the correct thickness-
shear frequency.

In terms of the generalized displacements the equations of motion
are for rotation

2 ppH?
( (r\l/)) = k2upH (~+ *#) wZ\// 0 (32
or\r or
and for translantion
1of o 190
upH( ( —E) +-— (r\//)) + ppHw?w+p =10 (33)
ror\ or ror
where p(r) is the total transverse load on the plate.
The following notation is introduced:
H
T=— (34)
a
5 _ 126%up
w§ = (35)
H?pp
2p
2 P
=—tE 36
WE = e - v2)om (36)

where wg is the angular thickness-shear frequency.
It is convenient to replace ¥, which is a vector component, by

0=12 0y @37
ror

which is the divergence of the vector (, 0). As { (0) = 0 (37) provides
a unique relation between ¢ and y. When  is eliminated between (32)
and (33), the resulting differential equation for w can be written as

(i el o i

o
wg, wgl | D

with the dimensionless radial coordinate # = r/a and the differential
operator

(38)

V2= 1 O b
non o
@ follows from (33),

SRR T

39
i (39)

O)E)Z a'p
D

The equations are solved by factorizing (38) in the form

ws,
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[V2+ 8 ()] [V2+ 8} ()] w = [1 - 72 (“”*) V2 — (—) ]——£ (40)
ws ws D
with
272835 () =12 (—w—)z + (i)g
ws, WE,
+ \/ 12 (ﬁ’—)Q - (i)z g (ﬁ’— * @
wg, WE, WE,

8%(w) is positive for all values of w, whereas 52 5(w) <0 for0 <w < wg
and 8%(w) > 0 for ws < w. For 0 < w < wg we introduce the notation
83(w), where (83(w))2 = — (3a(w))>2.

Now it is a rather simple matter to construct the solution corre-
sponding to a concentrated ring load of magnitude 1 at x, when w is
not an eigenfrequency of the free plate. The solution of the homoge-
neous equation (38) with p(r) = 0 in the domains 0 < r < x and x <
r < a involves six arbitrary constants, which depend on x. The solu-
tion is given for 0 < w < wsg, and the necessary changes for wg < w
indicated afterwards. In terms of the dimensionsless coordinates »
and £

wp(n, £)a = C1()Jo(d1m) + Co(E)Io(S5m), 0<n<E (42)
wp(n, £)/a = C3(E)Jo(81n) + CoE)o(55n)
Cs(§)Yo(01m) + Ce(5)Ko(8y), £sn<1 (43)

Jo( ) and Yo( ) are the Bessel functions of order zero. Ig( ) and Ko( )
are the corresponding modified Bessel functions [11]. ¢ follows from

(39):
o1, 90 = (05t - 2 (£ toom + catp -2
74 \ws, 72

WS,

X Io(byy), 0<p<§

e

+ Cy(8) [5%— 7_2((*:;) } Io(83m) + Cs(&) ‘5% - lf‘ (‘2)21 Yo(61m)
72 \wg

(44)

ey, Ha = Ca(§) [62

12 2
+Col®) [5%—;;(0%) Jm(a;n), F<n<i (45)

¥ follows by integration of (37)

Win, 8 = 218 [5% _L2 (iﬂ J1(61m)
o1 72 \wsg

e 12
Z(Q - 2( ) ]11(527;) 0<9n=<1 (46)

2 T

_c
¥(n, 3(5) [ ( )2} J1(d1m)
C4(£) 12 Cs(E) 12 {w)2
5 8 - = (w ) ]I (85m) + —=22 [ - (;) J Y1(61m)

Cel£) 12

" [52—;( S”Kl(ézn) E<sps<1l 7

The moment is given by (29)

M, =D (sa = (1= wp) %) (48)
Yin, .E) i§ continuous for 0 < 7 < 1, and it then follows from (48) that
continuity of M; (7, £) is equivalent to continuity of ¢(n, £) as given
by (44) and (45). The shear force is given by (31). After use of {35) and
(36) .

1= w7 (wg)2 _ Ci®)
Qn, £ 22 o a( )- 28 o
C
- ;ff) L), 0<y<f (49)
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—vprfwp)2 _  Csf) C4(§)I 5t
Q-(n, f) v a(w) 5 —=J1(01n) - 5 1(6m)
05(9 Vi + S i, £xn=1 60
2
The parameters Cl(E), ..., Cg(§) are determined from the boundary

conditions M, = Q. = 0 for = 1, continuity of w, ¥, and p at n = §,
and the discontinuity condition Q,(¢—, £) — @-(£+, £) ='1. The re-
sulting equations (51) follow from (42)—(50) by suitable linear com-

binations.
- - L
I (8, 8) 1,065 8) =318 ,€) 1,650
1 o —at .
833,18, 8) 831,0838)  -8ju 18, 0) 531,185 8)
* ° -ld® .
80,06, 8) =8 I (858)  =8,3,(6,6) 631,(83 £)
1 PN * 1 2 F 34
n I 8,8 5 1,185 r‘a,(a‘c) 3 I,(650)
i Loz
0 [ T 06y s 2119
1 L3
2 12w 1 12,6
0 0 ItH 11(‘"5” 183 r'(“’s) )|
1-v . 1-v R
lao(e,)--x-‘h,w‘n “o“z"‘sf‘ﬁ‘z”
L .

For ws < w all coefficients to Cy, Cy, and Cg are-identical to those
of Cy, C3, and Cs, but with §; instead of 8;. The degenerate cases £ =
0, £ = 1, and w = wg can be evaluated by a similar procedure.

Discretization of wp(n, £) is divided into two steps because the
contact stress g, (9, 0) is singular at % = 1, while the external load q(»)
will be assumed bounded. The following polynomial expansion for
wp(n, ) is used.

wp(n: ‘E) Z Z(4J+1)A EPZf(Vl"gz)

— Vp j=0m=0
X Py (+/1 — 2)P3;(0) Py (0)
. i1s found by use of the orthogonality rela-

(562)

The coefficient matrix A%,

tion (24).
ABP3(0)Py (0) = ' "y, £
PQm(\/l — 7]2) PZJ(\/]- 52)
dnd (53)
Vicw v

Substitution of the contact stress in the form (17) and wp (9, £) from
(52) gives the following expansion coefficients for the displacement
of the plate due to contact stresses.

1
Wi = = ——2E4m 4 1) 3 5548, (54)
1= v pp j=0
The external load g(£) is expanded as
P2k+1(\/1 Popr1(vV1=£%) (55)
V 1= E2P341(0)
where the normahzmg factor is
. 2k
Pos1(0) = (=1)#(2k + 1)272 ( k) (56)

When (55) and (52) are substituted into (1) the following formula is
needed [17, p. 306).

f "Pyj(5)Pags1 (s)ds

_ A=1) k(21 (2k + 1)
22i+2k(9k + 1 — 2)(2) + 2k + 2)(jN2(k!)2

(67)
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After a slight reduction the expansion coefficients for the displace-
ment of the plate due to the external load (55) take the form

1—vppp
Wi =5 y: L am+ 1) zo kz A% M;uNy, (58)
P Jj=0 k=
where
_ (4j + 1)[P4;(0)]? (59)
k= o
T k+1-2)@ + 2k +2)
-Y_(68) RO (e, t6) o ]
o' 072 1
~53Y, 18, 8 -83K 185 6) c ie a
1-v [
. - A E
¥, 08, € -33 K U85 8) c, (8 6“—:“,(“5)‘
= 1=y _w
T, E
Y60 -;‘;x,(s; 3] c e Tif,i“»‘"
2
. ]
317 ¥, (3,) -aL'K‘N;) cgte) 0
2
J12w 1120, cel [
ILH t’(“'s)'] ls3 "(w | 6 (8)
t-v 1= .
nowp--qﬂv,(e,n [k 169+ fo‘(ezn | |

(51)

5 Numerical Solution and Results
By substitution of the appropriate series expansions into (3), the
following infinite system of equations is obtained:
~ Vp Bk
= Vh Kp

(4m +1) z (=1)JtmAl 4+
fard

Afm]S,

Lk
-2 A/m ZM}ka
1= vppp

m=0,1,...

-wr, +(4m+1)z[
Jj=0

(60)

The solution is obtained by truncating all series to a maximum of
N-terms. The total displacement follows from (2) by use of (26).

= (dm+ 1) T{=1)*mAL S]]+ W, m=0,1,... (61)

Jj=0

The bulk of the calculations is the evaluation of the matrices A%,and
AP .. The matrix A}l,,, is calculated from (27) by Gauss-Jacobi quad-
rature accounting for the behavior of the integrands near the end
points of the intervals of integration. The matrix A%, is evaluated from
(53) by Gauss-Legendre quadrature after a variable transformation.
In both cases weights and abscissae were evaluated by the subroutine
of Stroud and Secrest [18]. Due to the discontinuity of the derivatives
of wy, (n, £) at 7 = £ the number of integration points necessary for the
evaluation of A%, will be larger than N. The efficiency can be im-
proved by extracting the discontinuities explicitly.

A Rigid Disk. Inthelimit u, —> «, i.e., arigid disk, the formula-
tion must be modified. In this case w(n) = aWy, and (1) is replaced
by the equation of motion for the disk.

—w?Muw = 27 j; o (ryrdr 62)
where M = wa®Hp,, is the mass of the disk. By substitution of the
expansion (17) for a,,(r) and (55) for q(r) the relation (62) takes the
form

2pn
k2pp7(1 - uh)

The modification of the equations (60) amounts to the following re-
placements:

W, = Z MOka} (63)
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Fig. 2 Displacement amplitudes from present theory and experiments [19]

—2pn .
l—vpph,, )7, m=7=0
(4m + 1) L —w ,uijm k2p,7(1 — vp) (64)
0 else

In any investigations restricted to rigid disks it will, of course, be more
convenient to represent the external load ¢(£) directly in terms of its
resultant instead of using (55). In that particular case the effect of the
mass can be accounted for explicitly because the resultant inertial
force is in phase with the displacement [3, 10].

Experiments have been carried out by Arnold, et al. {19}, using foam
rubber for the half space. The experimental results are compared with
theoretical curves obtained by the present method in Fig. 2. The di-
mensionless displacement amplitude d = | praw/F| is shown as
function of the dimensionless frequency k = wa+/pi/u; . F is the
amplitude of the external force. The curves correspond to different
values of the mass ratio b = M/(pra®) = w7pp/ps. The calculated
results show slight deviations from calculations given in [19] based
on the static stress distribution [10). There is a general tendency for
the experimental points to fall below the theoretical curves for small
frequencies. Apart from the case of b = 24.5 an excellent fit can be
obtained for all frequencies by increasing the value of Poisson’s ratio
from vy, = 0 used in Fig. 2 and in [19] to v, = 0.05.

The accuracy of the present method is supported by the excellent
agreement with the results of Robertson [3] for b = 0 as well as re-
garding the resonant amplitudes and frequencies given in Table 3 of
[3]1. Also the static limit d — (1 — v, )/4 is accurately reproduced.

In connection with ultrasonic and acoustic emission transducers
a broader frequency range is needed and typical mass ratios will be

“much lower. Some results in the area of interest are shown in Fig. 3
for v, = 0.25. Expansions with N = 10 terms for low frequencies in-
creasing to N = 20 for the higher frequencies were used. Doubling of
the number of terms only gave negligible changes.

Elastic Plates. In the case of elastic plates no single displacement
parameter describes the response of the plate to an oscillating external
load. The best single parameter seems to be the average power input
{P). As no damping is assumed in the plate the power input can be
expressed in terms of the contact stress and the surface velocity of the
half space.

(P) =2 j; * (Re [022 (r)ei®!] Re [jww(r)e@]yrdr  (65)

1 » and v should be ¥2 and 7 in the head of Table 3 in [3].
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Fig. 3 Displacement amplitudes and phases for rigid disks with v, = 0.25
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Fig. 4 Dimenslonless power Input for elastic plates

When use is made of the relation (Achenbach [20, p. 34]),
(Re [F] Re [f]) = Y2 Re [Ff) (66)

and the polynomial expansions (17) and (22), the following dimen-
sionless expression is found for the power input:

Lom [o(P)_

Ty un wal

In the examples presented here the following parameters are used:
7= 0.2, v, = 0.25, vp, = 0.33, and pp/pr = 3.0. Three stiffness ratios
are considered, up/un = 0.1, 10.0, . The external load is uniformly
distributed, i.e., No = 1, g(r) = up/(1 — vp).

Fig. 4 shows the dimensionless power input (67) for 0 < k < 5. The
curves are based on calculations at 51 equally spaced abscissae, and
the number of terms in the polynomial expansions increases from N

Re [{(W,,)Sn] (67)

m=0 im+1
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Fig. 6 Piate displacement distributions for phase angles 0, 7/3, 27/3, and k = 2.5

=10 to N = 23 with increasing frequency. The matrix A%, is evaluated
by use of 3N integration points for the plate with u,/u, = 0.1 and 2N
for up/un = 10.0. Increasing N to 1.5N only gave relative changes of
less than 10~3 for the most flexible plate and less than 107¢ for the
other two.

The figure shows a clear influence of the flexibility of the plate.
While all three curves have a marked peak near the resonance fre-
quency of the rigid plate, the flexible plates exhibit a number of sec-
ondary peaks at higher frequencies. This number increases with in-
creasing flexibility of the plate.

The influence of the flexibility of the plate on the distribution of
contact stresses and displacements is illustrated in Figs. 5 and 6. The
distributions are plotted at phase intervals of #/3 and cover half of
the oscillation at the dimensionless frequency k = 2.5. As expected
increasing deviations from the rigid plate distributions are found for
increasing flexibility. Additional calculations show the deviations to
increase with frequency as well.

The ability of the present method to account for the flexibility of
the plate is supported by the fact that the contact stresses and dis-
placements for u,/un, — 0 and & — 0 approach those of the static
problem of a constant load on a circular area [21].
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APPENDIX

An Integral Identity
Consider the integral
k2 1 ® sa(s)
T4 — ) 2 J-o (52— Y k22 — 52a(s)B(s)
X £52(s) jom(s)ds

Bjm =

m=j (68)

The denominator is known to have only two roots, both of which
are real [20], and the contour of integration is indented into the pos-
itive imaginary half plane at these points. The spherical Bessel
functions of the third kind are defined as

A (s) = fm(s) + iym(s)
ARD() = fm(s) = iYm(s)

(69)

where fm (s) and ym (s), are the spherical Bessel funtions of the first
and second kind, respectively, [11].

In the upper half of the complex plane the product of the two
spherical Bessel functions in (68) is bounded and the contour can
therefore be closed without changing the value of the integral. The
integrand is analytic in the enclosed domain, which do not contain
any poles, and thus B;,, = 0. )

The integral is rewritten by introducing the dimensionless variable
£ = s/k and rationalizing the integrand
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k 1 ®
By = ——
/ 4(1—uh)2f_m

E-P VP @ -y VE-T
(E2=-Pt— (2D~ 1)t
X EAS) (RE) fom(REYE  (70)
The integration variable is now replaced by n = —£ on the negative
part of the real axis, and B;, is then given as the sum of two integrals

along the positive real axis, with £ passing over and 1 under the pole
£p. £g is the positive root of the equation

& -%)y-EVE-yVE-1=0

corresponding to the relative slowness of Rayleigh waves. Apart from
+£p the denominator in (70) has four other roots corresponding to
various interference phenomena, Scholte [22], but as they are also
roots of the numerator, and it can be shown that they are outside the
intervals y¥ < |£| <1, Achenbach [20], they do not need explicit con-
sideration.

The 75 contour is now changed to pass over the pole 1 = &g, thus
giving rise to an isolated contribution from the residue. The result is
evaluated by use of the relations [11]

A (—kn) = AR (kn)
Fom(—kn) = jom(kn)
After reduction of the residue the result is
_ink B@G-1)VEET
41 —wn) 3L - ¥HER— B — 2vDER+ Yk
X AP (RER) fom(kER)
_ k k4 §E2-h)2VE -2
4(1 = vp) Jo (2 - 1)t — (E2— 42)(E2 - 1)¢¢
X iygj(RE) jom(RE)DE
Y
41 —wp) Sy (2= = (B —yH(E - D
X 42;(RE) jom(RE)DE
ke BE-VEET
41 —wp) Jo (2—R) = (2 —y)(E - DE
© Xiygj(RE) jom(kE)dE
S S LN
41 —wp) J1 (=) = (B -y - &
X foi(kE) jom(RE)DE
When use is made of the definitions (6) and (7) for the arguments of

the square roots subtraction of Bj, = 0 from A}’,,, yields the result
27).

X

(11)

(72)

Bjm

(73)
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Free Vibration of Thin-Walled Open
Section Beams With Unconstrained
Damping Treatment

Free-vibration characteristics of a thin-walled, open cross-section beam, with uncon-
strained damping layers at the flanges, are investigated. Both uncoupled transverse vi-

bration and the coupled bending-torsion oscillations, of a beam of a top-hat section, are

Indian Institute of Technology, Kanpur,
Kanpur-208016, India

1 Introduction

Thin-walled open section beams are used as stiffening members
in various sheet metal constructions, such as aircraft skin-stringer
panels, ship-hull siructures, and vehicle bodies. In general, the
asymmetry present in this type of sections results in a coupling of the
bending and torsional modes of oscillation. Free-vibration charac-
teristics of such beams in the coupled modes have been studied by
Gere [1] and Gere and Lin [2].

The vibration of resonant structures can be controlled most ef-
fectively through applied damping treatments. Both unconstrained
and constrained layers of viscoelastic materials are used for this
purpose. Free and forced-vibration analyses of beams with additive
damping layers have been investigated by several authors {3-9], who
considered only beams and plates of uniform rectangular cross section.
No analysis, however, has been reported of the vibration of a thin-

walled open section beam with an additive damping treatment. This’

paper presents an analysis of free-vibration characteristics of such
layered structures. .

Another motivation for this study stems from the following con-
siderations. In a recent paper, Sengupta [10] has proposed the concept
of intrinsic structural tuning for reducing the low frequency vibrations
of aircraft fuselage skins. For a typical skin-stringer combination, the
frequency of peak response is very close to the natural frequency of
the individual skin bay (say /), which is clamped along the stringers
and simply supported along the frames. If the stringer and panel di-
mensions are such that the natural frequency of the stringer coincides
with fp, then the stringer can act as a tuned absorber for the skin vi-

1 Presently, Assistant Professor, Machine Dynamics Laboratory, Department
of Applied Mechanics, Indian Institute of Technology, Madras, Madras, 600036,
India.
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considered. Numerical results are presented for natural frequencies and modal loss fac-
tors of simply supported and clamped-clamped beams.

brations. Additional damping, through the application of damping
treatments to the stringers, will increase the effectiveness of the in-
trinsically tuned stringers, over a broad frequency range. The analysis
presented in this paper will also be useful in the design of such in-
trinsically tuned damped stringers.

As an example, a top-hat section, with unconstrained damping
layers at the flanges, is considered in this paper. Vibrations both in
and out of the plane of symmetry are investigated. The vibration in
the plane of symmetry is uncoupled and the analysis is exactly similar
to those considered by previous workers {3-9]. This paper concen-
trates on the vibration in the coupled bending torsional modes. For
this analysis, it is necessary to determine the location of the shear
center and the torsional and warping rigidities of the composite cross
section.

Numerical results are presented for natural frequencies and modal
loss factors for simply supported as well as clamped end conditions.
An efficient algorithm, based on a two-dimensional Newton-Raphson
technique, is used for computations.

2 Theoretical Analysis

2.1 Vibration in the Plane of Symmetry. Fig. 1 shows a top-hat
section with damping layers on the flanges. The composite neutral
axis for bending in the plane of symmetry is shown as # — 1, whereas
71 — 1 and 7y — 9y refer to the centroidal axes of the individual layers
(1) and (2), respectively. In the present analysis, the base layer (1) is
assumed to be nondissipative. Furthermore, the loss factor of the
viscoelastic layer (2) is assumed to be frequency-independent, and
the same in the shear and extensional modes of deformation.

Following the analysis presented by Ditaranto [5], the natural
frequencies and the modal loss factors, for various cases, are obtained
as follows:

For S-S Ends:

=2 M
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where, under the usual assumption of E2 < Eq, [11]
B o~ Ell,m + Eg (I,,Z2 + AQH%I) (3)

and the loss factor in all the modes, 4, for both end conditions, is given
by

__E_% 1»122 + AQH%I

Ey

ne~f 4)

E
Inu + =2 (11122 + AZH%l)
E;
2.2 Coupled Bending-Torsion Modes. Referring to Fig. 1, O

and C are, respectively, the shear center and the mass center of the
composite section. It is evident that

Ve = Vo — Cz‘l/ (5)
The equations of motion in the coupled modes are given by [2]
%,

oz 0 ©

. ot
(Ealpy + E 1) EFO -

and

ony 0% 22, o2y
ngﬁ*clgﬁ_““ﬁ*' (puley + lecz)sﬁ— 0o

where the constants C1, Cy, and ¢, are as derived in Appendix A,
Assuming harmonic solutions of the form

vo = Vo(x)eiw™t
and

¥ = Wo(x)eie™t, (8)
and using equations (5)—(7) for eliminating ¥ and v, one gets the
following equation in terms of nondimensional quantities:
d8V, déV, d*Ve w2 42V

o= + asfd;

dé8 d§s dét dE?
The coefficients o1, ap, s, and ey are given in Appendix B. Substi-
tuting a trial solution of the form

+ g Q:?

+ C(4Q:4 Vo ={ (9)

8
Vo) = X @ el (10)
s=1
in equation (9), the following characteristic polynomial equation for
the N’s is obtained:

A+ A6+ a2 A%+ a2 + Q=0 (11)

Applying the appropriate boundary conditions at the two ends of the
beam, the frequency equation is obtained in the usual form

det[4] =0 (12)

The boundary conditions, and the associated elements of the matrix
[A] for different end conditions, are also included in Appendix B.

3 Computational Procedure

It should be noted that two quantities, viz., 22 and 7,, are to be
determined from the zeros of det [A]. The solution of the determi-
nantal equation (12) is somewhat cumbersome due to the complex
arithmetic and the associated numerical problems [12]. This difficulty
has been overcome by splitting the determinant into its real and
imaginary parts and setting these separately equal to zero. The real
and imaginary parts of the determinant are considered as functions
of the two variables Q%and 7,Q2. The zeros of the functions are ob-
tained by using a two-dimensional Newton-Raphson procedure. The
iteration scheme proceeds according to the following sequence:

Let

Ar(m,n)=0

Ar(m,n)=0 " (13)

Nomenclature

A1y, Ag = cross-sectional areas of the elastic
layer (1) and the viscoelastic damping layer
(2), respectively

A1y, Ags = flange areas of layers (1) and (2),
respectively

! = length of the beam

t = time

x = lengthwise coordinate

z = coordinate along the axis of symmetry

y = coordinate perpendicular to x and z

E1 = modulus of elasticity of layer (1)

E4 = storage elastic modulus of layer (2)

vo, U, = deflections in Y-direction of the
composite shear center and mass center,
respectively

Iy Ingy = second moments of area of layer
(1) about n; — m1 axis and of layer (2) about
N2 — 72 axis, respectively

170 / VOL. 48, MARCH 1981

I, I, = second moments of area about {1 (or
o) axis of layers (1) and (2), respectively

Icy, Ic, = polar second moments of area of
layers (1) and (2), respectively, about the
longitudinal axis passing through the
composite mass center

(71 = shear modulus of layer (1)

(5 = storage shear modulus of layer (2)

C; = Saint-Venant’s torsional rigidity of the
composite cross section

C3 = warping rigidity of the composite cross
section

M = bending moment

V = shear force .

p1, p2 = mass densities of layers (1) and (2),
respectively

# = mass per unit length of the beam = p141
+ poAs

Y = rotation of the cross section about X-
axis

B = loss factor of the viscoelastic material in
both shear and extension

i=v-1

Ej = Eo(1 +if)

Gy =Go(1 +iP)

wn, 1 = natural frequency and loss factor,
respectively, in the vertical uncoupled
mode

&E=x/l

w, n. = natural frequency and loss factor,
respectively, in the coupled bending-tor-
sion mode

w* = w(l + ine)V/?

Q. = nondimensional natural frequency in
the coupled mode = wl? (uW/Eily +
E, Irz)l/z

Q= Qo1 + i)'

y = shear strain
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Table1 Natural frequencies and modal loss factors in
coupled vibration

P2 b2 E,

—==0.2, ==1.50, ===10.001, =1.00

01 t1 E; g

Mode Simply supported ends Clamped-clamped ends
No. Q. Ne Qc Ne
1 3.8578 0.00350 7.5646 0.00172
2 13.3733 0.00175 120.2314 0.00129
3 16.8653 0.00124 39.2024 0.00108
4 29.1171 0.00126 65.6123 0.00103
5 51.1401 0.00106 103.6293 0.00098
6 66.5015 0.00101 133.6277 0.00090
7 79.4502 0.00097 177.6716 0.00088
8 114.0493 0.00092 202.9504 0.00096
where

Ag = Real (det [A]), Ar = Imag (det [A]),
m=Qandn = 5,02

Then, two successive iterations for the roots of equations (13) are
related as

AjApn — ARA
Mje1 = m; + I4Rn RAIn ; (14)
ARmAIn = ARnAIm J
and
ArAm — AJA
njs1 = n; + RAIm IORm . (15)
ARmAIn - ARn.AIm J

In the foregoing equations, the subscripts m and n refer to the partial
differentiation with respect to m and n, respectively, and the suffix
] denotes the jth iteration.

'The required partial derivatives are computed by using a central-
difference scheme. Starting from the lower end of the frequency scale,
the iterations are performed to obtain the natural frequencies and the
modal loss factors in the various modes. For each natural frequency
and its associated loss factor, the convergence is tested by a twofold
criterion:

1 A specified limit on the percentage change in the relevant values
in successive iterations.
2 A specified limit on the absolute value of the determinant.

The foregoing scheme converged, in most instances, within six or
seven iterations. The initial starting point for the variables did not
present any problem, The value of the determinant, however, was seen
to vary, with frequency, over a wide range. To eliminate consequent
problems in dealing with very large numbers, the determinant was
suitably scaled at the start of the iteration scheme for the different
modes.

4 Results and Discussions

Numerical computations are performed with the following di-
mensions and properties of the elastic layer (Fig. 1) I{ = 20 mm, [y =
26 mm, t1 = 2mm, and kb = 35 mm. E; = 6.87 X 1010 N/m?, p; = 2700
kg/m3,

Table 1 shows some typical values of the natural frequencies and
the loss factors in the coupled bending-torsion modes. It is seen that
the modal loss factors for the coupled vibration, unlike those in the
uncoupled vertical mode (see equation (4)), depend on the end con-
ditions and as well as the modal number. This is attributed to the si-
multaneous extensional and shear deformation of the viscoelastic
layer in the coupled modes. A similar situation is encountered in
beams of solid cross section with constrained damping layers [5].

It can also be seen that for both end conditions, the loss factor in
the first mode is appreciably larger than those in the higher modes.
Moreover, the simply supported beam has higher loss factors as

Journal of Applied Mechanics
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Flg. 2 Variation of composite loss factor with thickness ratio for a simple
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Fig. '3 Varlation of composite loss factor with thickness ratio for a
clamped-clamped beam

compared to a clamped-clamped beam. This is especially so in the case
of lower-order modes.

Figs. 2 and 3 show the variation of the loss factor with the thickness
ratio, to/t1, in the first two modes. The loss factor in the uncoupled
vertical mode, given by equation (4), is aiso plotted in the same figures.
It is clearly seen that an unconstrained damping layer is more effective
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Fig. 4 Coordinates for shear flow calculations

in the lower-order coupled modes, than in the uncoupled vertical
mode. Extensive parametric investigation [11] also showed that 7,
(just like %) varies linearly with § and E/E;. However, the variation
in Q. with § was found to be insignificant. Furthermore, in the range
0.2 < pa/p1 < 0.7, the composite loss factor in the coupled mode, 7.,
was seen to be independent of ps/p1.

An analysis of the free vibration of similar sections, with constrained
damping layers, will be presented in a future paper.

5 Conclusions

An analysis of the free-vibration characteristics of a thin-walled
open section beam, with unconstrained damping layers at the flanges,
shows

1 For the coupled bending-torsion oscillation, the modal loss
factors depend (even when the damping layer is unconstrained) on
the end conditions and the mode number.

2 TFor the coupled as well as the uncoupled oscillations, the com-
posite loss factor varies linearly with 8 and Eo/E;.

3 'The loss factor in the coupled mode, especially for the lower-
order modes, is higher than that in the uncoupled vertical mode.

4 'The unconstrained treatment is more effective in damping out
the lower-order coupled modes.
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APPENDIX A

Shear Center of Composite Section
Considering the bending, about the Z-axis, of the composite section
shown in Fig. 4, the fractions of the bending moment resisted by
Sections (1) and (2) are given by
_ ME; Iy ME; I,
T 2 T e
Ealy + Ebly, Edy+ B3I
The total shear flow in the flanges for Sections (1) and (2), at a dis-
tance y, is then obtained as

1 (16)

51 81
VE1 f yt1d31 VE; ‘fo ytzdsl
0

@oht o= e Y v w7
Similarly, the shear flow in the webs is
1% I .
(qxzh1 = m{ﬁ (Eqt1 + Eto)y ds;

l2 52
+2 f Eqtidss)  (18)
2 Jo

The shear center is located by considering the moment balance about
the point E, and the distance e is obtained as

E t 2 * 2 3
ElIh +E21§‘2 4 Eltl 2 3
Thus, from Fig. 1,

(19)

c,=e+d

Torsional and Warping Rigidities of Composite
Section

The Saint-Venant’s torsional rigidity of a composite, thin, rectan-
gular cross section was derived in references [14, 15] by using warping
functions. A much simpler procedure, using the membrane analogy,
is presented here. Consider a membrane made of two materials (Fig.
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5) and subjected to an internal pressure. The membrane which is
initially of the form ¢ = 0 deflects to the shape ¢ = ¢(z, y).

If I3 > t1 + to, the deflected surface of the membrane can be con-
sidered independent of y, except near the ends. ¢1 and ¢ are the de-
flected surfaces of the membranes of materials 1 and 2; these quan-
tities also correspond to the Prandtl’s stress functions. Let 8y be the
uniform twist along the length. Then, by the membrane analogy, ¢;
and ¢9 are governed by

21 )
— = =2G10p, —t1 <2 20
522 1% 1
and
92 .
O oGy, 0 <2 < tg (20)
dz2

The functions ¢; and ¢2 can be obtained by integration of equation
(20) with the following boundary conditions:
p1(—t1) = ¢alts) = 0,
$1(0) = $2(0) (21)

at
2=0, (Yxy)1= (Yxy)o

The last condition implies the continuity of the shear strain at the
interface, and can be rewritten as

Log| _ 12
G, 2z jz=0 Gj oz
Finally, ¢1 and ¢ are obtained as

b1 =—G10(2 -t} + TG10(z + t1)

(22)

z2=0

and
pa = —G(%~t3) + TG0z — t3)

where

Gitd — Gy}
T'= 32—_1._1 (23)
G o9 +G 1t
Under pure torsion, the torque resisted by the shear stresses in the
flanges is

Tf=2ff ¢dzdy=2f ¢1dA1f+2f badAy  (24)
Ayt Agy

The torsional rigidity of the entire composite beam, including the
torque resisted by the rest of the cross section, is

Ci=41G1Bt3 + 3T tD + 41,G5(3t§ - 4T td)

+GiGh+3i)t] (25)

Under nonuniform torsion, warping stresses are generated; these in-
clude shear stresses which, in turn, resist a part of the applied torque
[18]. The warping torques of the two sections are given by

Li's o

Tl = —ElCm bx3 and T2 == Ez szﬁ (26)

where C, and C,, are the warping constants of the Sections (1) and

(2), respectively. Hence, the warping rigidity of the composite section,
C, is obtained as

Journal of Applied Mechanics

Cz = Elel + E;sz (27)

Expressions for C,,; and C,,, for a top-hat section, are given in refer-
ence {11].

APPENDIX B

Coefficients and Boundary Conditions of Equation(11)
The coefficients «, appearing in Equations (9) and (11), are as
follows:

C.l2
a0y =——
1 C,
1 (32 p1I¢l + /)2[,;2
ag = —(BEdy + Eolp) |[——— + 2+ — =2
2 Un T SR B, + B3l Ca uCs
_ EIy + Eoly,
N3 = —o1
Ely + Eoly,
g = (Ellh + E?IQ)ZPlIc; + pzlcz 28)
E11;‘+E21§2 [,LCz
For simply supported ends, the boundary conditions are
V() =0
d%V, —0
dfz?
d4Vy
Vo=0 or =0)at £=0 and £=1 (29)
0 7T 3 §
and
d2¥, d%Vo
dg? dE®
hence the elements of the matrix [A] are obtained as
 Agj=1,Ag=eN, Ay = N}, Agi= Nle¥, Agi = N}
AGJ‘ = )\}1 e"i, A7j = )\?
Agi=AeN for j=1,2,...,8 (30)

Similarly, for clamped-clamped ends, the boundary conditions and
the matrix elements are given by

Vo =0
avy_
d¢
d4V
V=0 or d£4°=0 at £=0 and £=1  (31)
and
dv¥, d5Vy
—=0 or =
dt dgs
Ayj=1,A4q9= eN, Agj= \j, Agj = )\je"f, A= >\}
Agj = NeM, Aqj= AS
Agj= NN for j=1,2,...,8 (32)
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Stability Theorems for
Multidimensional Linear
Systems With Variable

Parameters

Two equivalent theorems governing stability of multidimensional linear systems with
variable parameters are derived which generalize some of the existing stability theorems,
Hlustrations include damped, gyroscopic, circulatory systems with varying parameters.

Introduction

Several stability theorems have been derived in the past two
centuries which lead to a good understanding of a system even without
the solution of its equations. Most of the theorems have been devel-
oped for systems with constant parameters. Some are applicable in
presence of periodic coefficients. There are situations of importance
where parameters may vary arbitrarily. Such systems will need at-
tention.

Using a Liapunov-type approach, two equivalent theorems are
derived here which govern stability of coupled linear systems with
varying multiple parameters. Some of the existing theorems like the
Sonin-Polya theorem [2] become special cases of the present theorems.
These are applied, as illustrations, to mechanical systems with varying
inertia, stiffness, gyroscopic, and damping terms, and velocity and
position-dependent forces.

Analysis
Consider a set of n coupled nonautonomous linear equations,

az(x)2” + ar(x)z’ + aglx)z = 0 (1)

where x is independent variable, z is an n-dimensional vector, ag, a1,
ap are n X n coefficient matrices varying with x. Matrices as and ag
should be nonsingular. Primes indicate derivatives with respect to
x. Define
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P(x) = exp [fas"ta1dx] 2)

Note that P is a n X n positive-definite matrix. Using P, (1) can be
written as

P2’y +Qz=0 ' (3)
where
Q(x) = Pag~lag 4

Let us assume @ ~1P (hence ag~tas) to be “symmetrizable” [1], i.e.,
there exists a positive symmetric matrix S(x), which makes (SQ~1P)
or (Sap~tag) symmetric. Note that S can be found from R7 = S—1RS,
where R = as~la¢. Let a vector z be a nontrivial solution of (3). We
can define a scalar F as

F=2TSz +2’TSQ~1Pz’ (5)
If (SQ~1P) is positive-definite, F is positive-definite defining a region
of possible solutions about the origin. Its derivative is given by
F =2'TSz + 278z’ + 2 TS’z + (Pz")T'(QS~1PT)~1(Pz’)
+ (P2)T(QS—PT)"Y(Pz’Y + (P2')T(QS~1PT)~Y(Pz) (6)
Using (3) and symmetry of (SQ ~1P), the first and second terms can

be cancelled with the fifth and fourth terms, respectively. After some
simplification we get

F=2T82 — (Q7'TST)T(QS~PTY(Q~1TSTz') (7

If S’ € 0 and (QS—1PT)’ 2 0, F’ will be negative semidefinite and F,
defining the region of possible motion will be nonincreasing. If F/ <

"0, F will be asymptotically decreasing. Therefore F is a Liapunov

functional. Hence, we can state the following:

Theorem 1. Let P(x) be positive-definite and Q(x) be nonsing-
ular and continuously differentiable on an interval I. If there exists
a positive-definite symmetric matrix S, such that (SQ~1P) is sym-

Transactions of the ASME



metric and positive-definite, S’ € 0, (@S—'PT) > 0, then the region
of possible solutions of the nonautonomous coupled system

[P(x)2’] + Q(x)z =0

will be nonincreasing as x increases on I. It will be asymptotically
decreasing if (@S ~1PT) > 0.

Application of the theorem in the present form may pose difficulties
for large n, mainly in the computation of P. It is desirable to find
conditions on the matrices as, a1, and ag directly. Note that

SQ_1P = Sao_laz
“and
P = Paz_llll = ag_la1P (8)

Using these, the definition of P and @, and symmetry of (Sap™lag)
we can write

(QSIPTY = P(Sag 'ag)~Y[Sa¢™ a; + (Sao~tan)”
— (Sap'as))(Seg~tag)1TPT (9)

This is positive-semidefinite if the matrix-pencil in the bracket is
positive semidefinite.

It may be noted that this condition can be obtained directly from
(1) by writing it as

Sag~lasz” + Sap~laz’ + Sz =0
and

F=2TSz + 2’ TSay~lasz’ (10)

So the theorem can be restated as follows:

Theorem 2. Let ag(x), az(x) be nonsingular and continuously
differentiable on an interval I. If there exists a positive-definite
symmetric matrix S{x) such that (Sag~as) is positive-definite sym-
metric (i.e., ag~lay is symmetrizable), S’ < 0 and A = [Sag~la; +
(Sap~ta1)T — (Sag~laz)’] = 0, then the region of possible solutions
of the coupled nonautonomous equations,

as(x)z” +ay(x)z’ + ag(x)z =0

is nonincreasing as x increases. If A > 0, the region will decrease
asymptotically.

These theorems generalize some of the existing theorems as ob-
served in the following:

1 For a one-degree-of-freedom system [n = 1,8 = 1, P(x) = p(x),
Q(x) = q(x)], Theorem 1 reduces to the Sonin-Polya theorem (2],
which states: Let p(x) > 0 and q(x) # 0 be continuously differentiable
on an interval I, and suppose p(x)g(x) is nonincreasing (nonde-
creasing) on I. Then the absolute values of the relative maxima and
minima of every nontrivial solution of the equation

[P)y'] + qlx)y =0

are nondecreasing (nonincreasing) as x increases.

2 If the parameters are all constant, S will also be a constant and
most of the stability theorems of linear systems with constant pa-
rameters [1] can be shown to be special cases of the present theorems.
For example, for a circulatory system with a; = 0, Theorem 2 reduces
to Theorem 6.1 of reference [1], which in the present notations states:
A circulatory system is stable if and only if there exists a symmetric
and positive-definite matrix S; such that (Syas1ae) is symmetric and
positive-definite.

3 For the special situation of (@oasT) (and hence ao~las) being
symmetric at all x over the interval, S = identity matrix and the
theorems can be reduced to the following simple criteria of sta-
bility: -

B = [aoalT + alaoT + (IQ'GZT - az'll()T] =20
and

aoaz’ >0 (11
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This is indeed a simple form of the condition, as there is no matrix
inversion involved.

4 It may be noted that if the asymmetry of (aoe2T) is not signif-
icant, conditions (11) can still be used with a good approximation.

Stability of Dynamical Systems

For dynamical systems the independent variable is time . The
region of possible solutions is the motion envelope in a 2n-dimensional
hyper-phase-space. For stability, it should be nonincreasing. For as-
ymptotic stability, it should decrease. The two theorems can thus be
directly applied to such systems, as illustrated next.

(a) Torque-Free Rotating Systems With Variable Inertia.
The equation of a torque-free system is given by

A+wxXh=0 (12)

where h is angular momentum vector and w is rotation vector. The
dot represents a derivative with respect to time. The equation can be
linearized as

F+gh=0 (13)

where g is a skew-symmetric gyroscopic matrix. Differentiating
again, )

h+gh+gh=0 (14)
Applying (13), it can be written as
h—gg~h —ggh =0 (15)

Here apasT = —gg is symmetric and condition (11) is applicable, which
leads to

B=[gTgT —gg] >0
and

-g8>0 (16)

This is satisfied only if the body is symmetric, rotates about the axis
of symmetry, and the variations in inertia are such that the body re-
mains symmetric. Otherwise instability can occur in h-plane. This
observation is made in reference {3] by decoupling the equations and
applying the Sonin-Polya theorem to each equation separately.

(b) Damped Gyroscopic Systems With Velocity and Posi-
tion-Dependent Forces and Variable Parameters. The general
equation of a damped gyroscopic system with velocity and position-
dependent forces can be written as [1]:

m(t)E+c(t)z + k(t)z =0 a7)

where

m = an X n real symmetric nongingular inertia matrix.

¢ = an X n real matrix containing gyroscopic, damping, and
velocity-dependent forcing terms.

k =a n X n real nonsingular matrix containing symmetric
stiffness (conservative) terms and skew-symmetric circu-
latory force (position-dependent) terms.

If kmT is symmetric or slightly asymmetric the stability condi-
tions are

B=[ckT+kecT+EmT ~mkT] 20
and

kmT >0 (18)

In presence of strong circulatory forces kmT will be quite asym-
metric. Then there must be a matrix S satisfying the conditions of
Theorem 2 to insure stability. If no such S can be found, the system
will generally be unstable.

Conclusion

Two equivalent theorems are derived which govern the stability
of multidimensional linear systems with variable parameters. They
generalize some of the existing theorems, applicable to systems with
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constant parameters and the Sonin-Polya theorem applicable to a
single-degree-of-freedom system with variable coefficients. Although
applied here to mechanical systems for illustration, they should be
applicable to a wide range of systems.
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Modeling of Nonholonomic Dynamic
Systems With Applications’

A feedback model.of nonholonomically constrained dynamic system is presented with ap-
plications in analysis, control, and understanding of such systems under impulsive and

friction forces.

1 Introduction

A feedback model of a nonholonomically constrained dynamic
system is developed. This model contributes to better understanding
of constrained dynamic systems and affords analysis and control of
the evolution of such systems in time, allowing the constraints to be
deliberately violated, maintained or, additionally imposed by external
control. A general method of reduction of dimensionality for such
systems is also provided. The model also renders some insight for
analysis of dynamic systems with friction forces and those with im-
pulsive inputs. Nonholonomic dynamic systems have been discussed
by Kane [1, 2], Whittaker [3], and Rosenberg [4]. Friction has been
discussed by Whittaker [5], Den Hartog [6], and Bowden and Tabor
[7]. Impulsive forces are discussed in [2-4] and by Pars [8].

The feedback models of this paper are based.on [9, 10] where it was
shown that, in constrained motion of holonomically constrained dy-
namic systes, the Lagrange undetermined multipliers are explicit
functions of the state (positions and velocities) and external inputs.
This method is developed in Section 2. In Section 3, the reduction of
dimensionality resulting from the imposition of the constraints is
developed and compared with that of Kane [1]. In Section 4, the
control problem and modeling of the friction forces are discussed.
Finally, impulsive forces aré treated in Section 5. Several examples
are included in the text.

2 The Lagrangian Formulation
Let a dynamic system be characterized by [ generalized coordinates
Z, m external inputs U, and r nonholonomic constraints:

CZ+G(Z)=0 (1)
where C(Z) isar X n matrix and G(Z)isar vector and C(Z) and G(Z)
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have first-order derivatives with respect to Z in the region of interest
in the space of Z, and on its boundaries (where the constraints begin
to be violated). Assume C(Z) has rank r in this region. Let the kinetic
energy, the potential energy, the incremented work of the external
inputs, and the vector I' of the forces of constraint be, respectively,

VAN (VAVA

V(Z)
dZTW(Z)U
r

(2

where [ is an | X | symmetric positive-definite matrix, and W(Z) is

‘n X m. The Lagrangian equations of motion for this system [1,3]

are
)——=CTI‘+WU (3)
dt YA
The left-hand side of equation (3) may be rewritten as
IZ)72+g2,2)=CTT+WU (4)
If equation (1) is differentiated with respect to time, one obtains
d . . 9GT .
—[CEZNZ+C(2)Z+—Z=0 5
7 t[ (2)} (2) o7 (5)

From equations (4) and (5) one obtain§ uniquely the forces of
constraint I as functions of state X = [Z, Z]7 and the inputs U

I'=TX, ) (6)

The constraints can be in general classified into two classes: soft
constraints and hard constraints. A soft constraint may be violated
on either side of the constraint manifold (equation 1). A hard con-
straint can be violated only on one side of the surface of constraint.
For soft constraints to be maintained, the force of constraint should
satisfy certain inequalities as shown later in example 4. These ine-
qualities can be written in the general form

LiT'+LU>0 (7

where Ly and Ly, are appropriate size matrices.
Hard constraints, on the other hand, retain the same polarlty while
the constraints are satisfied [9, 10].

>0 8)
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Feedback model of a constrained system

Fig. 1

Fig. 2 Representation of a system with friction

When the hard constraints are violated, the forces of constraint be-
come inactive

T=0 )]

This development results in the feedback model of Fig. 1 encom-
passing both the constrained and unconstrained system.

In many nonholonomic systems, friction plays an important role.
Consequently, friction forces must also be adequately modeled before
control problems can be discussed.

Accurate modeling of friction is very difficult and involved [7, 11,
12]. Here it is assumed that friction forces F as functions of the state
and the input are also available and well defined

F=F(X,U) (10)

Therefore, a dynamic system with friction forces can be represented
by the feedback model of Fig. 2. This model can also adequately
represent other dissipative systems [3] but this subject is not to be
considered here. If a dynamic system with friction is further con-
strained, the combination of Figs. 1 and 2 results in the model of Fig.

3, and can be described by the following equation:
=(X,UFT) (11

Example 1. Kane’s two rigidly coupled disks rolling down an in-
cline [1].

Let the parameters of the system be the same as Kane’s with Z =
[¥1, Y2, x1, x2, ¢] 7, the expressions for the kinetic, potential, and
constraints are

T=m@?+ %3 + m(r2+ )¢2 +3JWE + )

where J = mk? is the moment of inertia.

V =—2x;mgsinf

r -r 0 0 2r
C={rsin¢g rsing -2 0

rcos¢ rcosg 2 0
G=0

Carrying out the calculations results in the following forces of

constraint as functions of the state [Z, Z]7:

2 cog? k2
r c:)zs+¢h:' gsinf ~— ¢ cos 0 (1 + )
—r2gin —r?sin ¢ cos ¢
r2 + k2

The equations of motion are

gsin9+§¢sin0(¢1+¢z)
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U,F,l")I X !

X=f(X,

Fig. 3 Representation of a constrained system with friction

Z=12
{ (13)

Z=I"1CTT+I"1[0,0,2mgsind,0,0]T
where I is the diagonal 5 X 5 matrix
Iy = Isg = mk?

Isg =144 =2m

k2
Iss=m|r2+—
55 ( 2)

If vector I’ is substituted in (13), the equations of motion, under
constraint are

rgsinfsin ¢

V1= r2+ k2
« _rgsinfsing
va= r2+ k2
2 gin2 . o

£ =g sinf o Smkg)+§cos¢(\//1+¢2)¢ (14)

. —r2sin ¢ cos
£2=gsm0——mgk-2——¢ —sln¢¢(1//1+¢2)

B=0

These equations, naturally satisfy the equations of constraint, and
are equivalent to those of Kane [1]. More will be said about the
equivalence below.

3 Reduction of Dimensionality

When the r constraints are satisfied, the system’s dimension re-
duces to ! — r. Kane’s method for derivation of the reduced equations
is based on generalized active and inertial forces [1]. An alternative
method of deriving Kane’s results is provided later.

Consider the r dimensional subspace spanned by the rows of C. Let
OC be the orthogonal complement of C, and let Hbea (I —r) X n
matrix whose rows span the subspace OC. By definition

HCT =0 (15)

If both sides of equation (4) are premultiplied by H, the forces of
constraint are eliminated and the following | — r equations result

HI(Z)Z + Hg(Z,2) = MWU (16)

Equations (1) and (16) are the reduced equations of the system.

Since H is not unique, the reduced equations of the system are not
unique in form. Consequently, for the reduced system, a variety of
representations are possible.

Example 2. In example 1, let the orthogonal complement of C
be specified by _
1 -1 0 0 -1
H= . 1m
-1 =1 =-rsin¢ rcoso¢ 0
Then the reduced equations are
(Bmk2+2mr2) ¢ =0
Yt é= grsin fsin ¢ (18)

RZ+r?
On the other hand, if H has the form
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Fig. 4 Wheel on a plane

2 2 rsin Co! -1
H= ¢ rcos¢
-1 ~1
Then Kane’s equations of motion (see reference [1]) result.
The computation of H may be eased by a variety of transformations.
Suppose in equation (4) both sides are multiplied by I™*

Z+11g(22)=I"1CTT + "' WU

. (19)
—rsin¢ rcos¢ 0

(20)

Now H may be selected to correspond to the orthogonal complement
of (CI™HT. ,
Alternatively, let T(Z) be an r X r nonsingular transformation. Let

the equations of constraint be premultiplied by T'
TCZ+TG=C1Z+G = (21)

Computation of H as well as computation of the forces of constraint
may be eased by the choice of T'.

Example 3. Inexample 1, the transformation
1 00
T=|—-sing 2 0
—-cos¢p 0 2

was applied to Kane’s equations of constraint (see reference [1,
equations (23, 25)]) which resulted in considerable simplification of
the Lagrangian derivation.

Finally, if it is a priori known that certain constraints can never be
violated, one may use part of H to eliminate only the corresponding
forces of constraint and retain others.

While the derivation of Kane [1} is physically based and relies on '

D’Alembert’s law, the derivation here is mathematically based and
relies on the Lagrangian method. The latter allows manipulation of
the computations by choice of matrices H and 7'

4 The Control Problem

With the foregoing discussion, a dynamic system is represented by
equations (1) and (11). The control of dynamic systems with hard
holonomic constraints is discussed in [9, 10]. Here the control of sys-
tems with soft nonholonomic constraints are considered. For these
systems, one must specify input reference signals V and feedback
laws

U=U(X,V) (22)

such that two major control problems can be solved.

1 The trajectory of the constrained motion is modified, while the
constraint is maintained.

2 A transition is made from constrained motion to unconstrained
motion and vice versa.

If the system had no constraints whatsoever, classical state variables
or optimal control would be utilized. For maintaining the constraint,
essentially two approaches are available:

1 One designs the control system such that the motion remains
in the constrained subspace [9].

Journal of Applied Mechanics
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Fig. 5 Friction force versus relative velocity
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Fig. 6 Signal-flow graph
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Fig. 7 Specified velocities for example

2 One indirectly controls the forces of constraint I', maintaining
the constraint {10].

To be more specific, the second approach is applied to the control
of a wheel in the following example.

Example 4. Consider a wheel [12, 13] of radius r, mass m, and
moment of inertia J, on a place with both static and sliding friction
as shown in Fig. 4. The inputs are the forces f1 and f2 and the torque
7. The forces at the point of contact are the vertical reaction force fv
and the friction force fy, which is assumed to be a function of the
relative velocity (rf) — ). An example is shown in Fig. 5, and in this
case equation (10) reduces to

frr = ufosgn (0 ~ %) (23)
where p is the coefficient of friction.
If the wheel is in contact with the plane,
y=r (24)
and
fv=Fa (25)
The equations of motion (4) then become
mi = f1 + fu (26)
Jo =7 —rfy @n

and can be represented by the signal-flow graph of Fig. 6. A dotted
line is used to represent the functional relationship of equation (23).
When the wheel rolls without slipping, fi can assume any value be-
tween —pufz and +ufz in order to make % = ré.

If % and 0 are specified as functions of time, it is possxble to find f1
and 7 as follows. The required accelerations £ and f can be found by .
differentiating the specified velocities. Then from equations (26) and
27
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Fig. 8 Calculation of f; and T

fi=m& —fg (28)

r=J0+rfu (29)

Three cases must be considered in order to find the value of f to be
used in equations (28) and (29).

Case I. If # = rf, the wheel rolls without slipping, and fi may
have any value between —ufs and +pufs.

Case II. If % < rf), the wheel must slip, and fy = +pufe.

Case IIL.  If & > rf), the wheel must slip, and fy = —pufs.

This procedure can be illustrated by letting m = J = r = 1 for
simplicity and calculating f; and 7 for the velocities % and § in Fig. 7.
This calculation is shown in Fig. 8. The maximum absolute value of
fu was assumed to be 0.5, and fzr was assumed to be zero when there
‘was no slipping.

Feedback can be used to produce the required values of f; and 7
from the commanded values %, and 8. A simple feedback scheme is
shown in Fig. 9, where K and K, are large values of gain.

If the system in Fig. 9 is linearized by assuming viscous friction
between the wheel and the plane, the dotted line may be replaced by
a branch of gain k. The four transfer functions then are

_ K, (Jp + krZ2 + Kyp)
. mdp2+ (kJ+Ekmr2+ K,J+ Kem)p + kKg + kr2 K. + KKy

| =

0 _ Kymp + k+ Ky)
0, mdp?+ (kd + kmr2 + K,J + Kgm)p + kKg + kr2 K, + K. K
.X.: -_—
.
ngr
mdp? + (kJ + kmr? + K, J + Kem)p + kKy + kr2 Ky + K.Ko
B, K. kr

i mdp2+ (RS + kmr2+ K. J + Kgm)p + kKy + kr2 K, + K, K,

If k, K,, and Kj are positive, all the poles of these transfer functions
will be in the left half plane, and stability is assured.

Since the signal-flow graph of Fig. 9 contains a single nonlinearity,
stability can be shown without the assumption of linear friction. If
the inputs %, and 8, are set equal to zero, the linear portion of Fig. 9
may be reduced to a single branch G(p) as shown in Fig. 10.

where )
1 + r2 1+ r2+ (K,mr2+ KeJ)p
1+ Kmp 1+ KgJp 1+ K,mp)(1 + KyJp)
(30)

Gp) =

G (p) has two poles and one zero, all of which are real and negative.
'Furthermore, the zero is between the two poles, and the phase angle
of the frequency response G (jw) lies between 0 and —90° for all pos-
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Polar sketch of G{(jw)

itive values of w. A sketch of G (jw) is shown in Fig. 11. Since G (jw)
lies entirely in the right half plane and k, the equivalent gain of the
nonlinearity, varies from 0 to +«, the system is seen to be stable by
Popov’s criterion.

5 Impulsive Inputs
Consider the system of equations (4) and (6) in state space form
Z=27
Z=I"1[-g(Z,2)+CTT (2, 2,U) + WU|
Suppose the system is under constrained motion. If U or components
of U are impulsive or have impulsive components at time ¢, certain
components of I are also impulsive from equation (6). Both of these
impulses in U and T" enter in equation (31) explicitly. If equation (31)
is intergrated, the instantaneous changes in velocities can be com-
puted

(31)

AZ=Z(@hH-Z (D) (32)

Example 5. Suppose the wheel in Example 4 is suddenly

‘subjected to an impulsive input force f; = 6(¢ — ¢1). This immediately

violates the constraint that # = rf. Consequently, the system imme-
diately (even through the application of impulse) loses the constraint
and would be governed by equations (26). If the input torque 7 is
impulsive, the same argument holds, and the constraint is violated.
If both f1 and 7 are impulsive at the same instant, and their ratio is
such that fy in equation (28) does not have any impulsive component,
the constraint is not violated, and the wheel rolls without slipping.
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Fig. 12 A rod sliding down a vertical wall

Examples 6. Sliding movement of a rod down a wall from Kane
[2, pp. 219-222].

Consider movement of a rod (Fig. 12) under the force of gravity and
input force f and input torque 7. There is no friction and the rod slides
down. At the instant that the rod leaves the wall, external impulsive

force f and torque T are applied to reverse the direction of motion, so
that the rod starts sliding up the wall with prescribed velocity.

Let the weight, length, and the movement of inertia of the rod be,
respectively, 2m, 4L and (8m/3) L2 Let the generalized coordinates
of the system be Z = [, y, 8].T This is a‘holonomic system and the two
constraints are

y—2L,cosf =0

. (33)
x—2L,sinf =0

[v1, v2} T. Following
[Z,Z]T. The equa-

Let the corresponding forces of constraint be I' =
the approach just presented, and in [9] with X =
tions of motion are

Z=2
1
o (=v2—fx)
1
=——(=v1—2mg —fy) (34)
2m
3 —— (7 + 2L [ 2L sin 87vy7)
i
BmL? T cos fyg — 2L sin vy,
or in summary
X=FX;T,U) (35)

The constraint forces become the following functions of the state and
the input:

v1=4mL#2 cos § — ( 2g fy) (1 + 3 cos26)

. 3
—-23m0cos0fx+8—ZTsin0 (36)

Yo = 4mLO2sin 6 — ( P fi,) 3 sinf cos

g
—1(1+3sin28) fx —— 7 cos 8
| i f 3L
For the constraints to be satisfied, both 1 and.y2 must be nega-
tive.

Case 1. Sliding Down. Suppose only the force of gravity is
active, matrix H of equation (11) is
H = [2L cos f — 2L sin § 1] (37)

Following step of equation (12) and differentiating equations (33)
twice one obtains
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.3
=—£sin0

38
8L (38)
The rod leaves the wall when o = 0 or

. 3

P = S—i cos § (39)

Case 2. Sliding Up. It is desired to apply inpulsive force f and
torque 7 at the instant that the rod leaves the wall in order to reverse
the movement’s direction, but with, say, one half of the downward
velocity.

From equation (36) it is obvious that one cannot do this with an
impulsive torque 7 alone. The impulsive torque 7 must be negative,
but then 2 becomes positive—a violation of constraint. Therefore
at least a positive impulsive force fx is additionally necessary. Letting
fx and 7 be the amplitudes (positive or negative) of the impulses, from
equation (36)

3
—-§(1+33in20)fx—8—LTcos0<0

(40)

/ >—3 cos 0
x> —————
2L 1+ 3sin%f

Let equation (40) be satisfied. Equation (36) can be used to derive
the impulsive components of I'. The result is substituted in equation
(34) and integrated to derive

3
—3cos2f —cosf
8L

3sinfcosf -3 0|/
————— ——3in

4 8L *
—2L cos @ 2Lsinf 7t

4 4

Z(tY) - Z(t~) =11 (41)

From the requirement that the velocity of the upward motion be
1 of that of the downward motion one derives

—3L0 cos §
Zity—Z@¢~)y =\ 8Lfsind (42)
~1.50
From (41) and (42) fx and 7 are related by
3 - ,
—3cos B fx +§ZT =6L0m (43)
Let the following equality be substituted for equation (40)
2  cosf
=t 44
fx L1+ 3sin? 0 (44)

Then (43) and (44) can be solved for 7 and fx. It also becomes ap-
parent that the solution is not unique.

Impulse forces may also arise [4, 8] when the system is subjected
to additional surfaces of constraint, not accounted for in equation (1).
The approach here can also be extended to such systems. Further
discussion of this point is found in Kane [2, p. 228]. Also an example
when the foot of a walking biped kicks a rigid stationary obstacle is
given in [14].

6 Conclusions

A model of a class of nonholonomically constrained dynamic sys-
tems is developed where the forces of constraint are explicit functions
of the state and inputs. This model is useful in cases where the con-
straints may be violated and imposed at will.

A reduction of dimensionality method was discussed that is an al-
ternative method to the method of generalized active forces and
moments provided by Kane. As a matter of fact, it is a Lagrangian
interpretation of Kane’s results. It also shows that the representations
of reduced systems are not unique in form. Some other uses can be
cited:
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1 The approach here may be used as a checking mechanism to
prevent human error in the deriving equations of motion.

2 With a priori knowledge that certain constraints can never be
violated, one may use this method to eliminate only the corresponding
forces of constraint. ’

3 For large dimensional systems where computers may be used
to derive equations of motion [15], it may facilitate and formalize
Kane’s method.

An example with Coulomb friction force was discussed in order to
reduce the control of nonholonomic systems to that of holonomic
systems and control and stability were considered.

Finally, one application of the model in analysis of systems with

. impulsive inputs was demonstrated for a holonomically constrained
system.
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The postcritical behavior and stability distribution on the equilibrium paths emanating
from a divergence point associated with an autonomous system are studied within a state-
space formulation. The analysis concerning the stability of equilibrium paths is based on
the eigenvalues of the Jacobian evaluated at arbitrary equilibrium points in the vicinity
of a critical point. Explicit conditions of stability and instability concerning the initial
and postceritical paths are obtained through a perturbation approach. It is shown that at
an asymmetric point of bifurcation an exchange of stabilities between two paths occurs
in complete analogy with conservative systems. Similarly, a symmetric point of bifurca-
tion involves a postcritical path which is totally stable (unstable) if the initial path is un-

stable (stable).

1 Introduction

The stability of an equilibrium state associated with gradient sys-
tems can be studied on the basis of the extremum properties of a po-
tential function. In the analysis of elastic conservative systems, for
example, the “energy criterion” provides a powerful means for this
purpose|[1]. In the case of nongradient systems, however, the conve-
nience of basing the formulation and analysis on a well-behaved po-
tential function is lost, and other methods have to be adopted.

The postcritical behavior of nongradient systems has been studied
by a number of authors. Plaut [ 2, 3], for example, analyzed the di-
vergence behavior of a discrete nonconservative mechanical system
statically by setting the frequency to zero in Lagrange’s equations and
assuming that the system exhibits a trivial fundamental equilibrium
path. Mass distribution and dissipation are not incorporated in this
analysis, and the author remarks in his conclusions [3] that stability
cannot be studied in general terms. In other investigations [4, 5], a
more general approach, involving a set of first-order autonomous
differential equations, is adopted. In this approach both gradient and
nongradient systems are covered under the same formulation which
is capable of yielding information on dynamic behavior as well as di-
vergence. Since the Lagrangian equations can be transformed into
first-order state equations with a simple transformation of variables
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without losing information (é.g., mass distribution and dissipation),
the method seems to be quite comprehensive.

The attention in references [4, 5], however, is focussed on the critical
conditions and the equilibrium solutions rather than their stability.
In fact, an analysis concerning the stability of equilibrium states would
have been rather cumbersome if not impossible under the formulation
of [4, 5]. In this paper, a further transformation is introduced which
facilitates the stability analysis, and enables one to explore the sta-
bility distribution on the initial and postcritical paths explicitly on
a comparative basis.

2 Bifurcating Stationary Solutions
Consider an autonomous dynamical system represented by the
first-order differential equations

dy/dt = Y(y, \) )

where y is the state vector of n-components in the Euclidean space
E, and A is an independent real scalar parameter. The nonlinear
vector function Y is assumed to be real analytic in the state variables
yi(i=1,2,... n) and X in a region (R) of interest. The equilibrium
states of the system are described by the stationary solutions of

(1)’
Yy, M) =0 @)

Normally, the set of nonlinear equations (2) defines certain equilib-
rium paths which are one-dimensional manifolds of the n + 1 di-
mensional state-space E, 4 spanned by yi(i = 1,2,...,n) and A,
Without loss of generality, suppose an initially stable path emerges
from the origin of E, 41, it is assumed that all the eigenvalues of the
Jacobian matrix evaluated on this path have negative real parts in this
neighborhood. As A is increased, a critical point on the path may be
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reached where the real part of at least a pair of complex eigenvalues
vanishes and, with a further increase in A, becomes positive, resulting
in an oscillatory instability (flutter). At the onset of flutter instability,
the system may bifurcate into limit cycles which will not be analyzed
in this paper (Hopf bifurcation). Another type of instability occurs
when at least one real eigenvalue of the Jacobian vanishes at a critical
point and becomes positive with a further increase in A (divergence
instability). This phenormenon has been explored in [4, 5] with regard
to coincident as well as simple critical points, and various equilibrium
path configurations in the vicinity of a critical divergence point are
obtained systematically through a convenient perturbation procedure
which yields asymptotic results. In order to examine the stability of
the equilibrium paths emanating from a critical point, however, a
more appropriate formulation has to be introduced to facilitate the
analysis.

Let the initial path have a critical divergence point on it in the re-
gion of interest (R), and be expressed in the form y = f(A\) where the
vector function f is assumed to be single-valued in the neighborhood
of the critical point. A coordinate system y can then be attached to
the initial path by the relation

y=f0) +7. @)
Substituting (3) into (1), one obtains
dy/dt = Y (%, \) @
with the properties

YO, N=Y0ON=Y0N=...=0 (5)

which arise [1] from the derivation of (4). Here and in the sequel the
primes on the functions are used to denote partial differentiation with
respect to the parameter. It is understood that the assumption
underlying the transformation (3) excludes the limit points from the
analysis; see [4]. A further transformation

y = Px, (6)

will be introduced into (4) to obtain

dxfdt = X(x, \) (7

such that its Jacobian matrix

2
ox |e

evaluated at the critical point ¢(A = A;) is in the canonical form
J = diag [D, K3, K5, ... ] 8)
with real elements. Here

0 0
0, (23]

D=

K, = [ar _ﬁr

ﬂr (243
in which a2 < 0, ar <0, and the K, correspond to complex conjugaté
eigenvalues (o % i3;). The block D is chosen here as a 2 X 2 matrix
solely for its simplicity and to avoid another subscript for real ei-
genvalues without loss of generality. In fact there can be m (2, 3, 4,
B, . ) nonvanishing real eigenvalues, a,, < 0, which would have no
essential effect on the following analysis. It can readily be seen that
the properties (5) are carried over to the vector function X, and one
has

], r=(3,5,...) 9)

- X@O,N)=X'0,)=X"(0; ) =... =0. (10)

Consider now a transformation of the form (6) but with a matrix

P = P()\) such that, when X varies in the neighborhood of A = A, the
canonical form (8) of the Jacobian along the initial path f()) is pre-
served. In other words, for each value of A in the vicinity of A = A, an
appropriate transformation matrix P()) is formed in such a way that
the Jacobian matrix [0X/dx] evaluated on the initial path has the
block-diagnoal form of (8) with D always diagonal:
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" () 0 .
0
0 ag(N)
oX o e
o ag(A)  —B(N) (11)
0 0
_____ BN asN) L ___]
s 0 Lo
where a1(Ac) = 0, and the oy (¢t = 2, 3, ...) remain negative in thig
neighborhood.

It follows that all the off-block-diagonal elements and their deriv-
atives with respect to A vanish along the initial path. This property
will facilitate the stability analysis and will be used in the following
sections. Thus, if the Jacobian is denoted by X;;(x*, \) one has for
example,

X0, A) = X;;(0, ) = X500, \)=... 0 for
where

P
i=1,2. (12)

Similar properties can be expressed for the remaining blocks on the
diagonal.

Stationary solutions of (7) satisfy X (x, A) = 0 which can also be
expressed as

Xi(xi, Ny =0. (13)

The formulation assumes that x¢ = 0 is the initial equilibrium path,
and the other possible paths in the vicinity of A = A are sought in the
parametric form :

x=x(0), A=2A(0). (14)

The scalar parameter o is chosen such that the functions in (14) are
single-valued in ¢ and can be expanded into power series around the
point ¢. Introducing (14) into (13) one obtains the identities

X[x(c), \M(a)] =0 i (15)

which can be used to generate asymptotic solutions intrinsically by
successive differentiations. Thus the first, second, and third-order
perturbations yield

3 Xkl + 20X;h = 0, - (18)
Vi Xikiik + 20;0X i N + 0, Xk + 000 X; (W2 + 20X K =0 (17)
and

djmXitiikil + 300X Ik A + 305, X805k
+ 3000 X;4 7/ (A)2 + 30,0X£/ A + 300X\
+ 9 Xii) + 3000 XA X + 000X (A)3 + XA =0 (18)

where the dots denote differentiation with respect to the parameter
g, the operators 9y, 9j, 9j0, ete., indicate differentiation with respect
to A, x4, x/, and A, ete., respectively, and summation convention is
adopted.

If the arc length of the equilibrium path (14), measured from the
critical point ¢ is used as the parameter o, the analysis is simplified
considerably. The unit tangent vector of the path (14) at ¢ is then
given by (n + 1) components % and A, satisfying the relation

EV2+ @ED2+. .+ @2+ ()2 =1 (19)

Equations (16)—(19) will now be used to explore the properties of
the posteritical path(s) in the vicinity of ¢. Evaluating (16} at ¢ with
the aid of (10) and (11) yields

#2=0, #°=0 (s=3,4,...n) (20)
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Similarly, evaluation (17) with the aid of (10), (11), and (20) results

£1=0 A= (=X1/2X 1)t (21)
i2=0 £2 = (= Xon/ax) (2 1)? (22)
or
. ar  ~B[x" Xan
ir = gril=g - — 2 1)2 93
B B, Dlr] £t X411] @hry 28
(r=385,..)

where the derivatives of X; evaluated at the critical point ¢ are indi-
cated by the obvious notation [0 X;]. = Xy, [9j0Xi]c = X}, ete.,
‘and it is assumed that X}, 0 (see [1] for a discussion of the case X},
= ( associated with conservative systems).
" The solution of these equations give the initial and posteritical

paths asymptotically. The former path is thus defined.by
xl=x2=x8=,., =0 (24)

as expected, and the latter is obtained upon setting o = x! and using
A=A+ @, as

_ 11X,
Qo=—=——x
2 X1y

1X
x2=— =2y a Spop1)e

2 wy
1o, X+ 63X 1

= — 1o, X+ B Xeenu (x1)2 2 = =g, (x1)2 (25)
2 (ar)2 + (5r)2 2
ol = lw(ﬂ)z A la,ﬂ(xl)z

2 ()2 + (ﬂr)2 2

where r = 3,5....Itis clear that allowing for more real eigenvalues
am, (m = 2,3,...) would simply result in more equations of the type
shown on the second line in equation (25), in effect replacing sub-
scripts and superscripts 2 by m.

Equation (25) defines the postdivergence path which intersects the
initial path at the critical point c. It is seen that the critical point is
an “asymmetric point of bifurcation” in complete analogy with gra-
dient systems [1, 5].

It may turn out that certain key coefficient(s) vanish at ¢ and, in
fact, (25) indicates that if X111 = 0, one will have to resort to further
perturbations in order to obtain the first-order equations of the
posteritical path. To this end, evaluate the third-order perturbation
equation (18) at the critical point ¢, with the aid of X111 = 0, to obtain
the second derivative

X121 X
g 2121821

) 1
MiER) = = — | X111 — — 8X1p10,| & -
11( ) 3X11 1111 1s1Q; ag

(£

where s = 3,4, ... n. This second derivative can be expressed in the
more compact form

1
All-_-.—a0=———-[X1111—3X1t1at], t= 2, 3,4,... n.

3X1
(26)

Using this derivative, the first-order equations of the postcritical path
are expressed as

¢=- % ao{x")?
@7

1
xt= —'2“0:(761)2 t=23,...n)
which represent a space curve in the state-space (¢ — x I) intersecting
the fundamental path at A = A, and having a slope A = 0. It is recog-
nized again, in complete analogy with gradient systems, that the
critical point ¢ is now a symmetric point of bifurcation. It also follows
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that postcritical equilibrium states exist either for A > A, or A <A,
only.

3 Stability Distribution on the Equilibrium Paths

In order to examine the stability of the equilibrium states on the
initial and postcritical paths, consider the expansion of X;(x/, A) into
Taylor series around the critical point A = X,

oX;| . X
Xi=— x/+= A=A
ox/ |e A e
1 OZX,'l . a2X,-| ,
—— Jxk +— IN=N)+... (28
befbxklcxx bxfb)\'cx( =) 28)

The Jacobian of a given equilibrium state in the vicinity of the
critical point can then be expressed in the general form

an,' =Xij+Xijkxk+X;-jtp +..., (29)

and the evaluation of (29) on the initial and postcritical paths inter-
secting at the critical point ¢ yields information about the stability
of these paths. Thus, evaluating (29) on the initial path, which is
identified by x¢ = 0, by using the canonical form of X;; and keeping
to first-order approximations, one observes that the eigenvalues of
the Jacobian are uncoupled for each block and that those associated
with the complex conjugate blocks of X;; continue to have negative
real parts (this was in fact assumed in the beginning) for sufficiently
small ¢. On the other hand, the eigenvalues associated with the di-
agonal block can be obtained from

00 ]+[X'u O/ ]4p
0 [37) 0 X22
as (X11¢) and (g + Xonep). The latter obviously remains negative for
sufficiently small ¢, and one has the following stability criterion for
the initial path in the vicinity of A = A.;

[0jXi]si=0 = (30)

‘stable

X'ugofo for critical } equilibrium. (31)

unstable

In practical situations, as emphasized earlier a; < 0 for A <A, and
ay > 0for A > A while a; = 0 for A = A, (which means X3; > 0) and
the criterion (31) simply expresses the fact that the initial path is
stable (unstable) for ¢ <0 (¢ > 0). Note, however, that the criterion
(31) remains valid if the reverse situtation occurs, an unstable path
gaining stability upon passing through the critical point.

Next, suppose the critical point is an asymmetric point of bifur-
cation, and evaluate the Jacobian (29) on the posteritical path (25).
Thus substituting for x¢ and x! yields '

[0 Xilpep = Xij + Xipt(—2X 10/ X1e) + Xijo + 0 () + . ..

in which (2 X 2) blocks are no longer in the uncoupled form as in the
case of initial path. At the critical point ¢ = 0, the eigenvalues of the
Jacobian are of course the same as before and it is assumed that the
vanishing eigenvalue a1 = a1(p) (a1 = 0, for ¢ = 0) can be expanded
into power series in the vicinity of the critical point while oz and o,
%+ i3, stay away from zero and preserve their qualitative properties.
Expressing a;(p) as

a1

, _d
where o, = o
@ le=0

a;=0+aje+...

which describes the variation of «; along the postcritical path, one
can obtain ¢} by differentiating the determinant of the Jacobian with

respect to . To this end, consider the characteristic equation
|9;X; = al| =0 (32)

If @ is a root, it should stasify (32), and differentiating by columns
and evaluating at ¢ = 0 one observes that all determinants except the
leading one vanish identically, resulting in

MARCH 1981, VOL. 48 / 185

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Xu+ X111(—2/X'11X111) -0 0 0 0
0+ Xo11(—2X11/X111) az—0 0 0
O+......... 0 az—0 —f3
............ . 0 ,33 g — 0
=0 (83)
which yields
o=~ Xy (34)
It follows that the eigenvalue a1(@) can be expressed as
oy =Xue+ 0@ +. .., (35)

and in the vicinity of ¢ = 0 (or A = ;) one has the following stability
criterion associated with the postcritical path:

stable

X10Z0 for critical }equilibirum. (36)

unstable

If X7, > 0, the posteritical path is unstable for ¢ < 0 and gains
stability upon passing through the critical point A = A; in contrast
with the initial path. More generally, the criteria (31) and (36) reveal
that an exchange of stabilities occurs at an asymmetric point of bi-
furcation in complete analogy with gradient systems.

Finally, consider the symmetric point of bifurcation and the
postceritical path (27). In this case, the Jacobian (29) can be expressed
as

(0 Xi)p.op = Xij + Xijnx ' + X (x )2 + Xyje(—3a, (x1)?)

+ Xii(—kzox )2 +... (37
and the eigenvalue a;(x1), along the postcritical path, as
a1 =0+ agxt + 3o (xh)2 +.
where
oy = di , etc.
dx1|x1=0
If a1(x1) is an eigenvalue of the Jacobian (37) it satisfies
19;X; — ol = (38)

and the first differentiation with respect to x! yields, upon evaluation
atp=x1=0,

0- » 11 0 0 0
Xon az—0 0 0
| Xau1 0 ag P =0 (39)
X 0 B3 as
resulting in
01,1 = 0. (40)

The second differentiation of (38) involves several determinants
which upon evaluation at critical point and using (40) yields, after
some algebra (see the Appendix),

ar11 = Xy — 8X11ea: — X160 41)
where a; and ag are as defined in (25) and ¢t = 2, 3,4, ... n.
In view of (26), however, a1,11 can be expressed as
o111 = 2X a0
where
ap= 3X 11(X1111 3X1110:) (42)
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and it follows that

] = X/ua()(xl)z +... (43)

The stability criterion for the symmetric postcritical path is then
given by

stable

X0 % 0 for critical } equilibrium (44)

unstable

In other words if we assume X7; > 0 as before and the postcritical
path (27) exists for ¢ > 0, then a < 0, and the postcritical path is
stable. On the other hand, if the postcritical path exists for ¢ <0, then
ao > 0 and the path is unstable. More generally, comparing (31) and
(44) in conjunction with (27), one observes that the posteritical path
is totally stable (unstable) for all ¢ > 0 or ¢ < 0if the initial path
is unstable (stable) for the same range of ¢.

It is understood that the stability criterion in (44) is intended for
a direct comparision with (31), and it can also be written as

stable

(X1111 — 3X1010,) S0 for critical ¢ equilibrium

unstable

which is independent of the parameter ¢.

4 Discussion

It was assumed that all the eigenvalues of the Jacobian matrix on
the initial path have negative real parts initially, and the stability is
lost at a critical point where a real eigenvalue vanishes. This eigen-
value becomes positive upon passing through zero while the remaining
eigenvalues maintain their character, and continue to have negative
real parts,

If the equilibrium equations (25) and the stability criteria are ex-
amined, however, it is noted that the analysis and the results would
still be valid if the real parts of some of the complex conjugate ei-
genvalues were zero and remained so in the vieinity of the eritical point
along the initial path as a real eigenvalue goes through zero. Here it
is of course assumed that the imaginary parts are not repeated or the
multiplicity of a repeated root is equal to its index [6] and nonlinear
terms do not change stability characteristics. In some problems, all
the eigenvalues can be imaginery, 0, as in the case of conservative
systems, and the stability is lost when at least a pair goes through zero.
The postcritical behavior in this case as well as in the case of multiple
zeros has been studied in reference [5].

It was noted earlier that the formulation in this paper excludes limit
points from the analyses automatically. It can be shown [7], however,
that if the equilibrium states are stable on one side of a limit point
they have to be unstable on the other side.
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APPENDIX B AR Z

In order to derive the second derivative (41) of the vanishing ei-

genvalue a1{x1), the determinant (38) is differentiated by columns 0 0 Xz O
with respect to x! for a second time and evaluated at the critical point Xon 1273 Xom O
z1 = 0. Upon using (40), this operation yields + | Xan 0 X3z —Ps
, ’ Xann 0 X a3
Xun — Xmar — Xneo— a1 o o o
Xoann — Xoneae a0 0
X311 = Xanae 0 as  —fB3 .
0 0 0 X
X111 — Xana 0 B o . 141
U URTURRY UV X @ 0 Xou
+ Xan O og X341
0 Xm0 o T LD e
Xon Xom 0 0 .
+ | Xan X391 o3 ~B3 . +...=0
Xin Xan Bs a3
............................... which results in
0 0 X131 0 . , X191 X011
Xoi1 g Xom 0 . o111 = X1 ~ Xieae — Xnao— ZL;Z‘"
+ | Xm 0 Xast =Bz .
X1 0 X s . ' _me(w)
.............................. of + 83
—9X o3 X411 — B3 X511 _
0 0 0 X . m of + B3
Xon o2 0 Xon .
+ | Xsn 0 ag Xaq1 . Recognizing the definitions in (25), the fact that X1, = X1y, for
X 0 B3 Xan . anyt =2,3,...,and generalizing the summations lead to the deriv-
........ e v ative (41).
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A Procedure to Generate
Liapunov Functional for
Distributed Parameter Systems

M. Seetharam Bhat! and S. K. Shrivastava?

Introduction

Liapunov’s theory of stability [1] has become an important tool in
the analysis of dynamical systems described by ordinary linear and
nonlinear differential equations. Extensions to systems represented
by a class of partial linear and nonlinear differential equations are also
made [2-4, et al.]. For a general case of distributed parameter system,
difficulties may be encountered in obtaining a Liapunov functional.
Parks and Prichard [5], and Mockaitis [6] present some approaches
to deal with the problem.

This paper gives a guideline for finding Liapunov functional for
distributed parameter systems, represented by partial differential

equations, based on the work of Schultz and Gibson [7] on lumped -

parameter systems. Two examples are also included to demonstrate
applicability of the method.

Preliminaries .

Let Q be a bounded open domain in m-dimensional x-space and
of) be its boundary. Let the system under consideration be described
on the space-time domain @ X T by the following general vector
partial differential equation:

Mu; = au(x, t) (1)

where u(x, t) is a n-dimensional vector, u € H", representing the
physical variables of the system. Subscript ¢ denotes partial derivative
with respect to time. Mis a n X n symmetric, invertible, time-invariant
matrix operator. & is a n X n linear or nonlinear spatial differential
operator defined on Q. H" is a Cartesian product of r real Hilbert
spaces over the spatial domain H® = HyxHox.. . .H,, in which the
inner product is defined by
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n
(w,vdgn= ¥ (uyvidp;; wve H? @)
i=
and the norm is induced by (2). The inner product between a(x, t) €
H; and b(x, t)e H; is given by

(a,b) = j;enwbdx ®)

Assume that the solution to equation (1) with a set of initial and
boundary data exists. The equilibrium state of the system with ho-
mogeneous boundary conditions is trivial for a linear system and it
is nontrivial for nonlinear systems. With nonhomogeneous boundary
conditions, a number of equilibrium states can exist for a nonlinear
system. Here we wish to study the stability in the neighborhood of
equilibrium or null solution (s) via Liapunov’s direct method.

Liapunov’s theorem for asymptotic stability may be stated as fol-
.ows [4]:

Suppose there exists a functional J{u(x, t)] = V(t), differentiable"
(Frechet) in ¢ along u(x, t) such that J[0] = 0, and

() Julx, t)] = V(¢) is positive-definite, that there exists a con-
tinuous nondecreasing function 8 such that 31(0) = 0 for all ¢ and all
u(x, t) # 0,0 <B1(e(t)) < V(t); (po(t) c H™);

(i1) 'The derivative V(t) is negative-semidefinite, i.e., there ex-
ists ay(t) such that ¥(0) = 0 and for all t > O and u(x, t) = 0, V(t) <
= v(p(t)) £ 0;

({ii) There exists a continuous nondecreasing scalar functional

" B2 such that 32(0) = 0 for all ¢ and V(t) < Ba(p(t));

(i) PBip) — = as p— =, then the equilibrium solution of equation
(1) is asymptotically stable. The functional V(t) is called “Liapunov
functional.”

Formulation of Liapunov Functional
We develop a procedure to obtain a Liapunov functional V as well
as its derivative V, which may be used directly to establish stability.
The procedure essentially extends the “variable gradient method,”
developed for autonomous ordinary differential equations by Schultz
and Gibson [7], to a distributed parameter system. We can rewrite
equation (1) as
dufx, t)
ot
where A = M~ 1.
We assume that the null solution u = 8 exists and VV(6) is equal to

zero. Then the gradient in the vicinity of the null solution is given
by

= Au(x,t); ue H* te T, xeQ (4)

WV = WV(9) + (VW (u)) Tu.= G(u) Tu (5
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The operator G(u) is similar to the Hessian of the functional V. The
Liapunov functional can be obtained from the path integral of the
assumed gradient function (5) as

V(u) = (VV(u) - u)pn = f VV(u) Tuds ®)

The time derivative of the Liapunov functional along the equation
of motion is given by

V(u) = (VV(u) - tygn = (VV(u) - Audgn

= fuTN Tuds ’ N

where N = G(u)A(u).

The path integral of VV to obtain V and V will be path-independent,
if G(u) is symmetric [8]. This is equivalent to the curl condition in finite
dimensional systems. The unknown operator G(u) is determined by
(a) using symmetry or “curl” condition and (b) making functional
V(u) at least negative semidefinite. To check the semidefiniteness of
the functional V(u), the integral inequalities [9] can be used. Then
the stability of the distributed parameter system is insured by
checking the positive-definiteness of the Liapunov functional.

To summarize, the procedure is as follows:

1 Assume the gradient VV in the form of (5).

2 Use symmetry conditions on G(u).

3 Obtain the functional V and make V at least negative-definite.
Obtain N = G (u)A(u) and make the off-diagonal elements of N an-
tisymmetric and thus determine all the unknowns in G(u).

4  Obtain the Liapunov functional V and check for sign definite-
ness.

THustrations

To demonstrate the applicability of the approach to a general class
of problems, we shall now consider two examples.

1 Turbluence. Let us consider Berger’s linear model of tur-
bulence given by [10]:

D2y

T+u——u,=0; 0<x=<1, ueRY tel0 =),
Di= difox? (8)
and associated boundary conditions are v
u(0,t) =u(l,t)=0 9)

while R is a positive parameter which may be varied at will. The
equation can be rewritten as

D2
ut=—RE+u; weRY, zel0,1], telo,=)  (10)
u = 0 is the equilibrium state of the system. Assume VV(u) = u; from
(6)-(8)
1 1
V= J; IV - udx = f u2dx (11)
Jo
. 1 D2
V= f u-(———ﬁ+u)dx (12)
0 R
Using (8), (9), and (12)
) 1
V= J; u?(R — w2)/Rdx. (13)

From (11) one can see that the Liapunov functional is positive-defi-
nite. If R < 72, V is negative-definite and hence the system will be
asymptotically stable. For R > 72, it will be unstable.

2 Whirling Motion of a Viscoelastic Continuous Shaft. The
equations of motion in a coordinate system rotating at a constant rate
Q with the shaft are [11]
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m(x)um + 2Cuu + 2Quz¢. - Q2u1 7
+ D%(p(x)D?%u1) + D¥q(x)D2%uy) = 0

m(x)uggs + 2Cug — 2Quye — Q2%uy
+ D(p(x)D%u;) + D¥q(x)D%ug) = 0

m(x) >0, pxx)>0, qx)>0, C=0, 9>0,

2 e [0,1], te [0, ) (14)
and the associated boundary conditions are
u1(0, t) = u2(0, t) = Duy(0, t) = Dus(0,t) = 0
D2uy(1,t) = D2uy(1,£t) =0
D(p(x)D%u1(1, 1)) = D(p(x)D2us(1, t)) = 0

For simplicity we shall assume m, p, ¢ to be constant throughout the
shaft. The equations can be written as

0 0 m 0 Ui
1| o 0 0 m s
“Tmlee-ppr 0 —c-gpt —20 || us
0 Q% — pD4 2Q —2C — ¢D4 ] uq4

(15)

where us = uy;, ug = ug. Following the suggested procedure (section,
“ Formulation of Liapunov Functional,”), with a judical choice of G
and some effort, the gradient vector is found to be

-92111 + (20 + p)D4u1 + qD4u1D4 + mD4u3
1 [-9%qs + (2C + p)D4ug + qD*ueD* + mDU,

VWV =— (16)
2m | mD%uy + mus
mD4us + muy
From equations (7), (15), and (16) after simplification,
. 1 1
V== [0+ uad) + (g - 2m) (D) + (D%0?)
m
+ (D2%uy + QD2%uq)2 + (D2ug — QD%ug)? + p((D4uy1)?
+ (D4ug)?))dx  (17)

It is negative-definite if ¢ > 2m. From equation (6) and (16), Liapunov
functional is

V= L fl [92(u12 + u2®) + (2C + p)((D2u1)? + (D%ug)?)
2m Jo

+ q((D%u1)? + (D4ug)?) + m(us? + uqg?)

+ m{((D2%u,)? + (D2u3)?),]dx (18)
Using integral inequalities [9],
Ve 51;{ j;l [(wi? + us?)(—Q2 + 74(2C + p) + 7)
+ mug? + usg?) + 2im(ua? + w2? + us?]dx - (19)
V is positive-definite if
Q2 < (2C + p)rt + gn8 (20)

Thus the system is stable if ¢ > 2m and the condition (20) is satis-
fied.

These illustrations establish the applicability and simplieity of the
suggested approach to obtain Liapunov functional for continuous
systems.
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Basic Transport Equations in
Ascending Equiangular Spiral
Polar Coordinates

S. Ali?

Basic transport equations have been expressed in a coordinate
system suitable for the analytical study of momentum, heat, and
mass transport processes in ascending equiangular spiral tube coils.
The chosen coordinate system for the representation of these
equations is orthogonal curvilinear possessing proper transformation
to the rectangular Cartesian coordinate system. Various tensorial
quantities appearing in the tensorial form of the general basic
transport equations have been obtained in expanded form in the
chosen curvilinear coordinate system. Substitution of these quan-
tities, readily expands all the basic transport equations in their
various forms. Illustration has been made for the equation of con-
tinuity, the general equation of motion, the Navier-Stokes equation,
the equation of energy, and the equation of mass transport. The
resulting equations are in forms suitable for analytical and nu-
mertical solution.

Introduction

Various biomedical appliances, continuous flow chemical reactors,
and heat and mass transfer equipment are preferred to be in the
geometrical configuration of spirally and helically curved closed
channels. As compared to straight channels, apart from the advantage
of compactness of geometry, transport through these curved channels
also has enhanced heat and mass transfer coefticients and closer ap-
proximation to plug flow. Also, as noticed by Ali and Zaidi [1], the only
disadvantage of higher head loss in these channels disappears within
a range of flow limited by the two critical Reynolds numbers of the
curved channel flow.

So far, as appears in literature, torus is the only continuously curved
closed channel geometry for which basic transport equations have
been obtained and solved. A toroidal geometry can be thought to be
an approximation to a small pitch helical coil. With the help of these

1 Presently, at the DRPD Division of Research and Development Centre,
Steel Authority of India Ltd., Ranchi 834002, India; formerly, Department of
Chemical Engineering, University of Roorkee, Roorkee, India. .
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analytical studies and other experimental works, the transport fea-
tures of flow and heat transfer through helically coiled tubes are now
fairly well analyzed and understood.

Although spirally bent coils form equally useful and interesting
continuously curved closed channel geometries, no analytical study
for transport problems concerning any type of them has been made.
As a first step toward these studies, basic transport equations of
momentum, heat, and mass transfer have been obtained in the fol-
lowing work for a well-defined spiral coil geometry known as ascending
equiangular spiral coil. As compared to the other type of spiral coils,
the ascending equiangular spiral coil geometry possesses analytically
attackable transport equations and, as observed by Ali and Zaidi [1],
minimum resistance for flow.

Choosing a Suitable Coordinate System

Ascending equiangular spiral coils are formed by bending tubes of
circular cross section such that their axis takes the shape of a plan-
nular curve called ascending equiangular spiral. The family of the
curve is described by the polar equation

R=Kemo, n

where K is the radius of the inner asymptotic circle, m is a positive
constant characterizing rate of ascent, and O ranges from 0 to «, The
shape of the curve is shown in Fig, 1.

A suitable choice of coordinate system for the mathematical de-
scription of transport processes in the spiral coil has to be only cur-
vilinear, preferably if possible orthogonal. To arrive at such a choice,
we proceed as follows.

We shall assign a rectangular Cartesian coordinate system (X, Y,
Z) whose XY-plane coincides with the plane of the axis of the coil,
X -axis is same as the initial line of the polar coordinate (R, ©) and
origin O is same as the origin of the polar coordinate. The rectangular
Cartesian coordinate of a point inside the coil will then be represented
by (X, Y, Z).

Now, as shown in Fig. 2, a curvilinear coordinate system can be
chosen in which any point P on the axis of the spiral coil is located by
an angle Q such that for a given § there is a perpendicular PQ to its
ray OQ which is tangent to the spiral axis at the point P to be located.
The angle €} is measured in anticlockwise direction from the initial
line OX. Now, we consider a cross section of the coil through the point
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Basic Transport Equations in
Ascending Equiangular Spiral
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Basic transport equations have been expressed in a coordinate
system suitable for the analytical study of momentum, heat, and
mass transport processes in ascending equiangular spiral tube coils.
The chosen coordinate system for the representation of these
equations is orthogonal curvilinear possessing proper transformation
to the rectangular Cartesian coordinate system. Various tensorial
quantities appearing in the tensorial form of the general basic
transport equations have been obtained in expanded form in the
chosen curvilinear coordinate system. Substitution of these quan-
tities, readily expands all the basic transport equations in their
various forms. Illustration has been made for the equation of con-
tinuity, the general equation of motion, the Navier-Stokes equation,
the equation of energy, and the equation of mass transport. The
resulting equations are in forms suitable for analytical and nu-
mertical solution.

Introduction

Various biomedical appliances, continuous flow chemical reactors,
and heat and mass transfer equipment are preferred to be in the
geometrical configuration of spirally and helically curved closed
channels. As compared to straight channels, apart from the advantage
of compactness of geometry, transport through these curved channels
also has enhanced heat and mass transfer coefticients and closer ap-
proximation to plug flow. Also, as noticed by Ali and Zaidi [1], the only
disadvantage of higher head loss in these channels disappears within
a range of flow limited by the two critical Reynolds numbers of the
curved channel flow.

So far, as appears in literature, torus is the only continuously curved
closed channel geometry for which basic transport equations have
been obtained and solved. A toroidal geometry can be thought to be
an approximation to a small pitch helical coil. With the help of these
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analytical studies and other experimental works, the transport fea-
tures of flow and heat transfer through helically coiled tubes are now
fairly well analyzed and understood.

Although spirally bent coils form equally useful and interesting
continuously curved closed channel geometries, no analytical study
for transport problems concerning any type of them has been made.
As a first step toward these studies, basic transport equations of
momentum, heat, and mass transfer have been obtained in the fol-
lowing work for a well-defined spiral coil geometry known as ascending
equiangular spiral coil. As compared to the other type of spiral coils,
the ascending equiangular spiral coil geometry possesses analytically
attackable transport equations and, as observed by Ali and Zaidi [1],
minimum resistance for flow.

Choosing a Suitable Coordinate System

Ascending equiangular spiral coils are formed by bending tubes of
circular cross section such that their axis takes the shape of a plan-
nular curve called ascending equiangular spiral. The family of the
curve is described by the polar equation

R=Kemo, n

where K is the radius of the inner asymptotic circle, m is a positive
constant characterizing rate of ascent, and O ranges from 0 to «, The
shape of the curve is shown in Fig, 1.

A suitable choice of coordinate system for the mathematical de-
scription of transport processes in the spiral coil has to be only cur-
vilinear, preferably if possible orthogonal. To arrive at such a choice,
we proceed as follows.

We shall assign a rectangular Cartesian coordinate system (X, Y,
Z) whose XY-plane coincides with the plane of the axis of the coil,
X -axis is same as the initial line of the polar coordinate (R, ©) and
origin O is same as the origin of the polar coordinate. The rectangular
Cartesian coordinate of a point inside the coil will then be represented
by (X, Y, Z).

Now, as shown in Fig. 2, a curvilinear coordinate system can be
chosen in which any point P on the axis of the spiral coil is located by
an angle Q such that for a given § there is a perpendicular PQ to its
ray OQ which is tangent to the spiral axis at the point P to be located.
The angle €} is measured in anticlockwise direction from the initial
line OX. Now, we consider a cross section of the coil through the point
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P, whose plane is normal to the foregoing tangent. Any point p on this
circular cross section is located by the usual polar coordinates r and
# such that its initial line ox coincides with the line P/P”, its origin
o coincides with the point P, and # is measured in anticlockwise di-
rection. This choice of the coordinate system (£, r, §) is such that Q
= constant is a plane, r = constant is a curved circular cylinder, and
# = constant is a spirally bent curved surface. At any point p inside
the coil, all these surfaces meet at right angle to each other, hence the
chosen coordinate system is orthogonal. The coordinates  and 6 are
dimensionless and r has the dimension of length.
The sequence {, r, and # forms a left-hand screw system.

Transformation of Coordinates

Transformation from the defined curvilinear coordinate system
(9, r, 8) to the defined Cartesian coordinate system (X, Y, Z) is given
by

X =R cos O +r cos f cos Q,
Y=RsinO + r cosfsin Q,
Z =rsin 0, 2)
where O is related to Q by the equation
Q=0-7/2+cot"'m (3)

It is shown by Ali [2] that transformation (2) is proper, i.e., one-to-one
correspondence between the two coordinate systems exists in the
region inside the coils bounded by the finite values of €.

Required Tensorial Quantities

Since basic transport equations consist of terms which are various
tensorial quantities, these quantities are obtained in the chosen
coordinate system and given later. For the dimensional consistency,
these are given in their physical component form. Definition of these
quantities can be found in any book on general tensor analysis.
Eringen [3] has also described them.

Matrix of the Fundamental Metric Tensor, g;;

gun 0 0
g=10 1 0 (4)

0 0 r2

where
Ven=vVI0+mB)Kem +rcosh, (5)
Gradient of a Scalar Field ¢
1 6¢ 8 168¢ B 5

Vo = et —ext+——es 6
Tt T e ©
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where ey, @5, and e are unit base vectors in the ascending equiangular
spiral polar coordinate.
Divergence of a Vector Field A
1 Mﬂ_l_aA’ l%_}_(_l_ cosﬁ) sin
VEn 88 o 1 86 "

V-A (7

+ —— Ay,
' Véu VEi

where Ag, A;, and Ay are physical components of the vector A.

Laplacian of a Scalar Field ¢
vep = L 0% P iﬁ_ﬂ(__.\/&l-fcm)éﬁ
811 802 or?  p2402 g1 Vg1 60
1  cos 0) 8¢ sinf &¢
+ |-+ ————. (8)
(7‘ vV Eii1 or " g11 60

Divergence of a Second-Order Symmetric Tensor 7

_[L 97ee dror 1érgy
CWen 80 e 80
+(E+2C080)7’9r—gs—ir‘l‘g’mo eq

r VEu Veu
1 579,_{_%

vV Ei1 59 57‘
+(1+c0s0)

-t —l 7y ——T1—— Ty

' VEu " VEu i r ’

| Erw b Lome, sing
Ve 80 or  r 80 Van
+ (z + M) e
2 \/E rf
Laplacian of a Vector Field v
o LT T2
11 592 67‘2 I‘Z 692
(el (L cn0),
g11 \/E'H 391 r \/a or
sin® dvg  2cosfdv, 2sinf v,

—_ [ + — —
rvgu 60 g 02 g1 6Q
_Egnmcosﬂ(\/ﬁ;—rcosﬂ)

811 811 ,\/ﬂ or
+msin0(\/g_11_—rcos0)v
g1 Veu | ’

+ Li 8%, + 8%, + 1 6%, 2cosfdvg
11 592 51‘2

2602 gn 69
~_ni(\/g11—rcos¢9)6_z)_,_+(l
gu vEn o8

cos 0) M
r /gyl or
_sind fu 2 vy

m cos 6 (\/ g11 = I €08 0)

v
rvgudd r?of g1 vEu ¢
_ (_1_2 + cos? 0) oy + ( sin 8 + sin # cos 6)00] o

r &n "V &11 811
N E@+ d%q 1 8%y  2sin6dvg
o2 52 r2402 g1 68
2 v, _Ln_(\/gu —rcosﬂ)@_’_ (l_*_ cosﬂ)%
r?2 80  gn V& 09 ro gl or
sinf) vy msind (\/gu —rcos 0)
- — - v
rv g1 60 £11 Vi1 ¢
inf - i 1  sin?
_ sin (\/gu r cos )vr N (_ 4 5in 0) vs] o (10)
™/ &1 VEu

r2 811

V.r

1 61,9 cosf

ro0 Ven o
sin 8 1 ]
er

+

sin 6 } ©
pg— ep.

eq

Material Derivative of a Scalar Field ¢

D¢ _o¢, va 3¢ ¢ vod¢

Dt ¢ r 86’

—+v,—+ 11
VvVEn 6Q v or ( )
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Material Derivative of a Vector Field v

Dv  [bévg vg bvg + cos 0
—_—=—t—=— vaby
Dt 6t VvVEi 69 ) VEi11 ¢
sin f dvg Vo 5”9]
- vovg + vy — eq
g1 &r r o6
61), _vg Sur cosf ol 61), g Suy v%]
—— — e
VENn 08 Vegu Y
51)4) g 5Ug sin 0 2 51)(/ Do 50{; l),-Uy]
y— —_— + 4 e (12
Vgl o9 \/gul)ﬂ r 66 rlY )

Basic Transport Equations

Having obtained the expansion for the required tensor quantities,
almost all basic transport equations in their various forms can be
readily written down by simple substitution for terms. This is illus-
trated for few important basic transport equations of common oc-
currence in the following.

Equation of Continuity

op
—+V- = (13)
o (pv)
in the chosen coordinate system takes the form
5p 1 16
— (vaz) + (pv ) + - (on)
Va0 ’
1 cosf sin 8
+ (—+——) pvg——=puvg=0. (14)
T Vg VEn
General Equation of Motion
pa=pt+(V-1), (15)

where a is the acceleration vector, f is the body force, and 7 is stress
tensor, takes the form

D
p—= ofa eq+ pfr e, + pfoeg + (V- 1), (16)

Dt
where first and last terms can be substituted from equations (12) and
(9), respectively.

For fluids of known constitutive equations, expressions for stress
components in terms of velocity gradients and fluid properties may
be substituted to get more useful form of equation of motion. Nav-
ier-Stokes equation of motion, which uses constitutive equation
corresponding to Newtonian fluid with the assumption of constant
density and viscosity, is given by

pa=—Vp + uV + pg, an

where p is pressure and g is the gravitational force assumed to be the
only body force present. In the ascending equiangular spiral polar
coordinate system, the Navier-Stokes equation is easily obtained by
substituting for pa and pg from equation (16), for Vp from equation
(6) and for V2v from equation (10).

Equation of Thermal Energy

For the cases where viscous heat dissipation is not important and
coefficient of thermal conductivity is constant, the equation of energy
is given by

pC B% =EV2T — T(:: ) (V-v) +pS, (18)
and in the required coordinate system becomes
6T va BT oT Ug 6T
oCo Yot T e
=k L_}__(SZ_T + ﬂ ._1_62_.T — _rﬂ_
11092 62 r2s02 gpn
(19)
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y (vgu—rcosﬁ)ﬁ_'_ (1

Ven 162 \r

cosﬁ)B_T
r \/—

_ sinf 53_7_']
or rv g1 o0

B T(&p) 1 509 oy oo 1 1ug
Ve 59 o, réf
1  cos 0) sin 8 ] (19)
=+ === v, — ——pj| + pS
(7' Vg1 vVEnu (Cont.)

Equation of Diffusion
For binary mixtures obeying Fick’s law and having constant mass
density and diffusion coefficient, the equation of mass diffusion is

DC
=DagV2C4+R
Dt AB A A (20)
which expands as
6CA 1227} BCA 5CA 27] 6CA
R __._+vr._.... — —
Vg 08 or r 80
82C,  62C4 1 82C,4
=D R £ R e
4 L’n 002 orz  r2 542
m (Vé’u—rcos 0] 0C4 (1 cos 0\ 6C4
811 VEn o0 \r g1l or
sm0 6Ca
+R 21
- ,———gl 50] A (21)

Concluding Remarks

Apart from the basic transport equations, expansions, which have
previously illustrated almost all other forms of transport equations,
can readily be written down in the developed ascending equiangular
spiral polar coordinate system by simple substitution for their ten-
sorial terms expansion which has been obtained in the foregoing.
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It is found that even a 5 percent change in the velocity profile pro-
duces a 100 percent change in the critical Reynolds number for the
stability of developing flow very close to the entrance of a two-di-
mensional channel.
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Basic Transport Equations

Having obtained the expansion for the required tensor quantities,
almost all basic transport equations in their various forms can be
readily written down by simple substitution for terms. This is illus-
trated for few important basic transport equations of common oc-
currence in the following.
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General Equation of Motion
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where a is the acceleration vector, f is the body force, and 7 is stress
tensor, takes the form

D
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Dt
where first and last terms can be substituted from equations (12) and
(9), respectively.

For fluids of known constitutive equations, expressions for stress
components in terms of velocity gradients and fluid properties may
be substituted to get more useful form of equation of motion. Nav-
ier-Stokes equation of motion, which uses constitutive equation
corresponding to Newtonian fluid with the assumption of constant
density and viscosity, is given by

pa=—Vp + uV + pg, an
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Equation of Diffusion
For binary mixtures obeying Fick’s law and having constant mass
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Apart from the basic transport equations, expansions, which have
previously illustrated almost all other forms of transport equations,
can readily be written down in the developed ascending equiangular
spiral polar coordinate system by simple substitution for their ten-
sorial terms expansion which has been obtained in the foregoing.

References

1 Ali, 8, and Zaidi, A. H., “Head Loss and Critical Reynolds Number for
Flow in Ascending Equiangular Spiral Tube Coils,” Ind. Eng. Chem. Process
Des. Dev., Vol. 18, No. 2, Apr. 1979, pp. 349-352.

2 Ali, 8., “Steps Toward the Theoretical Study of Secondary Flow in
Spirally Coiled Channels (Basic Transport Equations and a Solution by the
Method of Weighted Residual),” PhD Thesis, IIT Kanpur, India, 1974.

3 Eringen, A.C., Nonlmear Theory of Continuous Media, McGraw-Hill,
New York, 1962.

Linear Spatial Stability of
Developing Flow in a Parallel
Plate Channel

S. C. Gupta! and V. K. Garg?

It is found that even a 5 percent change in the velocity profile pro-
duces a 100 percent change in the critical Reynolds number for the
stability of developing flow very close to the entrance of a two-di-
mensional channel.

Introduction
The temporal stability characteristics of the developing flow in a

1 Assistant Professor, Department of Mechanical Engineering, University
of Jodhpur, Jodhpur, India.

2 Professor, Department of Mechanical Engineering, Indian Institute of
Technology, Kanpur 208016, India.

Manuscript received by ASME Applied Mechanics Division, October, 1979;
final revision, February, 1980.

Transactions of the ASME


file:///stIp

26
CHANNEL
24 T : ol
|
\
22
\
\
\
20~ \
\
18— \
\
';" \
Q - \\
%, \
14 \
14+ \ 4 1 1 i
t ., 002 006 0I0 o0I14 o0I8
\ —a= X
12+
[[0] o
8 —
6 | |
0.0 o0l 0.02 003
e x
Fig. 1 Variation of critical Reynolds number with X; —, present work; - - -,

Chen’s results with finite-difference technique [1}; © present results for
Spatrow’s profile [2]

two-dimensional channel were determined by Chen [1] using the
Sparrow profile, the velocity profile determined by the linearization
method of Sparrow, et al. [2]. However, it is now widely accepted that
the velocity profile, hereafter referred to as the B-0 profile, obtained
by Bodoia and Osterle’s method [3] gives a better velocity field de-
scription. The present study, therefore, aims to study the linear spatial
stability characteristics of the B-O profile and to compare them with
those of the Sparrow profile. Symmetric disturbances of the type x(x,
¥, t) = ¢(y) exp li(kx — wt)} are considered, where x is the stream
function of the disturbance, x and y are the dimensionless streamwise
and transverse coordinates measured from the inlet section and the
center line of the channel, respectively, w and ¢ are the dimensionless
frequency and time, respectively, k is the complex number whose real
part k, is the wave number and imaginary part k; is the spatial growth
rate. Nondimensionalization is carried out with respect to half width
of the channel and average velocity of the flow. This leads to the
Orr-Sommerfeld problem.

Solution

The eigenvalue problem is solved by means of the fourth-order
Runge-Kutta method while using selectively the Gram-Schmidt or-
thonormalization procedure [4]. Convergence to the eigenvalue is
achieved by Muller’s method [5]. By numerical experimentation it
was found that a step size of 0.0025 gives an error of 0(1076) in the
eigenvalues when computation is done in double precision mode on
DEC 1090. Iteration to the neutral point was terminated for |k;| <
1078,

Results

Fig. 1 shows the variation of critical Reynolds number, R, with X
for the present analysis and for the Sparrow profile as obtained by
Chen [1] using the finite-difference scheme of Thomas [6]. Here
X = x/R, where R is the Reynolds number. It is obhserved that the
critical Reynolds number for the B-O profile is much lower than that
for the Sparrow profile in the near-entry region. At X = 0.002, R, for
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the Sparrow profile is about twice that for the B-O profile. This dif-
ference between the R.-values decreases as X increases to about X
= 0.09 where the two curves appear to coincide with each other and
remain so thereafter. This behavior is to be expected since the two
velocity profiles are found to merge into one at X =~ 0.084. One,
therefore, draws the conclusion that the large difference in R,-values
in the near-entry region is due to the difference in the two velocity
profiles. The three critical points, obtained for the Sparrow profile
by the present technique and shown in the figure by points marked
O, show the agreement of our results with those of Chen obtained by
the finite-difference method.

Fig. 2 shows the neutral curves at X = 0.001, 0.00208, 0.00408, 0.006,
and 0.008 to « for the B-O profile. Also shown on this figure are the
neutral curves at X = 0.00208 and 0.00408 for the Sparrow profile
obtained by the present method as well as by Chen using regular
viscous solutions for the full channel profile. Comparison of the
neutral curves at X = 0.00208 and 0.00408 reveals that the B-O profile
is unstable for a wider range of frequencies at any given X and R. We
also note that neutral curves reported by Chen for the Sparrow profile
are not accurate. It may be observed that the area of unstable region
for the B-0O profile decreases with increasing X.

Fig. 3 shows the variation of the critical wave number, k,., and
critical frequency, w., with X. We note that both k.. and w, decrease
with increasing axial distance in the entrance region and approach
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asymptotically the corresponding values for the fully developed flow;
the curves being nearly parallel.

Conclusions

Though the Sparrow and B-0 velocity profiles differ by 5 percent
at most in the near-entry region, the critical Reynolds number for the
former is twice of that for the latter at X = 0.001. It is difficult to say
which velocity profile predicts the stability of the actual developing
flow more accurately due to lack of experimental stability charac-
teristics. However, since the superiority of the B-O profile over the
Sparrow profile has been widely accepted, one has the intuitive feeling
that the stability results reported herein for the B-O profile should
be closer to the actual one.
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Note on the Energy-Release
Rate for a Crack Starting
From the Apex of a Wedge

C. Yatomi

We show that for a Mode III crack starting from the apex of a wedge,
the initial value of the energy-release rate is zero, although the
stresses at the crack tip are unbounded.

Introduction

Griffith [1] was apparently the first to employ the energy-release
rate & as a critical condition of crack extension. In this Note we will
show, however, that if a crack starts from the apex of a wedge (cf. Fig.
1 with n 3¢ 1), the initial value of ¢ is zero, although the stresses at the
crack tip are unbounded. This example suggests that you cannot use
the initial energy-release rate as a critical condition of crack extension
unless the opening-angle of the crack faces in the reference is precisely
zero. Since the order of the singularity of the strain-energy density
is less than one, this result may be predicted mathematically but it
is not trivial physically.

We confine our problem to a simple Mode 11 crack; the given so-
lutions are then simple and of closed form, so that we can examine the
precise dependence of § on the crack length a. To the author’s
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A crack starting from the apex of a wedge

knowledge, no such closed-form solution for an arbitrary crack length
a has been presented (see, for example, Khrapkov [2] for Modes I and
1I).

Brief Methods of Solutions

Following the theory developed by Sih [3], we will analyze Mode
III crack of length a which starts from the apex of an infinite wedge
subjected to concentrated forces P acting in opposite directions at
z = LetinT (Fig, 1),

We employ a function

z = w(g-) = e—-hwi(gﬁ — al/n)n'

which maps the upper side of the crack to —al/2"® < Real ({) < 0, the
lower side to O < Real ({) < a1/27, and the points at which the forces
P are acting to 3 = + (£1/n + ¢1/7)1/2 regpectively.

With the aid of equation (16) of Sih [3], the relevant stress function
is

0<n=1, (1)

P48
F(?)—WGlogr g’ (2)

where G is the shear modulus. The stresses are then given in the
form

F'(
Oys — L0y, G_Tg“)
_P 28 1
T r B2 — {2 gpe—nmif({2 — gl/nyn-1
. in the {-plane, or
P (£V/n 4 gl/m)1/2 -1
T QUng gln p(alin — gUnyi/z1-1n’ (3)
p1/2n i
ﬁ_mm for a=0 (4)

in the z-plane.

Equations (3) and (4) show, as is expected, ‘that the stress singu-
larity of order Y, has changed discontinuously order to 1 — Yn at
a = 0%, (This is another example of simple closed-form solution ex-
hibiting the singularity transition phenomenon which was studied
by Nuismer and Sendeckyj [4].)

Inserting equations (1) and (2) into equation (
solution for the stress-intensity factor:
K(a) = E V2
P (él/n + al/n)1/2

Since ¢ = #K2/2G, the energy-release rate is given by

7) of [3] yields the

qV/2n—1/2

nt/z

2 1/n—1
(’)(a) —p_ a____
7G (V7 4 gV/myn

5)

Equation (5) shows that

¢la) ~al/n=1t as g -0,
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asymptotically the corresponding values for the fully developed flow;
the curves being nearly parallel.
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Though the Sparrow and B-0 velocity profiles differ by 5 percent
at most in the near-entry region, the critical Reynolds number for the
former is twice of that for the latter at X = 0.001. It is difficult to say
which velocity profile predicts the stability of the actual developing
flow more accurately due to lack of experimental stability charac-
teristics. However, since the superiority of the B-O profile over the
Sparrow profile has been widely accepted, one has the intuitive feeling
that the stability results reported herein for the B-O profile should
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rate & as a critical condition of crack extension. In this Note we will
show, however, that if a crack starts from the apex of a wedge (cf. Fig.
1 with n 3¢ 1), the initial value of ¢ is zero, although the stresses at the
crack tip are unbounded. This example suggests that you cannot use
the initial energy-release rate as a critical condition of crack extension
unless the opening-angle of the crack faces in the reference is precisely
zero. Since the order of the singularity of the strain-energy density
is less than one, this result may be predicted mathematically but it
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knowledge, no such closed-form solution for an arbitrary crack length
a has been presented (see, for example, Khrapkov [2] for Modes I and
1I).

Brief Methods of Solutions

Following the theory developed by Sih [3], we will analyze Mode
III crack of length a which starts from the apex of an infinite wedge
subjected to concentrated forces P acting in opposite directions at
z = LetinT (Fig, 1),

We employ a function

z = w(g-) = e—-hwi(gﬁ — al/n)n'

which maps the upper side of the crack to —al/2"® < Real ({) < 0, the
lower side to O < Real ({) < a1/27, and the points at which the forces
P are acting to 3 = + (£1/n + ¢1/7)1/2 regpectively.

With the aid of equation (16) of Sih [3], the relevant stress function
is

0<n=1, (1)

P48
F(?)—WGlogr g’ (2)

where G is the shear modulus. The stresses are then given in the
form
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in the z-plane.

Equations (3) and (4) show, as is expected, ‘that the stress singu-
larity of order Y, has changed discontinuously order to 1 — Yn at
a = 0%, (This is another example of simple closed-form solution ex-
hibiting the singularity transition phenomenon which was studied
by Nuismer and Sendeckyj [4].)

Inserting equations (1) and (2) into equation (
solution for the stress-intensity factor:
K(a) = E V2
P (él/n + al/n)1/2

Since ¢ = #K2/2G, the energy-release rate is given by

7) of [3] yields the
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and the initial value of G(a) at @ = 0% is zero unless n = 1 as noted in
the Introduction.
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On the Polygon-Circle Paradox

K. Rajaiah! and A. K. Rao?

Introduction

The problem of the polygon-circle paradox in thin plate theory [1]
has attracted sustained attention during the last decade [2-7] pri-
marily due to its implications in thin plate and finite-element anal-
yses. There have been some earlier investigations [8-10] too on the
subject some of which were considered by Hanuska [11]. Inspite of
such continued interest, a satisfactory resolution of the paradox does
not seem to have appeared in the literature. The resolution of the
paradox, based on an earlier study {12], is presented in this Note.

Statement of the Paradox

Consider a two-dimensional physical phenomenon in a regular
polygonal domain with an inscribed circle of radius a and also in a
circular domain with the same radius a, both fields being subject to
identical physical boundary conditions (Fig. 1). One would expect
that, as the number of sides n of the polygon is increased indefinitely
(n — ), the solution for the polygon should approach that for the
circle. Numerical results from different sources referred to in [1] for
the flexure of regular polygonal plates under uniform transverse
pressure, show diverging trends in relation to this anticipation when
the edges are simply supported, although they are all in agreement
with the anticipation when the edges are clamped.

Resolution

The paradox shows that, even though the limiting polygon (n —
) and the corresponding circular plate under identical loading
conditions are governed by the same differential equation, their
flexural behavior is identical for conditions of edge fixity, but is en-
tirely different for edge conditions of simple support. Obviously one
should shift attention from the complete solution of the problem to
the boundary conditions. For simplicity the discussion can be in
relation to axisymmetric load distributions.
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(i) Clamped Edges. Consider the conditions along a clamped
circular edge. On such an edge, the clamped condition implies w =
0, w, = 0, and w = 0 itself yields w; = 0 and due to axisymmetry M,,;
= (). Thus four quantities w, w,, w;, and My; become zero on the edge
of a clamped circular plate.

On any edge of a clamped regular polygonal plate, once again the
conditions are w = 0, w, = 0. Further more w = 0 leads to w; = 0 while
w, = 0 yields M,,; = 0. Also from an eigenfunction analysis due to
Williams [13], it is clear that there are no singularities at the corners
of the polygonal plate. All these conditions hold good however large
the number of sides, even in the limit n — .

Comparing the conditions on the clamped circular edge with those
of the limiting clamped polygon, it is observed that the same four
quantities (w, wy, w;, and M,;) vanish on the edge in either case.
There are apparently no other physical quantities that may produce
any discrepancy. Hence the limiting clamped polygon, as n — =,
should be and is identical with the corresponding clamped circular
plate.

(ii) Simply Supported Edges. First, consider the circular edge.
By definition, w = 0 and M,, = 0. Due to axisymmetry, M, = 0. But
from the exact solution for the circular plate [14] it is clear that M,
# 0, and therefore V2w # 0. )

Next, consider the edges of the polygon. The simple edge support
needs w = 0 and M,, = 0. As a consequence, wy; = 0 and M, = 0.and
also V2w = 0. It is also realized that M,,; # 0 anywhere except at the
midpoints. These conditions apply for all n. On the other hand, in the
corresponding circular plate wy;, M;, V2w = 0 while M,;; = 0. Clearly,
in this case the limiting polygonal plate solution must be different
from the circular plate solution.

Now let us proceed to consider the effect of the corners in the lim-
iting simply supported polygon. From an eigenfunction study [13],
one finds that when n 2 4, the corners C are points of moment (M,,
My, M,y) singularities. The singular part of the deflection function
is given by A 1r1™/« sin (7/c) 61 where /o = n/(n — 2) and A is the
strength of the singularity. The corresponding second derivative in
r {contributing to the moments M,, My, and M,) is found to be

Ay T (“7‘-‘ - 1) 1‘17"/"_2 sin (7!'/&) .
al\a
It is also observed that, at each corner, the slopes in two different
directions are zero and as such each corner behaves like a clamped
point. In view of this, the simply supported condition along the
straight edges is effectively augmented by periodic corner clamping.
Thus the limiting polygon is supported by an alternating system of
“infinitesimally short” simple straight supports and stiff point sup-
ports. As such the stiffness of the limiting polygon should be between
the stiffnesses of the simply supported and clamped circular plates.
This is confirmed by the central deflections and edge rotations for the
three cases which are shown in Table 1.

In fact it can be readily shown that a circular plate with an elastic
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and the initial value of G(a) at @ = 0% is zero unless n = 1 as noted in
the Introduction.
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On the Polygon-Circle Paradox

K. Rajaiah! and A. K. Rao?

Introduction

The problem of the polygon-circle paradox in thin plate theory [1]
has attracted sustained attention during the last decade [2-7] pri-
marily due to its implications in thin plate and finite-element anal-
yses. There have been some earlier investigations [8-10] too on the
subject some of which were considered by Hanuska [11]. Inspite of
such continued interest, a satisfactory resolution of the paradox does
not seem to have appeared in the literature. The resolution of the
paradox, based on an earlier study {12], is presented in this Note.

Statement of the Paradox

Consider a two-dimensional physical phenomenon in a regular
polygonal domain with an inscribed circle of radius a and also in a
circular domain with the same radius a, both fields being subject to
identical physical boundary conditions (Fig. 1). One would expect
that, as the number of sides n of the polygon is increased indefinitely
(n — ), the solution for the polygon should approach that for the
circle. Numerical results from different sources referred to in [1] for
the flexure of regular polygonal plates under uniform transverse
pressure, show diverging trends in relation to this anticipation when
the edges are simply supported, although they are all in agreement
with the anticipation when the edges are clamped.

Resolution

The paradox shows that, even though the limiting polygon (n —
) and the corresponding circular plate under identical loading
conditions are governed by the same differential equation, their
flexural behavior is identical for conditions of edge fixity, but is en-
tirely different for edge conditions of simple support. Obviously one
should shift attention from the complete solution of the problem to
the boundary conditions. For simplicity the discussion can be in
relation to axisymmetric load distributions.
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(i) Clamped Edges. Consider the conditions along a clamped
circular edge. On such an edge, the clamped condition implies w =
0, w, = 0, and w = 0 itself yields w; = 0 and due to axisymmetry M,,;
= (). Thus four quantities w, w,, w;, and My; become zero on the edge
of a clamped circular plate.

On any edge of a clamped regular polygonal plate, once again the
conditions are w = 0, w, = 0. Further more w = 0 leads to w; = 0 while
w, = 0 yields M,,; = 0. Also from an eigenfunction analysis due to
Williams [13], it is clear that there are no singularities at the corners
of the polygonal plate. All these conditions hold good however large
the number of sides, even in the limit n — .

Comparing the conditions on the clamped circular edge with those
of the limiting clamped polygon, it is observed that the same four
quantities (w, wy, w;, and M,;) vanish on the edge in either case.
There are apparently no other physical quantities that may produce
any discrepancy. Hence the limiting clamped polygon, as n — =,
should be and is identical with the corresponding clamped circular
plate.

(ii) Simply Supported Edges. First, consider the circular edge.
By definition, w = 0 and M,, = 0. Due to axisymmetry, M, = 0. But
from the exact solution for the circular plate [14] it is clear that M,
# 0, and therefore V2w # 0. )

Next, consider the edges of the polygon. The simple edge support
needs w = 0 and M,, = 0. As a consequence, wy; = 0 and M, = 0.and
also V2w = 0. It is also realized that M,,; # 0 anywhere except at the
midpoints. These conditions apply for all n. On the other hand, in the
corresponding circular plate wy;, M;, V2w = 0 while M,;; = 0. Clearly,
in this case the limiting polygonal plate solution must be different
from the circular plate solution.

Now let us proceed to consider the effect of the corners in the lim-
iting simply supported polygon. From an eigenfunction study [13],
one finds that when n 2 4, the corners C are points of moment (M,,
My, M,y) singularities. The singular part of the deflection function
is given by A 1r1™/« sin (7/c) 61 where /o = n/(n — 2) and A is the
strength of the singularity. The corresponding second derivative in
r {contributing to the moments M,, My, and M,) is found to be

Ay T (“7‘-‘ - 1) 1‘17"/"_2 sin (7!'/&) .
al\a
It is also observed that, at each corner, the slopes in two different
directions are zero and as such each corner behaves like a clamped
point. In view of this, the simply supported condition along the
straight edges is effectively augmented by periodic corner clamping.
Thus the limiting polygon is supported by an alternating system of
“infinitesimally short” simple straight supports and stiff point sup-
ports. As such the stiffness of the limiting polygon should be between
the stiffnesses of the simply supported and clamped circular plates.
This is confirmed by the central deflections and edge rotations for the
three cases which are shown in Table 1.

In fact it can be readily shown that a circular plate with an elastic
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Table1l Relative stiffness of simply supported circlé,
simply supported limiting polygon and clamped circle

Edge
Central rotation
Type of deflection —(0/w/or),=q
Load plate Wmax/(Pa2/nwD) (Pa/%D)
. ‘ 1[5+ 1{ 2
Uniform Simply — (——) — (.__)
pressure q supported 64\1+7 S 161+
(Total load circle
P = gqma?)
Simply L3 L
supported 64 16
limiting .
polygon
. 1
Clamped — 0
circle 64
. 1 (3+» 1{ 2
Central simply — (——) = (_*)
concentrated supported 1611 +v 8\l +v
load P circle
. 1 1
Simply —(2) =
supported 16 8
limiting
polygon
1
Clamped — 0
circle 16

edge rotational restraint of finite stiffness K = (1 ~ »)D/a would re-

produce the behavior of the limiting polygon. For such a circular plate,
the edge conditions are found to be w = V2w = 0.
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Vibrations of Free Circular
Plates Having Elastic
Constraints and Added Mass
Distributed Along Edge
Segments

A. Leissa' and Y. Narita?

Introduction

Although numerous references exist which treat the free vibrations
of circular plates [1], the vast majority analyze cases having classical
boundary conditions (i.e., clamped, simply supported, or free). Several
papers can be found (cf., {2, 3]) which deal with elastic constraints
uniformly distributed around the edge, and at least one [4] treats the
boundary having uniformly distributed, additional mass.

Recently, free-vibration problems for circular plates having rota-
tional and/or translational springs distributed around segments of
the edge have been solved [5, 6]. The analytical method utilized there
is now applied to a more general problem wherein additional mass also
appears along a segment of the edge (see Fig. 1). Numerical results
are presented for some interesting problems for which the intensities
of the partial springs and masses are varied.

Analysis
The free transverse vibration of a thin, homogeneous plate is gov-
erned by the differential equation

DVAW — pw?W =0 1)

where, in polar coordinates, W = W(r, §). An exact solution to equa-
tion (1) for a solid circular plate is given by

W, 0) = Y Walkr)cosnf+ Y Wok(kr)sinnd  (2)
n=0 ) n=1

where
Wi(kr) = Apd, (kr) + ColI, (kr)
We(kr) = Aprd, (kr) + Cp*1, (kr)

(3a)
(3b)

Consider a free circular plate elastically constrained along parts
of the edge as shown in Fig. 1. Translational and rotational springs
having stiffnesses K,, and Ky, respectively, are attached to typical
portions of the edge. An additional strip of mass m and rotary inertia
I (per unit of length) also acts upon a segment of the boundary. The
following boundary conditions are required along typical portions of
the edge:

Vi(a, 0) = —~(Kw — mw?)W(a, §) (4a)

Mila, 0) = (K, = Iow?) 5 (0,0 (4b)
r

where the edge reaction and bending moment are related to the de-
flection by

. 9 1—» 0 [12W
Vi(r, 0) = =D |— (v2W) + — |- 5
. 0) [ar( ) roor (r a2 )] (6e)
22W 1oW 102
M.(r,0) = =D |- L= 5b
.0 [br2 V(r or r2 bﬁ‘/;f” (68)

and where the coefficients K, Ky, m, and I are, in general, not
constants, but functions of f, either continuous or piecewise contin-
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Table1l Relative stiffness of simply supported circlé,
simply supported limiting polygon and clamped circle

Edge
Central rotation
Type of deflection —(0/w/or),=q
Load plate Wmax/(Pa2/nwD) (Pa/%D)
. ‘ 1[5+ 1{ 2
Uniform Simply — (——) — (.__)
pressure q supported 64\1+7 S 161+
(Total load circle
P = gqma?)
Simply L3 L
supported 64 16
limiting .
polygon
. 1
Clamped — 0
circle 64
. 1 (3+» 1{ 2
Central simply — (——) = (_*)
concentrated supported 1611 +v 8\l +v
load P circle
. 1 1
Simply —(2) =
supported 16 8
limiting
polygon
1
Clamped — 0
circle 16

edge rotational restraint of finite stiffness K = (1 ~ »)D/a would re-

produce the behavior of the limiting polygon. For such a circular plate,
the edge conditions are found to be w = V2w = 0.
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Vibrations of Free Circular
Plates Having Elastic
Constraints and Added Mass
Distributed Along Edge
Segments

A. Leissa' and Y. Narita?

Introduction

Although numerous references exist which treat the free vibrations
of circular plates [1], the vast majority analyze cases having classical
boundary conditions (i.e., clamped, simply supported, or free). Several
papers can be found (cf., {2, 3]) which deal with elastic constraints
uniformly distributed around the edge, and at least one [4] treats the
boundary having uniformly distributed, additional mass.

Recently, free-vibration problems for circular plates having rota-
tional and/or translational springs distributed around segments of
the edge have been solved [5, 6]. The analytical method utilized there
is now applied to a more general problem wherein additional mass also
appears along a segment of the edge (see Fig. 1). Numerical results
are presented for some interesting problems for which the intensities
of the partial springs and masses are varied.

Analysis
The free transverse vibration of a thin, homogeneous plate is gov-
erned by the differential equation

DVAW — pw?W =0 1)

where, in polar coordinates, W = W(r, §). An exact solution to equa-
tion (1) for a solid circular plate is given by

W, 0) = Y Walkr)cosnf+ Y Wok(kr)sinnd  (2)
n=0 ) n=1

where
Wi(kr) = Apd, (kr) + ColI, (kr)
We(kr) = Aprd, (kr) + Cp*1, (kr)

(3a)
(3b)

Consider a free circular plate elastically constrained along parts
of the edge as shown in Fig. 1. Translational and rotational springs
having stiffnesses K,, and Ky, respectively, are attached to typical
portions of the edge. An additional strip of mass m and rotary inertia
I (per unit of length) also acts upon a segment of the boundary. The
following boundary conditions are required along typical portions of
the edge:

Vi(a, 0) = —~(Kw — mw?)W(a, §) (4a)

Mila, 0) = (K, = Iow?) 5 (0,0 (4b)
r

where the edge reaction and bending moment are related to the de-
flection by
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and where the coefficients K, Ky, m, and I are, in general, not
constants, but functions of f, either continuous or piecewise contin-
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Fig. 1 Circular plate having elastic constraints and added mass along
boundary segments
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Flg. 2 Frequency parameters \ = (wa?+/ p/D)"? and nodal patterns for
clamped-free circular plates having added partial strip mass.

uous, as shown. The coefficients can be expanded into Fourier series;

that is,
Ko@) = 3 Ky cosif+ 3 Kn* sinif (6a)
i=0 i=1
Ky0) = 3 L cosif + ¥ Ly* sin i6 (6b)
=0 i=1
m(f) = i m; cos 10 + i m;* sin if (6¢)

i=0 i=1
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(b) Anti-symmetric Modes

Fig. 3 Frequency parameter A = (wa?y/p/ D)2 versus ratio of added mass
for four cases of elastic edge constraint :

I60) = ¥ Ig cosif+ ¥ Igp sinif (6d)
i=0 i=1

where the Fourier coefficients are determined in the usual manner.

Substituting equations (2), (3), (5), and (6) into (4), and utilizing

trigonometric identities of the type

sin il cos nf = % [sin (i + n)8 + sin (i — n)d] N
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allows the products of two infinite sums on the right-hand sides of
equations (4) to be replaced by single infinite sums, yielding an infinite
characteristic determinant for the eigenvalues (or nondimensional
frequency parameters) of free vibration (cf., [5, 6]).

Numerical Results

Fig. 2 shows the lowest five frequency parameters A =
(wa2y/p/D)'/2 and the corresponding nodal patterns of circular plates
elastically constrained along —m/4 < f§ < 7/4 and having uniformly
distributed mass along 37/4 < 8 < 57/4. The nodal patterns are either
symmetric (S) or antisymmetric (4) with respect to the symmetry
diameter. The fundamental (i.e., lowest frequency) mode has no in-
terior node lines. The constrained part of the plate can be regarded
as effectively clamped due to the large stiffness K,, = Ky = 108 (K,,
= a3K, /D, Ky = aKy/D) [5, 6]. The attached mass is increased with
the ratio of Ma/Mp = 0, 0.5, 1 (M, total mass of the added mass; Mp,
mass of the plate by itself). In the present calculations, Poisson’s ratio
is taken as » = 0.33 and the rotary inertia of the added mass is zero.
A 60th-order determinant is used to yield the frequencies which can
be considered as accurate within three significant figures, as found
in previous convergence studies [6].

Fig. 3 shows the variation of the frequency parameter in the same
problem for four different degrees of elastic constraint along the
boundary segment —7/4 < # < 7/4, ranging from fully free to fully
clamped. Symmetric and antisymmetric modes are presented in Figs.
3(a) and (b), respectively. As the mass ratio Ma/Mp is increased, the
frequencies decrease monotonically, as expected. But the rate of
change depends upon the mode of vibration and, in one case, the
curves (3-S and 2-A) cross each other. For K, = K, v = 0,the 1-S,1-4,
and 2-S modes correspond to rigid body motions of translation and
rotation; i.e.,, A = 0.

References

1 Leissa, A. W., Vibration of Plates, NASA SP-160, U.S.Government
Printing Office, 1969.

2 Kantham, C. L., “Bending and Vibration of Elastically Restrained Cir-
cular Plates,” Journal of The Franklin Institute, Vol. 265, No. 6, 1958, pp.
483-491.

3 Laura, P.'A. A, Paloto, J. C., and Santos, R. D, “A Note on the Vibration
and Stability of a Circular Plate Elastically Restrained Against Rotation,”
Journal of Sound and Vibration, Vol. 41, No. 2, 1975, pp. 177-180.

4 Takahashi, S., “The Vibration of a Circular Plate With Weights or a Bar
on Its Outer Boundary,” Bulletin JSME, Vol. 10, No. 40, 1967, pp. 463-471.

5 Narita, Y., and Leissa, A. W., “Transverse Vibration of Simply Supported
Circular Plates Having Partial Elastic Constraints,” Journal of Sound and
Vibration, Vol. 70, No. 1, 1980, pp. 103-116.

6 Narita, Y., and Leissa, A. W., “Flexural Vibrations of Free Circular Plates
Elastically Constrained Along Parts of the Edges,” International Journal of
Solids and Structures, Vol. 17, No. 1, 1981, pp. 83-92.

Stabilization of an Unstable
Linear System by Parametric
White Noise

J. E. Prussing?

In this Note a simple illustrative example demonstrates that an
unstable deterministic system can be stabilized by parametric white
noise excitation. Nevelson and Khas'minskii [1] and Nakamizo and
Sawaragi [2] show that it is impossible for a linear system excited by
parametric white noise to be stable if the deterministic system is
unstable. However, these results are based on mathematical white
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noise rather than physical white noise which is the limiting case of a
stationary stochastic process for which the correlation time tends to
zero. For physical white noise the correlation between the noise and
the system response at the same instant of time must be accounted
for.

In the analysis which follows it is shown using the Wong and Zakai
correction [3] which is a special case of the stochastic averaging pro-
cedure of Stratonovich [4] and Khas'minskii [5] that parametric
physical white noise can stabilize an unstable deterministic system, -
This fact was first reported by Mitchell and Kozin [6] in Example 4
of that reference and verified by simulation. The motivation for
finding a simple illustrative example stems from recent analyses of
helicopter rotor blade aeroelastic stability in turbulent flow [7-9] for
which parametric white noise in certain cases stabilizes the system
[7].

Consider a linear autonomous second-order system with parametric
random excitation:

X(@t) + [c+ceb())X @) + [k + keEW]X() =0 (1)

The variable £(¢) is a scalar physical white noise process having zero
mean value. It is convenient to write (1) in terms of the state vector
XT = (XX)as

X(t) = (A + £E()P)X(t) (2)

where A and P are constant matrices containing the deterministic
coefficients c, k, and the parametric noise coefficients c, k¢, respec-
tively. In the stochastic averaging procedure the state X(t) is ap-
proximated by a Markov process x(¢) which is continuous with
probability one and satisfies an associated Itd equation. This ap-
proximation is valid because the relaxation time of the system (2) is
large compared to the correlation time of the noise, which is zero for
white noise.

To investigate first moment (mean) stability the equation for the
vector of first moments M(t) = E[x(t)] is calculated to be

M(t) = (A + T®POM() 2BM(2) 3)

using the Wong and Zakai correction summarized in Appendix A of

[8]. The variable & is the (constant) spectral density of the white noise

process: E[£(¢)£(t + T)] = 27 ®;5(7). The matrix B for the system (1)
is given by

- 0 1

B= (4)

ﬂ"pg(.‘gkg -k W(I)ECEZ - cC

and the Routh-Hurwitz condltlons for first moment asymptotic sta-
bility are

c—wdhee2>0 (5)
k — a®cik; >0 (6)

The deterministic system is asymptotically unstable if ¢ <0 or k
< 0. From the stability criteria (5) and (6) it is evident that since ®;
> 0 the only unstable deterministic system which can be stabilized
by white noise has ¢ > 0 and k& < 0. In addition (6) implies that ¢k
< 0 for the noise to be stabilizing and (5) implies that a sufficiently
high noise intensity will destabilize the system. Under these conditions
the system is first moment stable for the range of noise intensity:

k 3
L )
c

To investigate second moment (mean square) stability the equation
for the vector of second moments M(¢) having components E[x1?],
Elx1xs], and E[x3?] is calculated to be

W(t) = Bm(t) ®)
where
0 2 0
§= W@ECEkE—k WCI)ECEQ—C 1 9)
27 Pyk,? 237 Bseshy — k) 2027 Pye? — ¢)
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allows the products of two infinite sums on the right-hand sides of
equations (4) to be replaced by single infinite sums, yielding an infinite
characteristic determinant for the eigenvalues (or nondimensional
frequency parameters) of free vibration (cf., [5, 6]).

Numerical Results

Fig. 2 shows the lowest five frequency parameters A =
(wa2y/p/D)'/2 and the corresponding nodal patterns of circular plates
elastically constrained along —m/4 < f§ < 7/4 and having uniformly
distributed mass along 37/4 < 8 < 57/4. The nodal patterns are either
symmetric (S) or antisymmetric (4) with respect to the symmetry
diameter. The fundamental (i.e., lowest frequency) mode has no in-
terior node lines. The constrained part of the plate can be regarded
as effectively clamped due to the large stiffness K,, = Ky = 108 (K,,
= a3K, /D, Ky = aKy/D) [5, 6]. The attached mass is increased with
the ratio of Ma/Mp = 0, 0.5, 1 (M, total mass of the added mass; Mp,
mass of the plate by itself). In the present calculations, Poisson’s ratio
is taken as » = 0.33 and the rotary inertia of the added mass is zero.
A 60th-order determinant is used to yield the frequencies which can
be considered as accurate within three significant figures, as found
in previous convergence studies [6].

Fig. 3 shows the variation of the frequency parameter in the same
problem for four different degrees of elastic constraint along the
boundary segment —7/4 < # < 7/4, ranging from fully free to fully
clamped. Symmetric and antisymmetric modes are presented in Figs.
3(a) and (b), respectively. As the mass ratio Ma/Mp is increased, the
frequencies decrease monotonically, as expected. But the rate of
change depends upon the mode of vibration and, in one case, the
curves (3-S and 2-A) cross each other. For K, = K, v = 0,the 1-S,1-4,
and 2-S modes correspond to rigid body motions of translation and
rotation; i.e.,, A = 0.
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In this Note a simple illustrative example demonstrates that an
unstable deterministic system can be stabilized by parametric white
noise excitation. Nevelson and Khas'minskii [1] and Nakamizo and
Sawaragi [2] show that it is impossible for a linear system excited by
parametric white noise to be stable if the deterministic system is
unstable. However, these results are based on mathematical white
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noise rather than physical white noise which is the limiting case of a
stationary stochastic process for which the correlation time tends to
zero. For physical white noise the correlation between the noise and
the system response at the same instant of time must be accounted
for.

In the analysis which follows it is shown using the Wong and Zakai
correction [3] which is a special case of the stochastic averaging pro-
cedure of Stratonovich [4] and Khas'minskii [5] that parametric
physical white noise can stabilize an unstable deterministic system, -
This fact was first reported by Mitchell and Kozin [6] in Example 4
of that reference and verified by simulation. The motivation for
finding a simple illustrative example stems from recent analyses of
helicopter rotor blade aeroelastic stability in turbulent flow [7-9] for
which parametric white noise in certain cases stabilizes the system
[7].

Consider a linear autonomous second-order system with parametric
random excitation:

X(@t) + [c+ceb())X @) + [k + keEW]X() =0 (1)

The variable £(¢) is a scalar physical white noise process having zero
mean value. It is convenient to write (1) in terms of the state vector
XT = (XX)as

X(t) = (A + £E()P)X(t) (2)

where A and P are constant matrices containing the deterministic
coefficients c, k, and the parametric noise coefficients c, k¢, respec-
tively. In the stochastic averaging procedure the state X(t) is ap-
proximated by a Markov process x(¢) which is continuous with
probability one and satisfies an associated Itd equation. This ap-
proximation is valid because the relaxation time of the system (2) is
large compared to the correlation time of the noise, which is zero for
white noise.

To investigate first moment (mean) stability the equation for the
vector of first moments M(t) = E[x(t)] is calculated to be

M(t) = (A + T®POM() 2BM(2) 3)

using the Wong and Zakai correction summarized in Appendix A of

[8]. The variable & is the (constant) spectral density of the white noise

process: E[£(¢)£(t + T)] = 27 ®;5(7). The matrix B for the system (1)
is given by
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and the Routh-Hurwitz condltlons for first moment asymptotic sta-
bility are

c—wdhee2>0 (5)
k — a®cik; >0 (6)

The deterministic system is asymptotically unstable if ¢ <0 or k
< 0. From the stability criteria (5) and (6) it is evident that since ®;
> 0 the only unstable deterministic system which can be stabilized
by white noise has ¢ > 0 and k& < 0. In addition (6) implies that ¢k
< 0 for the noise to be stabilizing and (5) implies that a sufficiently
high noise intensity will destabilize the system. Under these conditions
the system is first moment stable for the range of noise intensity:
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To investigate second moment (mean square) stability the equation
for the vector of second moments M(¢) having components E[x1?],
Elx1xs], and E[x3?] is calculated to be
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Fig. 1 Locus of eigenvalues of the second moment stability matrix B

The Routh-Hurwitz conditions for second moment asymptotic
stability are

3c — b P2 >0 (10)

2(1‘1)5)265:3’65 - W‘I’g(kzg + 2k025 + CCEkE) +kc>0 (11)

“10(7rq’£)3656 + (7(‘1)5)2653(21(105 + 16}85)
e 2#@5{052(702 + 3k) + k£(5CCE - kg)]
+c(3c2+4R)>0 (12)

As an illustrative numerical example of an unstable deterministic
system which is stabilized by parametric white noise, consider the case
¢=cg=1,k=-0.01, and k; = —0.5. The first moment stability con-
dition (7) is satisfied for

0.02 < 7d; < 1.0 (13)

and the second moment stability conditions (10)-(12) are satisfied
for the smaller range:

0.0444 < wd; < 0.2256 (14)

where condition (11) determines both the upper and lower bounds
in (14). The locus of the eigenvalues of the second moment coefficient
matrix B is shown in Fig. 1 with the value of w®; as a parameter.

A physical example of a system (1) which has a stochastic spring
constant with a negative deterministic value (£ < 0) is an inverted
pendulum with random vertical acceleration of the support. This has
been analyzed by several authors including Mitchell [10] for deter-
ministic damping. For the case of stochastic damping it is difficult
to cite a realistic mechanical damping model which provides the
necessary relationship between random damping and support motion
to provide stability (cgky < 0). A realistic physical application is in
aeroelastic problems for which stochastic damping is due to aerody-
namic turbulence {7-9].
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Folding of Elastica-Similarity
Solutions

C.-Y. Wang'

Introduction

The folding of thin elastic sheets (paper, sheet metal, cloth, etc.)
is extremely important in manufacturing processes. If the thickness
of the sheet is small compared to its minimum radius of curvature,
the elastica equations may be used [1]

dé
E1E=M+Fx’+Gy’ 1)
’ d ’
%=cosﬂ,d—z’7=sin0 2)

Here EI is the flexural rigidity, 8 is the local angle of inclination, s’
is the arc length, x’,y” are Cartesian coordinates, M,F,G are moment,
vertical force, horizontal force at s’ = 0, respectively. Fig. 1 shows three
different folding processes. In Case 1 the elastica is compressed by
two parallel approaching plates. In Case 2 the elastica is folded by two
symmetric rollers moving to the right. In Case 3 it is folded between
a moving roller and a flat plane. The boundary conditions are

Case 1

s’=0,0=m/2,x' =y =0 (3)

s=L0=m =0 @

G=0 (5)
~ Case 2 ‘

s'=0,0=uw/2,x' =y =0 6)

s=L08=my =0 (7)

G=0 (8)
Case3‘

s'=o,0=g§=x'=y'=o )
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The Routh-Hurwitz conditions for second moment asymptotic
stability are

3c — b P2 >0 (10)

2(1‘1)5)265:3’65 - W‘I’g(kzg + 2k025 + CCEkE) +kc>0 (11)

“10(7rq’£)3656 + (7(‘1)5)2653(21(105 + 16}85)
e 2#@5{052(702 + 3k) + k£(5CCE - kg)]
+c(3c2+4R)>0 (12)

As an illustrative numerical example of an unstable deterministic
system which is stabilized by parametric white noise, consider the case
¢=cg=1,k=-0.01, and k; = —0.5. The first moment stability con-
dition (7) is satisfied for

0.02 < 7d; < 1.0 (13)

and the second moment stability conditions (10)-(12) are satisfied
for the smaller range:

0.0444 < wd; < 0.2256 (14)

where condition (11) determines both the upper and lower bounds
in (14). The locus of the eigenvalues of the second moment coefficient
matrix B is shown in Fig. 1 with the value of w®; as a parameter.

A physical example of a system (1) which has a stochastic spring
constant with a negative deterministic value (£ < 0) is an inverted
pendulum with random vertical acceleration of the support. This has
been analyzed by several authors including Mitchell [10] for deter-
ministic damping. For the case of stochastic damping it is difficult
to cite a realistic mechanical damping model which provides the
necessary relationship between random damping and support motion
to provide stability (cgky < 0). A realistic physical application is in
aeroelastic problems for which stochastic damping is due to aerody-
namic turbulence {7-9].
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Folding of Elastica-Similarity
Solutions

C.-Y. Wang'

Introduction

The folding of thin elastic sheets (paper, sheet metal, cloth, etc.)
is extremely important in manufacturing processes. If the thickness
of the sheet is small compared to its minimum radius of curvature,
the elastica equations may be used [1]

dé
E1E=M+Fx’+Gy’ 1)
’ d ’
%=cosﬂ,d—z’7=sin0 2)

Here EI is the flexural rigidity, 8 is the local angle of inclination, s’
is the arc length, x’,y” are Cartesian coordinates, M,F,G are moment,
vertical force, horizontal force at s’ = 0, respectively. Fig. 1 shows three
different folding processes. In Case 1 the elastica is compressed by
two parallel approaching plates. In Case 2 the elastica is folded by two
symmetric rollers moving to the right. In Case 3 it is folded between
a moving roller and a flat plane. The boundary conditions are

Case 1

s’=0,0=m/2,x' =y =0 (3)

s=L0=m =0 @

G=0 (5)
~ Case 2 ‘

s'=0,0=uw/2,x' =y =0 6)

s=L08=my =0 (7)

G=0 (8)
Case3‘

s'=o,0=g§=x'=y'=o )
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case 3

Fig. 1

The three cases of folding

s’=L,0=my =0 (10)

Here L is the unknown free length of the elastica.

Similarity Solutions
Since there are no natural length scales we expect similarity solu-
tions, i.e., the shapes of the elastica are invariant. Let us normalize

all lengths by (EI/F)V/2,
s =(F/EDY2y, x=(F/ED2x', y=(F/ENY2y (11)

Equation (1), after differentiating once, and equation (2) become

d20 G
E;—Z- =cosf + (E) sin § (12)
d d
. cos 0, o sin § (13)
ds ds
Equation (12) can be integrated to give
2 G
1 (9—0) = gin § — (—) cosf+ C (14)
2 \ds F

where C is a constant of integration. For Case 1, equations (4), (5), and
(14) give C = 0 and

1 (éﬁ)z =ginf (15)
2 \ds
Hence
B0y =vz 16)

ds

Since G = 0 we can integrate equations (12), (13), (3), and (16) as an
initial value problem by the Runge-Kutta algorithm. A mini computer
(HP 9820A) using a step size As = 0.025 was found to be sufficient.
The integration terminates at = m, where we note the value of s, say,
equal to s*. Thus we find L indirectly by

s* = (F/EDY2[, a7

For Case 2, a one-parameter shooting method is used. We guess df//ds
at s = 0 and integrate until § = w. The initial guess is adjusted until
y = 0at § = 7. Similarly, for Case 3, we guess the value of (G/F) and
integrate equations (9), (12), and (13) untily = 0 at § = =. After (G/F)
is found one can compute the maximum moment from equations (14)
and (9).

Results and Discussion

Although the solutions to the elastica equations can be expressed
in terms of elliptic functions, it is much more convenient and accurate
.to use numerical integration as outlined in this paper. Case 1 was first
studied by Sonntag [2] using elliptic functions. Cases 2 and 3 was

formulated in a general way by Born [3], but he had neither numerical -

values nor recognized their application to the folding process. Al-
though the solution to elastica problems may be expressed in terms
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Table 1

Case 1 Case 2 Case 3
G/F 0 0 0.455632
Curvature at s’ = 0: %(O) Ve 1.71018 0

, do

Curvature ats’ = L: E(s*) 0 —0.96163 —1.34954
Arc length integrated: s* 1.85407 3.14844  5.26292
Maximum width: a (F/EI)Y/2 2 2.67181  2.70745
Maximum height: b(F/EI)V/2 1.69443  1.28591  1.34972
Maximum moment: %[max V2 1.71018  1.76301

of elliptic functions, in some cases the process is extremely inconve-
nient [4], even with up-to-date elliptic tables [5].

Table 1 shows our results. For the same force F and rigidity £I we
see Case 1 has the smallest width, and Case 2 has the smallest height.
Case 3, having the largest width and largest maximum moment, does
not compare as favorably. Sontag [2] obtained four figure accuracy
for Case 1.

Fig. 2 shows the three similarity shapes in terms of the normalized
coordinates. The actual dimensions are proportional to (F/EI)~1/2,
As the elastica is being folded, the force F approaches infinity as the
inverse square of the dimensions. The present theory, of course, ceases
to be valid at the final stages of collapse, where the dimensions of the
loop would be comparable to the thickness of the elastica.
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This work involves a pendulum made up of a mass, a pivoted
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s’=L,0=my =0 (10)

Here L is the unknown free length of the elastica.

Similarity Solutions
Since there are no natural length scales we expect similarity solu-
tions, i.e., the shapes of the elastica are invariant. Let us normalize

all lengths by (EI/F)V/2,
s =(F/EDY2y, x=(F/ED2x', y=(F/ENY2y (11)

Equation (1), after differentiating once, and equation (2) become
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Equation (12) can be integrated to give
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where C is a constant of integration. For Case 1, equations (4), (5), and
(14) give C = 0 and
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Hence
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Since G = 0 we can integrate equations (12), (13), (3), and (16) as an
initial value problem by the Runge-Kutta algorithm. A mini computer
(HP 9820A) using a step size As = 0.025 was found to be sufficient.
The integration terminates at = m, where we note the value of s, say,
equal to s*. Thus we find L indirectly by

s* = (F/EDY2[, a7

For Case 2, a one-parameter shooting method is used. We guess df//ds
at s = 0 and integrate until § = w. The initial guess is adjusted until
y = 0at § = 7. Similarly, for Case 3, we guess the value of (G/F) and
integrate equations (9), (12), and (13) untily = 0 at § = =. After (G/F)
is found one can compute the maximum moment from equations (14)
and (9).

Results and Discussion

Although the solutions to the elastica equations can be expressed
in terms of elliptic functions, it is much more convenient and accurate
.to use numerical integration as outlined in this paper. Case 1 was first
studied by Sonntag [2] using elliptic functions. Cases 2 and 3 was
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nient [4], even with up-to-date elliptic tables [5].

Table 1 shows our results. For the same force F and rigidity £I we
see Case 1 has the smallest width, and Case 2 has the smallest height.
Case 3, having the largest width and largest maximum moment, does
not compare as favorably. Sontag [2] obtained four figure accuracy
for Case 1.

Fig. 2 shows the three similarity shapes in terms of the normalized
coordinates. The actual dimensions are proportional to (F/EI)~1/2,
As the elastica is being folded, the force F approaches infinity as the
inverse square of the dimensions. The present theory, of course, ceases
to be valid at the final stages of collapse, where the dimensions of the
loop would be comparable to the thickness of the elastica.
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weightless rod, and a spring. The mass is constrained to maintain
its axial position on the rod, but is allowed to move rotationally on
the rod under the influence of the spring. The pivot is vibrated ro-
tationally at a high frequency about a vertical axis. It is found that,
in some conditions, the vibration causes new stable equilibrium
positions.

Introduction

The vibrated pendulum has been studied by many investigators.
Stephenson [1] considered the plane pendulum subjected to a vertical
vibration applied at the pivot. Lowenstern [2] considered several
devices including the vibrated spherical pendulum. Phelps and
Hunter [3] provided a thorough exposition of the plane pendulum with
a vertical harmonic vibration at an unrestricted frequency. Miles [4]
considered the stability of the downward vertical position of a
spherical pendulum subjected to a horizontal vibration. Sethna and
Hemp [5] studied the gyroscopic pendulum to which a high frequency
vertical vibration was applied. Several authors including Howe [6]
and Bogdanoff and Citron [7] have investigated the effects of random
vertical vibrations applied to plane pendulums. Ryland and Meiro-
vitch [8] considered the plane flexible pendulum with a vertical har-
monic vibration at an unrestricted frequency.

In this work, the effect of a rotational vibration is investigated. The
pendulum is allowed to have torsional flexibility so that gyroscopic
forces can occur. The pendulum is shown in Fig. 1. The mass is a wheel
whose axis coincides with the axis of the rod. There is a constraint
which prohibits the mass from moving along the rod but the mass is
allowed to rotate on the rod under the influence of the spring. A small
rotational harmonic vibration is applied to the pivot about a vertical
axis. The frequency of the vibration is large with respect to the natural
frequency of the motion of the pendulum under the influence of
gravity, while the frequency of the vibration is not large with respect
to the natural frequency of the rotational motion of the mass on the
rod under the influence of the spring.

The method of averaging [9)] is used to replace the equations of
motion by differential equations which approximately describe the
motion. These equations are examined to find stable equilibrium
positions. It is found that there are new stable equilibrium positions
that occur because of inertia forces caused by the vibration.

The Analysis
The position of the pendulum is described by the variables 8, ¢, and
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. ¢ is a rotation of the pendulum about j3 and ¥ is a rotation of the
mass about £3. The vibration is given by = e sin vt. The equations
of motion are

s+ mr)g + (I3 — Iy — mr2) sin ¢ cos ¢ €202 cos? vt
+Igysingevcosvt +mrgsing +c1¢=0

and
Is( — ev? sin vt cos ¢ — ¢ sin ¢ ev cos v7) + cof + Ky = 0,

where I, I, and I3 are moments of inertia about axes through the
center of the mass parallel to ia, fa, and %3, respectively, m is the mass,
r is the distance from the pivot to the center of the mass, K is the
spring constant, ¢y and ¢5 are damping coefficients, ¢ is time, and the
dot indicates the derivative with respect to time.

The problem is restricted so that the amplitude of the vibration,
¢, is positive and near zero and the frequency v is of the order ¢~ and
the spring constant K is of order »2. These restrictions allow the
equations of motion to be presented in terms of the small parameter
eLetm=vt, ] =I3(Ig+mrH)L k2= KIg71v2 €26 = mrg (I +
mr2)~1=2 ea; = ¢y~ Iz + mr?~L, eay = cg v~1 I371, and let the
prime indicate differentiation with respect to 7. The equations of
motion become

¢” + €4(I ~ 1) sin ¢ cos ¢ cos® 7
+ el sinpcost + e dsing + earp’ =0

and
Y” — € cos ¢psin T — e’ sin ¢ cos T

+ k%Y + eay’ = 0. (la,b)

In this representation of the equations of motion, the variables, and
parameters are dimensionless. The parameter ¢ is restricted to be
positive and near zero, the parameters I, §, k2, a3, and ay are positive
and independent of e. In this analysis, two other restrictions are im-
posed. They are

1 k2isnot near 1, i.e., k2 — 1 is independent of ¢.

2 The initial conditions {{(0) and ¢/(0) are of order e.

To change the equations of motion, (1}, into four equations in the
standard form for the method of averaging the following transfor-
mation is made. Let

¢ = ew
Y =eucoskr+ evsinkr + e(k2—1)"1cos psin 7

V' = —euk sin k1 + evk cos kt

—e(k2~1)"l¢'singsinT +e(k2—1)"1cospcost. (2a,b,c)

Equations (2) transform equations (1) into four first-order differential
equations in the variables ¢, w, u, and v. Equations (2b) and (2¢) are
used with the variation of parameters technique. The third term in
(2b) and the third and fourth terms in (2¢) are included to remove
large terms in the first-order differential equations. Differentiation
of (2a) and substitution of (1a), (2a), and (2¢) give an equation in-
volving «’, ¢, w, u, and v. Differentiation of (2¢) and substitution of
(1b), (2a), and (2¢) give an equation involving u’ and v’. This, along
with the variation of parameters technique gives an equation for &’
and an equation for v’. Then, if (2a) is included, there are four first-
order equations in the standard form for the method of averaging.
They are

¢ = ew

/= —¢e(I — 1) sin ¢ cos ¢ cos? 7 + elku sin ¢ sin k7 cosT
—¢elku sin ¢ cos kT cos 7 — el (k2 — 1)1 sin ¢ cos ¢ cos? T

—~€ebsing —eagw

’= ~ ek~ Hwsin ¢ cos T + agku sin kT — agkv cos k7
—~ ag(k?— 1)~ cos ¢ cos 7 + 2(k2 — 1)1 wsin ¢ cos 7] sin k7.
(3a—c)
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v’ = ek~1 [wsin ¢ cos 7 + azku sin k7 ~ agkv cos kT
—ag9(k?~1)"tcos¢pcosT

+ 2(k2— 1)1 wsin ¢ cos 7] cos k7. (3d)

These equations are in the standard form for the method of averaging.
Averaging equations (3) gives

P’ = ¢}

— €5 (I —1)sin ® cos  — 3l (k2 — 1)1 sin P cos
—edsin P — ea;

U'=—¢eaU

V'=—¢ekasV,

o=

(4a-d)

where ®, Q, U, and V are the averaged variables corresponding to ¢,
w, u, and v.

Equations (4) can be analyzed in a variety of ways. In this investi-
gation, equilibrium solutions are found and stability of these solutions
is determined. By means of a theorem of Sethna [10] it can be stated
that there exists an almost periodic solution of equations (3) which
approaches an equilibrium solution of equations (4) as ¢ — 0 (for all
7) and that the stability properties of this solution of equations (3)
are the same as the stability properties of the zero solution of the
variation equations. In the remainder of this work, the equilibrium
solutions of equations (4) are found and stability is judged by the
variation equations.

Equations (4) indicate there is equilibrium if
0=1Qe
0= (B cos P, + 6) sin P,
0=U,
0=V, (5a—d)

where &, ., U,, and V, are equilibrium values of ®, Q, U, and V,
and 8 =3 (I — 1+ I(k2—1)~1), From equations (5) it can be seen that
equilibrium requires that sin ®,, is zero or

Bcos P, + 6=0. (6)

Equilibrium is considered when ., U,, and V, are all zero and
1 P, = 0,

or
2 ¢, =7,

or
3: d, is an angle described by equation (6) with &, = 0, =.

Equilibrium when sin $, = 0 and 8 cos ®, + 6 = 0is not considered.
For this case, Sethna’s theorem does not apply and the variation
equation is not useful. Stability could be judged, however, by analysis
of the right-hand side of equation (5b).

Stability of these equilibrium positions and of the corresponding
almost periodic solutions of equations (3) can be determined by ex-
amining the variation equations. The variation equations are

Py = ey

Q' = — e(B cos 20, + & cos )P — ear

Ut = — s aU;

Vi =—¢esasVy, (7Ta~d)

where ®1, 4, U1, and V are the variations of ®, Q, U, and V from
their equilibrium values ®,, ., U,, and V.. Since the zero solutions
for (7c¢) and (7d) are stable they need not be considered further.
Stability depends only on equations (7a) and (7b) and since the
coefficient of {1; in (7b) is negative, stability depends only on the
coefficient of ®; in equation (7b). If it is negative, there is stability. =

202 / VOL. 48, MARCH 1981

For the equilibrium position in Case 1, i.e., &, = 0, the coefficient,
of ®; is — (8 + 6) and then the requirement for stability is

B>

For the equilibrium position in Case 2, i.e., ®, = m, the coefficient
of ®; is —€(B — &) and then the requirement for stability is

B> .

Consider the equilibrium positions mentioned in Case 3. Equation
(6) indicates that if 8 < =6, there is equilibrium in either the first or
fourth quadrants and if 8 > §, there is equilibrium in either the second
or third quadrants. Using equation (6) to remove ®, from the coeffi-
cient of ¥4, in equation (7), this coefficient becomes

G R
8

For ®, in the first or fourth quadrants, i.e., 8 < —8, this coefficient
is negative which indicates stability. For ®. in the second or third
quadrants, i.e., 8 > §, the coefficient of ®; is positive which indicates
instability.

It can be noted that U, = 0 and V, = 0 implies an equilibrium value
for y: ¥, = 0. Then in summary, it can be said that the stable equi-
librium positions are

1: Ye=0, ®,=0, when B> -6
2: Ye=0, P,=m, when B3>0

and

3: Ve = 0, &, is a first or fourth quadrant angle given by
equation (6) when 8 < —4.

The unstable equilibrium positions are

1: Ye=0, $,=0, when B< -6
2: Ye=0, P,=7, when <6

and

3 Ve = 0, &, is a second or third quadrant angle given by
equation (6), when 8 > 4.

From Sethna’s theorem, it is known that there are almost periodic
solutions of (3) (or (1)) which approach these equilibrium solutions
as e — 0.

Conclusion and Remarks

The analysis shows that, depending on the frequency of the vi-
bration, the spring constant, the moments of inertia, the radius,
gravity, and the initial conditions, there can be stable motion near
several fixed positions, They are (a) the downward vertical position;
(b) the upward vertical position; and (¢) two downward nonvertical
positions (first and fourth quadrants of ¢). The positions mentioned
in (b) and (c) are caused by two inertia forces created by the vibration.
One of these is centrifugal in nature. The other could be described in
gyroscopic. .

The first of these inertia forces, the centrifugal force, is shown by
the first term on the right of equation (4b) and it comes from the term
(I3 — Iy — mr?) sin ¢ cos ¢ €2 v2 cos? pr in the first of the original
equations of motion. This force has a stabilizing effect on the positions
at ¢ = 0, w if mr2 < Iy — Iy, i.e., if the pendulum is short and wide, and
it has a destabilizing effect on these positions if the pendulum is long
(mr2 > I3 — I5). Also, this force has a stabilizing effect on the positions
in the first and fourth quadrants of ¢ if the pendulum is long (mr2 >
I3 — Iy) and it has a destabilizing effect on these positions if the
pendulum is short (mr2 < I3 — I).

The gyroscopic force is shown by the second term on the right of
equation (4b). This comes from the term er] 31]/ sin ¢cos v7 in the first
of the original equations of motion, This force can be a much stronger
influence than the centrifugal force because of k2 — 1 in the denomi-
nator. The quantity 2 — 1 can be close to zero but it is restricted to
be independent of ¢. If k2 — 1 were of order ¢ a different analysis would
be needed. The gyroscopic force has a stabilizing influence on the
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positions at ¢ = 0, 7 if k2> 1 and a destabilizing influence on these
positions if k2 < 1. The gyroscopic force has a stabilizing influence on
the positions in the first and fourth quadrants of ¢ if k2 < 1 and a
destabilizing influence on these positions if k2 > 1,
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Stress Distribution Around a
Circular Hole in Square Plates,
Loaded Uniformly in the Plane,
on T'wo Opposite Sides of the
Square

M. Erickson? and A. J. Durelli?

The complete stress distribution around a circular hole, located in

the center of a square plate, has been determined photoelastically
for the case of the plate loaded uniformly on two apposite sides. The
study was conducted parametrically for a range of the ratio D/W of
the diameter of the hole to the side of the square from 0.20 to 0.83.
The results obtained permit the determination of the stresses for
any biaxial condition and verify a previous solution obtained for the
case of the pressurized hole. The experimental procedure is briefly
described.

Introduction

The classical problem of the stress distribution around a circular
hole in an infinite plate subjected to a uniaxial uniform loading in the
plane of the plate was solved by Kirsch [1] in closed form. The ap-
preciably more complicated case of the finite plate with the circular
hole was solved by Howland |2] using an infinite series solution, but
results were evaluated only for D/W < 0.5, D being the diameter of
the hole and W the width of the plate. The distribution of stress for
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Fig. 2 Typical isochromatic pattern around a circular hole in a square plate
subjected to uniform pressure on two opposite sides

the cases when D/W > 0.5 was obtained experimentally by Wahl and
Beeuwkes [3]. The stress-concentration factors referred to both the
gross area and the net area, for the total range of D/W values are given
in [4]. The case of the very large hole in the plate, when D/W ap-
proaches one presented some problems of interpretation, which have
been dealt with in [5].

The stress distribution for the case of a square plate with a circular
hole was solved experimentally [6] when a uniform pressure is applied
inside the hole, or what is equivalent [7], when the four sides of the
square are subjected to uniform pressure. The problem of the square
plate with a circular hole, subjected to in-plane uniform pressure
applied to two opposite sides of the plate, has not been solved. The
problem is important and if the solution were available, the solution
of the previously mentioned problem for any ratio of biaxiality could
be obtained as a special case by superposition. That is the problem
dealt with in this Note. The solution is obtained photoelastically for
arange of D/W values from 0.20 to 0.83.

Test Procedure
The analysis was conducted in a 3-in-sq, 3-in-thick (Homalite 100)
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positions at ¢ = 0, 7 if k2> 1 and a destabilizing influence on these
positions if k2 < 1. The gyroscopic force has a stabilizing influence on
the positions in the first and fourth quadrants of ¢ if k2 < 1 and a
destabilizing influence on these positions if k2 > 1,
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The complete stress distribution around a circular hole, located in

the center of a square plate, has been determined photoelastically
for the case of the plate loaded uniformly on two apposite sides. The
study was conducted parametrically for a range of the ratio D/W of
the diameter of the hole to the side of the square from 0.20 to 0.83.
The results obtained permit the determination of the stresses for
any biaxial condition and verify a previous solution obtained for the
case of the pressurized hole. The experimental procedure is briefly
described.

Introduction

The classical problem of the stress distribution around a circular
hole in an infinite plate subjected to a uniaxial uniform loading in the
plane of the plate was solved by Kirsch [1] in closed form. The ap-
preciably more complicated case of the finite plate with the circular
hole was solved by Howland |2] using an infinite series solution, but
results were evaluated only for D/W < 0.5, D being the diameter of
the hole and W the width of the plate. The distribution of stress for
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the cases when D/W > 0.5 was obtained experimentally by Wahl and
Beeuwkes [3]. The stress-concentration factors referred to both the
gross area and the net area, for the total range of D/W values are given
in [4]. The case of the very large hole in the plate, when D/W ap-
proaches one presented some problems of interpretation, which have
been dealt with in [5].

The stress distribution for the case of a square plate with a circular
hole was solved experimentally [6] when a uniform pressure is applied
inside the hole, or what is equivalent [7], when the four sides of the
square are subjected to uniform pressure. The problem of the square
plate with a circular hole, subjected to in-plane uniform pressure
applied to two opposite sides of the plate, has not been solved. The
problem is important and if the solution were available, the solution
of the previously mentioned problem for any ratio of biaxiality could
be obtained as a special case by superposition. That is the problem
dealt with in this Note. The solution is obtained photoelastically for
arange of D/W values from 0.20 to 0.83.

Test Procedure
The analysis was conducted in a 3-in-sq, 3-in-thick (Homalite 100)
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Fig. 3 Stress distributions on inner boundary of a round hole in a square plate
subjected to uniform pressure on two opposite sides (average stress on the
net section used for comparison)

specimen (Fig. 1). The uniform pressure is applied by means of a
specially built device as described in [8]. Two rubber hoses, one placed
on each of the opposite sides of the plate are used. The deformation
of the pressurized hose is restrained by Plexiglass sheets. The loading
frame had to be calibrated to determine the amount of pressure ac-
tually applied to the specimen. For this purpose, a strain gaged load
cell was specially designed. The average fringe order was computed
using the applied pressure and the fringe value of the material and
a check obtained by algebraically averaging the areas above and below
the zero axis for those specimens with high D/W.

Seven specimens were used with the inner hole diameter varying
from 0.6 in. to 2.5 in. giving D/W values from 0.2 to 0.83, where D is
the hole diameter and W the width of the specimen. Dark field and
light field photographs were taken in a diffused light polariscope of
the seven specimens, subjected to pressure sufficient to produce a
maximum of about 5 fringes (Fig. 2). Fractional fringe orders were
recorded using Tardy’s method of compensation at every 10° at the
edge of the hole from 0° (horizontal) to 90° (vertical). Readings were
also taken on the outer edge of the plate at the 0° and 90° points. A
calibration test on a 2.5-in-dia round disk of the material gave a ma-
terial constant of 156 lb/in./fringe.

The results obtained are given as stress distributions along the
inside and the outside boundaries (Figs. 3 and 4), and as stress con-
centrations at the intersection of the longitudinal and transverse axes
with the boundary of the hole. All values are given parametrically as
functions of D/W. These results permit, by superposition, the de-
termination of stresses for any ratio of biaxial loading of the plate. The
case of equal biaxiality was computed and is shown in Fig. 5. The
values obtained verify those previously published for the case of the
hydrostatically loaded hole [6], using the transformation explained
in [7]. '

It may be noted that, in the present problem, K; increases as D/W
increases while for the case of circular holes in long rectangular plates,
K; decreases as D/W increases.
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subjected to a uniaxial uniform pressure and computations for the biaxial
case
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Planar Motion of a Rigid Body
With a Friction Rotor

E. V. Wilms?! and H. Cohen?

We consider a rigid body in planar motion which is free of all ex-
ternal forces. A rigid rotor of radius r is inserted in a cylindrical cavity
inside the body and is acted upon by a normal force, and a friction
force at the circumference. The combined system is illustrated in Fig.
1, and the forces acting on the rotor are indicated in Fig. 2. The system
has similarities to those considered in [1, 2], except that in the present
study the analysis is exact, and not dependent on a small angle ap-
proximation. The present problem has possible application in the
damping of spacecraft rotations.

The center of mass of the outer body.is at point 0, and the centers
of mass of the entire system and of the rotor are at points (G and 4,
respectively. The xy-axes are attached to the outer body. The angular
velocity of the outer body is ¢ and that of the rotor is ¢ + §. Since there
are no external forces applied, the point G remains fixed, and the
angular momentum h with respect to G is a constant. We then
have

h=¢l+ 01, (1)

Here I = mono? + mana? + Iy + I 4, where no and 14 are the distances
indicated in Fig. 1, mo and m4 are the masses of the outer body and
of the rotor, respectively, Io and I 4 are the moments of inertia of the
outer body and the rotor with respect to 0 and A, respectively.

The equations of motion of the rotor are then

Ncos ¢ + ps sin ) = mana ¢2, (2a)
N(siny — us cos ) = —mana &, (2b)
Ia(§ + ) = uNrs. (2)
Here p is the coefficient of friction, and s = sgn §.
Combining equations (2a) and (2b)
= T 9 90 3
Combining equations (1), (2c), and (3)
e R GRS @)
Equation (4) may be written
¢ =s B2, G

where

o= K manA

Ira+ #2)1/2 ’
Equation (5) indicates that we will obtain real solutions for ¢ only as
long as § is real. Thhis will be true only as long as « < 1. Physically it
is always possible to construct a system so that this inequality is vio-
lated. The difficulty encountered is an illustration of Painleve’s
paradox, some of the earliest examples of which are found in [3, 4].
The need for further study of problems of this kind was suggested by
Klein in [4]. The difficulty arises because the Coulomb friction law
is not always compatible with the equations of rigid-body dynamics,
and some elasticity must be taken into account.

Equation (5) may be solved to yield

I'=sI-1,, B=a/(l-a?l/2
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Fig. 1 The system

Fig. 2 The forces acting on the rotor

- o
=— 6
¢ 1= sBhot (8)
Here ¢ is the initial value of ¢ at ¢ = 0.
Equations (2a), (2b), and (5) yield
B+u
tany = s . (7)
1-Bu
Equations (1) and (6) yield
. IB¢o%t
IA((9—00)=—S-—ﬁ£0.—. {8)
1~ sB¢ot

Here 90 is the initial value of f. Equation (8) is valid only if s is constant
over (0,t).
We rewrite equations (6) and (8) as

; do

=—, 9
¢ = 9
st’

Y
o 1 —st’

(10

where
t" = Béot and O = —Iiia
Ido

There are 3 cases which must be considered. We will take ¢o > 0
throughout Yvith no loss in generality.
Case 1: 4= 0. Then equations (9) and (10) become
. _ o Y t’
= ; =y - .
Ti-v -t
Equations (11) indicate that 8" = 0, when ¢/ = #/6/1 + §/5. At this time
¢ = ¢o(1 + ). After this time the system rotates with a constant
angular velocity and no relative motion between the rotor and the

(11)

outer body. .
Case2: 09 < —1. Then equations (9) and (10) become
.o b t
=—; =0+ . 12
T ier Ty (12)

Equations (12) yield @ —1+#yand ¢ — Oast — o, . .
Case3d: —1<#y<0. Equations(12)indicatethatf =0and ¢
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= ¢o(1 + 0g) when ¢’ = —@o/1 + §’;. After this time the two bodies
rotate with no relative motion. We see that the behavior is quite dif-
ferent in Cases 2 and 3.
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Viscoelastic Responses of Finite
Bodies by Quadrature Form of
Correspondence Principle!

G. Dasgupta?

Alternative forms of the elastic-viscoelastic analogy for numerically
obtained frequency response functions have been reported for solids
of similarly and dissimilarly viscoelastic in bulk and shearin [1, 2],
respectively. It is herein demonstrated that the same integrals can
be numerically evaluated to obtain viscoelastic responses of finite
bodies even though the harmonic response functions have singu-
larities at the resonance frequencies. Crucial aspects of the algorithm
regarding the truncation of numerical quadrature in the neighbor-
hood of the poles are addressed in this Note.

Introduction

The frequency response functions for field variables, such as
stresses, displacements, etc., of mechanical systems of practical en-
gineering interest, are generally computed with time harmonic inputs
using computer codes based on spatial discretization methods. These
functions grow indefinitely at the resonance frequencies for bounded
elastic systems, as depicted in Fig. 1. In fact, it is customary to un-
dertake a separate eigenvalue search to evaluate numerically the
resonance frequencies to a satisfactory degree of accuracy. For the
purpose of design-analysis it is essential to obtain the frequency re-
sponse functions with various damping characteristics of the system.
The classical form for the elastic-viscoelastic analogy cannot be em-
ployed directly since a closed-form solution for the response function
is seldom available for bodies of arbitrary shapes. It is, therefore,
computationally economical to implement the numerical form of the
elastic-viscoelastic correspondence principle rather than perform
fresh computations of the entire system with different damping
properties.

The form of the quadrature expressions in [1, 2] suggests that the
poles, which are introduced by the kernel to transform the elastic
solutions to the viscoelastic domain, will be inside the bottom half of
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Fig. 1 Elastic frequency response function with resonance poles

the complex plane. For infinite and semi-infinite bodies the response
functions decay rapidly as the frequency increases indefinitely. These
functions are also smooth and bounded. There is no computational
difficulty encountered in implementing the numerical integration
along the real line, say by employing a Simpson-type rule. However,
for finite bodies the response functions will have singularities in the
form of poles at the resonant frequencies, refer to Fig. 1. A straight-
forward numerical integration in the neighborhood of the poles on
the real axis can incur undesirable computational errors. A pertinent
step in this context is to determine the contribution of the kernel in
the computation of the residue arising out of the resonance poles. The
objective of this Note is to demonstrate that reliable viscoelastic re-
sponses can still be obtained via the quadrature forms of the corre-
spondence principle if adequate care is taken to select the limits of
the numerical integration in the neighborhood of the resonance poles.
The local antisymmetry of frequency response functions yields zero
net contribution when the quadrature is interpreted as the Cauchy
principal value. The analysis is presented in the following section.

Effects of Poles

The kernels for the alternative representations of the elastic-vis-
coelastic correspondence principle for complex shear modulus [1], and
for the complex Poisson’s ratio [2], associated with solids similarly
and dissimilarly viscoelastic in bulk and shear, respectively, have very
similar structures. In this Note only the first case, i.e., with a fre-
quency-dependent complex shear modulus, u*, is illustrated for
brevity. A general nondimensional elastic frequency response function
is indicated by f(w), in which w is the nondimensional frequency of
excitation associated with the elastic shear modulus p. An n-degree-
of-freedom system has 2n real resonance frequencies at + A;, j = 1
to n. It will be assumed, without any loss in generality, that the fre-
quency response function can be represented in the following form:

n
f@) = F@/T] lo? = A (1)
j=
in which F(w) is an infinitely smooth real function. It is recognized
in the aforementioned form that the only singularities for the fre-
quency response function are due to the resonance frequencies and
they occur symmetrically about the origin.

Now the nondimensional viscoelastic response function f*(w) can

be obtained in the form

f*(w) = flw*)

[classical analogy]

= j‘_m flw) - K(w, o, B)dw [alternativé analogy] 2)
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= ¢o(1 + 0g) when ¢’ = —@o/1 + §’;. After this time the two bodies
rotate with no relative motion. We see that the behavior is quite dif-
ferent in Cases 2 and 3.
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Alternative forms of the elastic-viscoelastic analogy for numerically
obtained frequency response functions have been reported for solids
of similarly and dissimilarly viscoelastic in bulk and shearin [1, 2],
respectively. It is herein demonstrated that the same integrals can
be numerically evaluated to obtain viscoelastic responses of finite
bodies even though the harmonic response functions have singu-
larities at the resonance frequencies. Crucial aspects of the algorithm
regarding the truncation of numerical quadrature in the neighbor-
hood of the poles are addressed in this Note.

Introduction

The frequency response functions for field variables, such as
stresses, displacements, etc., of mechanical systems of practical en-
gineering interest, are generally computed with time harmonic inputs
using computer codes based on spatial discretization methods. These
functions grow indefinitely at the resonance frequencies for bounded
elastic systems, as depicted in Fig. 1. In fact, it is customary to un-
dertake a separate eigenvalue search to evaluate numerically the
resonance frequencies to a satisfactory degree of accuracy. For the
purpose of design-analysis it is essential to obtain the frequency re-
sponse functions with various damping characteristics of the system.
The classical form for the elastic-viscoelastic analogy cannot be em-
ployed directly since a closed-form solution for the response function
is seldom available for bodies of arbitrary shapes. It is, therefore,
computationally economical to implement the numerical form of the
elastic-viscoelastic correspondence principle rather than perform
fresh computations of the entire system with different damping
properties.

The form of the quadrature expressions in [1, 2] suggests that the
poles, which are introduced by the kernel to transform the elastic
solutions to the viscoelastic domain, will be inside the bottom half of
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the complex plane. For infinite and semi-infinite bodies the response
functions decay rapidly as the frequency increases indefinitely. These
functions are also smooth and bounded. There is no computational
difficulty encountered in implementing the numerical integration
along the real line, say by employing a Simpson-type rule. However,
for finite bodies the response functions will have singularities in the
form of poles at the resonant frequencies, refer to Fig. 1. A straight-
forward numerical integration in the neighborhood of the poles on
the real axis can incur undesirable computational errors. A pertinent
step in this context is to determine the contribution of the kernel in
the computation of the residue arising out of the resonance poles. The
objective of this Note is to demonstrate that reliable viscoelastic re-
sponses can still be obtained via the quadrature forms of the corre-
spondence principle if adequate care is taken to select the limits of
the numerical integration in the neighborhood of the resonance poles.
The local antisymmetry of frequency response functions yields zero
net contribution when the quadrature is interpreted as the Cauchy
principal value. The analysis is presented in the following section.

Effects of Poles

The kernels for the alternative representations of the elastic-vis-
coelastic correspondence principle for complex shear modulus [1], and
for the complex Poisson’s ratio [2], associated with solids similarly
and dissimilarly viscoelastic in bulk and shear, respectively, have very
similar structures. In this Note only the first case, i.e., with a fre-
quency-dependent complex shear modulus, u*, is illustrated for
brevity. A general nondimensional elastic frequency response function
is indicated by f(w), in which w is the nondimensional frequency of
excitation associated with the elastic shear modulus p. An n-degree-
of-freedom system has 2n real resonance frequencies at + A;, j = 1
to n. It will be assumed, without any loss in generality, that the fre-
quency response function can be represented in the following form:

n
f@) = F@/T] lo? = A (1)
j=
in which F(w) is an infinitely smooth real function. It is recognized
in the aforementioned form that the only singularities for the fre-
quency response function are due to the resonance frequencies and
they occur symmetrically about the origin.

Now the nondimensional viscoelastic response function f*(w) can

be obtained in the form

f*(w) = flw*)

[classical analogy]

= j‘_m flw) - K(w, o, B)dw [alternativé analogy] 2)
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= f_ " G(w)dw, say @

(Cont.)

in which w* = /{u*/ujw=a~if;0,8>0,i =/ —-1.
The kernel, K(w, @, 8), is given by ™

B
6% + [a — w]?)
and is defined on the bottom half of the complex plane. The integral
in (2) when interpreted as the Cauchy principal value can accom-
modate the singularities produced by the form of the frequency re-
gponse function in (1). The error due to truncation in the neighbor-
hood of a resonant singularity, A; is

Kw, o, B) =

Ajtes
= f 7w K@ o fde
Aj—ef
This is evaluated as a line integral along a semicircular arc of radius
¢; centered at A; on the lower half of the complex plane leading to

Ij = Real [(i/2 \y) - Qj]

in which

FO\) - KN\, o, B

q =l
n .
[T (2= N2
kj
Thus, from the foregoing two equations, I; is an imaginary number;

hence, zero contribution of the kernel is due to a resonant frequency.
The fact that a numerical scheme is passible employing the quadra-
ture representation (2) to compute the viscoelastic response is thus
established.

Error Estimation
In a numerical evaluation of the integral in expression (2) the
computation is to be terminated at a distance ¢ from the pole. It is,
therefore, desirable to obtain an error bound for such a truncation.
The integral in (2) is examined between two closely spaced truncation
points, as illustrated in Fig. 1, ¢;! and €;2, ¢;2 > ¢;1, in the neighbor-
hood of a pole A;, and will be indicated by D;. As dictated by the
Cauchy principal value definition the sum is computed from either
side of the pole. This leads to
D; = —Q—j—lo 2N + 1) (2N — ¢2)
2N; 2N + €2 2N — 1)
The limiting value of the aforementioned expression as ¢;! tends to
0 and ¢;2 tends to ¢; is

Ry = By BN = 4)
2); (2N + ¢)

and the error term

e(N) = ZR;(\)) [for all poles]

This suggests that in order to improve upon the accuracy the con-
tribution of the kernel in the neighborhood of the singularity, e(\),
could be added to the numerical sum with truncated limits.

Conclusions

The alternative quadrature form of the elastic-viscoelastic analogy
is formally extended to account for the singularities of the frequency
response function pertaining to bounded elastic continua. It has been
demonstrated that leaving equal intervals of the real axis on either
side of the poles (due to the resonance phenomenon) errors due to
numerical quadrature can be avoided. It is further illustrated that an
estimated compensation due to the truncation can be incorporated
in the viscoelastic responses so obtained by employing a numerical
integration. Thus the alternative form of (2) can be reduced to

fHw) = Z{R;j(\) + Rj(=N) + T}

in which
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—Aj—e Nj+1—€
T = f G(w)dw + f G (w)dw
—Aj+1te Aj—e

with the anticipation that A, is infinity (i.e., numerically set to a
large number).

The aforementioned quadrature formula avoids the singularities
on the real axis and contains an estimated correction factor. The form
suggests that the expression holds for a more relaxed condition on the
elastic frequency response function, f(w). Piecewise continuous
functions with finite jumps may be allowed between the resonant
poles in the description of f(w); even then [1, 2] remain valid.

Acknowledgment

The author wishes to thank Dr. Richard M. Christensen of the
Lawrence Livermore Laboratory, Livermore, Calif., for pointing out
the necessity of the present investigation. The suggestions and advice
of Prof. Morton B. Friedman of Columbia University, New York, are
greatly appreciated.

References

1 Dasgupta, G., and Sackman, J. L., “An Alternative Representation of the
Elastic-Viscoelastic Correspondence Principle for Harmonic Oscillations,”
ASME JOURNAL OF APPLIED MECHANICS, Vol. 44, Mar. 1977, pp. 57-60.

2 Dasgupta, G., and Sackman, J. L., “A Quadrature Representation of the
Viscoelastic Analogy in the Frequency Domain,” ASME JOURNAL OF APPLIED
MECHANICS, Vol. 45, Dec. 1978, pp. 955-956.

How to Optimally Support a
Plate '

W. H. Yang'

In practical applications, plates are often not supported along their
boundaries. Properly located interior supports can greatly increase
the load-carrying capacity of a plate. The optimal locations of N
point symmetrical support for a uniformly loaded circular plate are
calculated to substantiate the claim. The solutions are obtained for
1 £ N =< = under the theory of limit analysis of plates. The collapse
load in each case is maximized by a search for the optimal support
location.

The Problem

Optimal structural design [1] including optimal load and support
distributions are nonlinear problems. Plasticity [2] of materials plays
an important role in the optimal solutions. The limit analysis for
plates is used in this Note as the basis such that the collapse load as
a measure of load-carrying capacity of a plate is maximized by a search
of optimal support location.

The problem considered is a uniformly loaded circular plate with
a constant yield moment My, resting on a set of symmetrically located
point supports. We seek the optimal support location in terms of the
distance, d, from a support to the center of the plate such that the
limit load g is maximized. ’

The number, N, of supports starts with one at d = 0, and increases
to « as the points approach a line support along a circle of optimal
radius d. For each N, the optimal support location and the maximum
limiting load g7 are obtained.
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= f_ " G(w)dw, say @

(Cont.)

in which w* = /{u*/ujw=a~if;0,8>0,i =/ —-1.
The kernel, K(w, @, 8), is given by ™

B
6% + [a — w]?)
and is defined on the bottom half of the complex plane. The integral
in (2) when interpreted as the Cauchy principal value can accom-
modate the singularities produced by the form of the frequency re-
gponse function in (1). The error due to truncation in the neighbor-
hood of a resonant singularity, A; is

Kw, o, B) =

Ajtes
= f 7w K@ o fde
Aj—ef
This is evaluated as a line integral along a semicircular arc of radius
¢; centered at A; on the lower half of the complex plane leading to

Ij = Real [(i/2 \y) - Qj]

in which

FO\) - KN\, o, B
q =l
n .
[T (2= N2
kj
Thus, from the foregoing two equations, I; is an imaginary number;
hence, zero contribution of the kernel is due to a resonant frequency.
The fact that a numerical scheme is passible employing the quadra-
ture representation (2) to compute the viscoelastic response is thus
established.

Error Estimation
In a numerical evaluation of the integral in expression (2) the
computation is to be terminated at a distance ¢ from the pole. It is,
therefore, desirable to obtain an error bound for such a truncation.
The integral in (2) is examined between two closely spaced truncation
points, as illustrated in Fig. 1, ¢;! and €;2, ¢;2 > ¢;1, in the neighbor-
hood of a pole A;, and will be indicated by D;. As dictated by the
Cauchy principal value definition the sum is computed from either
side of the pole. This leads to
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The limiting value of the aforementioned expression as ¢;! tends to
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Ry = By BN = 4)
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and the error term

e(N) = ZR;(\)) [for all poles]

This suggests that in order to improve upon the accuracy the con-
tribution of the kernel in the neighborhood of the singularity, e(\),
could be added to the numerical sum with truncated limits.

Conclusions

The alternative quadrature form of the elastic-viscoelastic analogy
is formally extended to account for the singularities of the frequency
response function pertaining to bounded elastic continua. It has been
demonstrated that leaving equal intervals of the real axis on either
side of the poles (due to the resonance phenomenon) errors due to
numerical quadrature can be avoided. It is further illustrated that an
estimated compensation due to the truncation can be incorporated
in the viscoelastic responses so obtained by employing a numerical
integration. Thus the alternative form of (2) can be reduced to

fHw) = Z{R;j(\) + Rj(=N) + T}

in which
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~Nj—e Aj+1—¢
Tj = f ! G(w)dw + f !
—Aj+1te Aj—e

with the anticipation that A, is infinity (i.e., numerically set to a
large number).

The aforementioned quadrature formula avoids the singularities
on the real axis and contains an estimated correction factor. The form
suggests that the expression holds for a more relaxed condition on the
elastic frequency response function, f(w). Piecewise continuous
functions with finite jumps may be allowed between the resonant
poles in the description of f(w); even then [1, 2] remain valid.
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In practical applications, plates are often not supported along their
boundaries. Properly located interior supports can greatly increase
the load-carrying capacity of a plate. The optimal locations of N
point symmetrical support for a uniformly loaded circular plate are
calculated to substantiate the claim. The solutions are obtained for
1 £ N =< = under the theory of limit analysis of plates. The collapse
load in each case is maximized by a search for the optimal support
location.

The Problem

Optimal structural design [1] including optimal load and support
distributions are nonlinear problems. Plasticity [2] of materials plays
an important role in the optimal solutions. The limit analysis for
plates is used in this Note as the basis such that the collapse load as
a measure of load-carrying capacity of a plate is maximized by a search
of optimal support location.

The problem considered is a uniformly loaded circular plate with
a constant yield moment My, resting on a set of symmetrically located
point supports. We seek the optimal support location in terms of the
distance, d, from a support to the center of the plate such that the
limit load g is maximized. ’

The number, N, of supports starts with one at d = 0, and increases
to « as the points approach a line support along a circle of optimal
radius d. For each N, the optimal support location and the maximum
limiting load g7 are obtained.
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BRIEF NOTES

Fig. 1 Circular plate and support configuration

The method of analysis involves the standard upper bound for-
mulation and a minimization procedure over a set of test functions
or collapse modes. The upper bound formulation begins with the
virtual work statement,

‘,D‘fwv-(V-M)dA=qo‘£fwdA o)

where M(x, y) is a 2 X 2 moment matrix function in D, V = (3/dx,
d/dy) is a vector operator and w(x, y) is any kinematically admissible
function [4]. If we integrate the left-hand side of (1) by parts using
the divergence theorem and denote the scalar product operator of two
matrices by: [3], equation (1) can be rewritten as a quotient,

qo(M) = f f M:VVwdA / f wdA @

D D

provided that ffwdA s 0 and M and w satisfy certain boundary
D

conditions [3]. w(x, y) in (3) is now restricted to a class of functions
which satisfy the kinematical boundary conditions and its second
derivatives contained in the Hessian matrix VVw are defined in the
sense of distributions (such as line delta functions). The functions in
this class are continuous and its first derivatives may possess finite
jumps.

An upper bound to go(M) can be obtained by replacing M in (2)
with a constitutively admissible one which is associated with a
kinematically admissible w such that they together produce the
largest integral in the numerator of (2). For a specific yield function,
IMls — Mg < 0, this upper bound has the form,

qo(M) < {f’ }]J[dgdn/
'{fwldldédn,w*(w) (3)

where [| M|z is the Euclidean norm of M, (£, 1) is the principal coor-
dinate of M along which M is diagonal and J is the Jacobian of the
transformation from (x, y) to (£, ). My = 1 is assumed.

Since g*(w) is a function of w only, the least upper bound g7, can

2w

0§ *

o%w
dn2

be obtained by minimization in the space of kinematically admissible

functions. The mathematical operations described thus far can be
written in the form of a minimax problem

ffM:VdeA' 4)
D

where Jlwlly = | [fwdA|, which is not a norm, only serves to nor-
D

gL, = min max
fwili=1 IMita=1

malize the kinematically admissible functions.

The choice of w in (4) is still very wide. For regularly shaped plates
in applications, the possible collapse modes as kinematically admis-
sible functions can often be enumerated. If the complete set of possible
collapse modes {w; | i = 1,2,. ., I} is identified, the search for mini-
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Fig. 2 Collapse modes

mum of (4) over w is in a finite (/) dimensional space. The problem
becomes computationally feasible.

The algorithm used in the next section begins with a set of assumed
collapse modes {iD;(r, 8, d)|i = 1, 2, .., I} where (r, 8) is the polar
coordinate and d the radial position of a support is regarded as a pa-
rameter. Bach mode produces necessarily an upper bound to ¢}, such
that

g1 S qf (d) = max
[ Mlla=1

I M:VVu‘z,-(d)dAl, [wida=1
D D

(5)

The minimum envelope of the set {gf|i = 1, 2,.., I} is a function
of d. The maximum of the envelope function gives the collapse load
at the optimal d. Formally we can summarize the entire procedure
described in this section as a max-min-max problem

{fM:VVu";,-dAI, ‘gfu"),-dA=1 ©6)

assuming that {w;|i = 1, 2, .., I} is the complete set of all possible
collapse modes.

g7, = max min max
d i IMla=1

Optimal Solutions

Let the dimensions be normalized with respect to the radius of the
plate, a. The dimensionless support distance d = d/a and the angle
o = w/N are shown in Fig. 1. Six possible collapse modes are shown
in Fig. 2. In each mode, the YV& assumes either a jump discontinuity
such that

Ivvwle = |[ow/on]| )

along some yield lines with normal n or a constant curvature on a
conical surface such that
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Fig. 3 Minimum envelope

Ivvlls = |— (8)

where [ ] denotes the jump and A is the height of the cone. For the
remaining area VVw = 0.

The solution for each mode can be obtained by integrating (3). They
are functions of d and N.

1 Afw
gt=n/ et =2 (E—sintA— A
qi #/[3” 2(2 sm ”J]
1_ 1.
71—§r=sin90/(§d00—551n00)

a- (90 (6o 1] 00

g3 =6[d+ (1 ~d) cos 00]/(33 cos? 0~ 3 +2

sin fp

G1 = 12/(d2 cos? 8;)

gi=6/d3—3d+2)

G¢ = 12/d2 )]

where \ = d cos fp, u = /1 — A2, and §§ = q}a2/Mo.
The least upper bound solution G(d) over the set |g7}
g(d) = min (7} (@) (10)
i
" is the minimum envelope shown in Fig. 3 schematically. The optimal
solution can be obtained by a one-dimensional search on g (d).

For each N, gop and Eopt are computed. Gqp is always the inter-
section of two or more modal solutions gf. Some modal solutions
approach « at d = 0 or d = 1. These points which are of little interest,
should be avoided in the computation.

The opt and the associated Eopt are shown in Fig. 4 as functions of
N. These are discrete functions. The curves between the function
values only serve to connect the solutions with common mode com-
bination. For N = 1, modes 1, 2, 3, 5